AMD

HIP RT: A Ray Tracing Library in HIP

Takahiro Harada
2022/7

Advanced Rendering Research Group

MDA nz
|PUOD€H | Let's build everything...
TOOLS + SDKS~ PERFORMANCE ~ = DOCUMENTATION ~ Search
News - DirectX®2 - Vulkan® - UnrealEngine - Unity . V v Radeon™ProRender - MaterialX Library

Advanced Rendering Research Group

PUBLICATIONS PROJECTS VIDEOS BLOGS

s the home of the Advanced Rendering Research Group at AMD, working on research surrounding graphics and rendering. We look at |
Jlems relating to CPU and GPU architectures.

opics we study include:

time rendering algorithms.
| illumination using ray tracing.
:ation of Machine Learning to graphics.

ratives from our research activities are turned into some libraries and SDKs.

nembers comprise a wide variety of people with different backgrounds, and we work together to find solutions to problems. The tearr
| all over the world in Europe, Asia, Australia, and North America.

https://gpuopen.com/research/

Self Introduction

Takahiro Harada

Advanced Rendering Research Group

Advanced Rendering Research Group at AMD

R&D

AMDQU

HIP RT

HIP Ray Tracing

4IP RT is a ray tracing library for HIP, making it
“ 25y to wirite ray tracing applications in HIP,

AMD FidelityFX - Super Resolution 1.0
AMD FidelityFX Super Resolution (FSR) is our

o e, high-quality, high
upscaling solution,

AMDZ1
RAOE0N

ProRender

Radeon™ ProRender

AMD Radzon " ProRender Is a powerful
physically-based path traced rendering engine
that enables creative professionals to produce

AMDO1

Orochi

Orochi

Orochi is a library which loads HIP and CUDA®
APIs dynamically, allowing the user to switch
APIs at runtime.

AMDZ
RAD=0N

ML

Radeon™ ML

Radeon™ Machine Leaming (Radeon™ ML or
RML} is an AMD SDK for high-performance
deep leaming inference an GPUSs.

AMDI
RAD=0N

Rays

Radeon™ Rays

The lightwelght accelerated ray Intersection
library for DirectX™12 and Vulkan®.

AMDA
FidelityFX

Super Resalution 2.0

AMD FidelityFX - Super Resolution 2
Learn even mare about our new open source

temporal upscaling solution FSR 2, and get the
source code and documentation!

AMDODU
RADO=0N

Image Filter

Radeon™ Image Filtering Library
Hamess the power of machine leaming to
enhance images with denoising, enabling your
application to produce high quality images ina
fraction of the time traditional denolsing
filters take.

L
{

L]

TressFX

The TressFX library Is AMD's hair/ fur rendering
and simulation technology. TressFX is
deslgned to use the GPU to simulate and

AMDZU

ARR

What Do You Think about Ray Tracing APIs?

DirectX® Ray Tracing
Vulkan® Ray Tracing

Metal Performance Shaders
NVIDIA OptiX

AMDZU

ARR

An ot h e r Ray TraCi n g L i b ra ry? Advanced Rendering Research Group

Necessity

AMD RDNA™ 2 GPUs (Navi2x) have hardware ray tracing unit “Ray Accelerator” which cannot be accessible from
developers

Needed to add ray tracing API for HIP (Heterogeneous-Computing Interface for Portability™)

How should we design?
Take existing API?
Design something new?

Looked at different APIs, decided to design our own
Slightly different from others in a few ways

One RA per Compute Unit

l
AMDZV

RDNA 2

* https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.htm! AMD g\

ARR

D es i g n Advanced Rendering Research Group

Designed to be minimum
No need to learn different shaders (kernels)

Easier to add to existing applications
Adding RT to existing app. shouldn’t be that difficult

AMDZU

ARR

H isto ry Advanced Rendering Research Group

Released v.1 in 2022/4
v.1.1is soon

AMDZU

ARR

Advanced Rendering Research Group

HIP RT API

Overview of HIP RT

Ray tracing using BVH

Use hardware ray tracing on AMD GPUs (Navi 2x)
Runs on Vega or Navi1x, Navi2zx GPUs
No support on Ellesmere and older (HIP)

Make it run as many platforms as possible
HIP and CUDA implementation (AMD and NV)

Built on top of Orochi (https://gpuopen.com/orochi/)

ARR

Advanced Rendering Research Group

AMDZU

https://gpuopen.com/orochi/

Orochi

Developers need to maintain HIP and CUDA host code

They are mostly the same (
It doesn’t sound right

Write once using Orochi APls, then your application

Runs on AMD GPUs using HIP

Runs on NVIDIA GPUs using CUDA
No static linking thus it doesn’t crash even if there is no GPU

Implements driver APls

Grochi ARR

Advanced Rendering Research Group

#include <hip/hip_runtime.h>

hipInit(0);

hipDevice device;

hipDeviceGet(&device, 0);
hipCtx ctx;

hipCtxCreate(&ctx, 0, device);

#include <Orochi/orochi.h>

oroInitialize(ORO_API_HIP, 0);
oroInit(0);

oroDevice device;

oroDeviceGet(&device, 0);
oroCtx ctx;

oroCtxCreate(&ctx, 0, device);

User code using
driver API

HIP

amdhip64.dll

nvcuda.dll

CUDA
https://gpuopen.com/orochi/

AMDZU

ARR

Ove rVieW Of H I P RT Advanced Rendering Research Group
Ray tracing using BVH

Use hardware ray tracing on AMD GPUs (Navi 21)
Runs on Vega or Navi10, Navi20 GPUs
No support on Ellesmere and older (HIP)

HIP RT

Make it run as many platforms as possible
HIP and CUDA implementation (AMD and NV) Orochi

Built on top of Orochi (https://gpuopen.com/orochi/)
Hardware ray tracing works only on HIP HIP
Windows and Linux OSes

CUDA

AMD GPU NVIDIA GPU

o AMD

Intersection against triangles
Can extend to any primitives by writing a custom intersection functions

e\

https://gpuopen.com/orochi/

1

Overview of HIP RT

- What are the essential things we need to define?

- Camera?
- Acceleration structure?

ARR

Advanced Rendering Research Group

AMDZ

Overview of HIP RT

User need to understand these objects
hiprtGeometry
This is an instance in other APls
Collection of primitives (triangles)

hiprtGeometry

ARR

Advanced Rendering Research Group

AMDZU

ARR

Ove rVieW Of H I P RT Advanced Rendering Research Group

User need to understand these objects
hiprtGeometry
This is an instance in other APls

Collection of primitives (triangles)
hiprtScene

Collection of hiprtGeometries to make a scene hiprtFrame hiprtFrame
hiprtGeometry hiprtGeometry

. AMDQ1

Overview of HIP RT

Hit types
hiprtTraversalTerminateAtAnyHit = 1,
hiprtTraversalTerminateAtClosestHit = 2,

Multiple BVH types depending on your needs
hiprtBuildFlagBitPreferFastBuild = 1,
hiprtBuildFlagBitPreferHighQualityBuild = 2,
hiprtBuildFlagBitPreferBalancedBuild = 3,

You can even build a BVH by yourself, pass it to HIP RT

ARR

Advanced Rendering Research Group

AMDZU

Using HIPRT

Get the latest driver package from AMD website

Agree the license, download the SDK package from project page
https://gpuopen.com/hiprt/

Get the latest tutorials at (Optional)
https://github.com/gpuopen-LibrariesAndSDKs/hiprtsdk

Link your HIP/CUDA program with HIPRT

ARR

Advanced Rendering Research Group

AMDZU

https://gpuopen.com/hiprt/
https://github.com/gpuopen-LibrariesAndSDKs/hiprtsdk

Using HIPRT

Get the latest driver package from AMD website

Agree the license, download the SDK package from project page
https://gpuopen.com/hiprt/ HIPRT Tutorials

List of tutorials

Get the latest tutorials at (Optional) e (
https://github.com/gpuopen-LibrariesAndSDKs/hiprtsdk .

ARR

Advanced Rendering Research Group

Intersection using hiprtGeometry.

0 t A ‘ Intersection using hiprtScene.
Link your HIP/CUDA program with HIPRT o
0 tom_inti t ‘.\;‘ Using & custom intersection function.

https://qithub.com/GPUOpen-LibrariesAndSDKs/HIPRTSDK/tree/main/tu

Using shared stack for traversal which is essential to get a good performance.
Loading a BVH a user provides.
Loading obj file and rendering AO.

Rendering objects under motion.

torials

AMDZU

https://gpuopen.com/hiprt/
https://github.com/gpuopen-LibrariesAndSDKs/hiprtsdk
https://github.com/GPUOpen-LibrariesAndSDKs/HIPRTSDK/tree/main/tutorials

[Tutorial] Geometry Intersection

4 steps
Context creation
Geometry (or Scene) construction
Kernel compilation
Kernel execution

ARR

Advanced Rendering Research Group

AMDZU

[Tutorial] Geometry Intersection

4 steps
Context creation
Geometry (or Scene) construction
Kernel compilation
Kernel execution

hiprtContext ctxt;
hiprtCreateContext(HIPRT_API_VERSION, m_ctxtInput, &ctxt);

ARR

Advanced Rendering Research Group

AMDZU

ARR

[Tutoria I] Geometry I nte rsecti O n Advanced Rendering Research Group

4 steps
Context creation
Geometry (or Scene) construction
Kernel compilation
Kernel execution

hiprtGeometryBuildInput geomInput; _
geomInput.type = hiprtPrimitiveTypeTriangleMesh;
geomInput.triangleMesh.primitive = &mesh;

size_t geomTempSize;

hiprtDevicePtr geomTemp;

hiprtBuildOptions options;

options.buildFlags = hiprtBuildFlagBitPreferFastBuild;
hiprtGetGeometryBuildTemporaryBufferSize(ctxt, &jeomInput, &options, &geomTempSize);
dmalloc((u8*&)geomTemp, geomTempSize);

hiprtGeometry geom;

hiprtCreateGeometry(ctxt, &geomInput, &options, &geom);
hiprtBuildGeometry(ctxt, hiprtBuildOperationBuild, &geomInput, &options, geomTemp, O, geom);

AMDZU

ARR

[Tutoria I] Geometry I nte rsecti O n Advanced Rendering Research Group

4 steps
Context generation
Geometry (or Scene) construction
Kernel compilation
Kernel execution

oroFunction func; _ _ _
buildTracekernel (ctxt, "../0l_geom_intersection/TestKernel.h", "MeshIntersectionKernel", func);

hiprtBuildTraceProgramChiprtContext context, const char* functionName, const char* src,..);

20 AMDZU

21

ARR

[Tutoria I] Geometry I nte rsecti O n Advanced Rendering Research Group

4 steps
Context generation
Geometry (or Scene) construction
Kernel compilation
Kernel execution

oroModuleLaunchKernel(func, nb.x, nb.y, 1, tpb.x, tpb.y, 1, sharedvemBytes, 0, (void**)args, 0);

AMDZU

22

[Tutorial] Geometry Intersection

extern

{

IICII

_global__ void MeshIntersectionKernel/(unsigned char* gbDst, int2 cRes)

const int gIdx
const int gIdy

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

hiprtRay ray;

float3 o = { gidx / (float)cRes.x, gIdy / (float)cRes.y, -1.0f};
float3 d = { 0.0f, 0.0f, 1.0f};

ray.origin = o;

ray.direction = d;

ray.maxT = 1000.f;

int dstIdx = gIdx + gIdy * cRes.x;

gbDst[dstIdx * 4 + 0] = hasHit ? ((float)gIdx / cRes.x) * 255 : 0;
gbst[dstIdx * 4 + 1] = hasHit ? ((float)gIdy / cRes.y) * 255 : 0;
gbst[dstIdx * 4 + 2] = O;

gbst[dstIdx * 4 + 3] = 255;

ARR

Advanced Rendering Research Group

AMDZU

23

[Tutorial] Geometry Intersection

extern

{

Cc" __global__ void MeshIntersectionKernel(hiprtGeometry geom, unsigned char* gDst, int2 cRes)

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

const int gIdx
const int gIdy

hiprtRay ray;

float3 o = { gidx / (float)cRes.x, gIdy / (float)cRes.y, -1.0f};
float3 d = { 0.0f, 0.0f, 1.0f};

ray.origin = o;

ray.direction = d;

ray.maxT = 1000.f;

hiprtGeomTraversalClosest tr(geom, ray);
hiprtHit hit = tr.getNextHit();

bool hasHit = hit.primiD != hiprtInvalidvalue;

int dstIdx = gIdx + gIdy * cRes.x;

gbDst[dstIdx * 4 + 0] = hasHit ? ((float)gIdx / cRes.x) * 255 : 0;
gbst[dstIdx * 4 + 1] = hasHit ? ((float)gIdy / cRes.y) * 255 : 0;
gbst[dstIdx * 4 + 2] = O;

gbst[dstIdx * 4 + 3] = 255;

ARR

Advanced Rendering Research Group

AMDZU

24

[Tutorial] Geometry Intersection

extern

{

C" __global__ void MeshIntersectionKernelChiprtGeometry geom, unsigned char* gDst, int2 cRes)

blockIdx.x * blockDim.x + threadIdx.x;
blockidx.y * blockDim.y + threadIdx.y;

const int gIdx
const int gIdy

hiprtRay ray;
float3 o = { gIdx / (float)cRes.x, gIdy / (float)cRes.y, -1.0f};
float3 d = { 0.0f, 0.0f, 1.0f};

ARR

Advanced Rendering Research Group

ray.origin = o;
ray.direction = d;
ray.maxT = 1000.f;

hiprtGeomTraversalClosest tr(geom, ray);
hiprtHit hit = tr.getNextHit(Q;

bool hasHit = hit.primID != hiprtInvalidvalue;

int dstIdx = gIdx + gIdy * cRes.Xx;

gbDst[dstIdx * 4 + 0] = hasHit ? ((float)gIdx / cRes.x) * 255 : 0;
gDst[dstIdx * 4 + 1] = hasHit ? ((float)gIidy / cRes.y) * 255 : 0;
gbst[dstIdx * 4 + 2] = O;

gbst[dstIdx * 4 + 3] = 255;

How much code do you need to write to render a single triangle in another API?

AMDZU

25

HIPRT Tutorials

List of tutorials

01_geom_intersection

02_scene_intersection

03_custom_intersection

04_shared_stack

05_custom_bvh

06_obj_AO

07_motion_blur

W\

»®
»
LLY

S
o
o

Intersection using hiprtGeometry.

Intersection using hiprtScene.

Using a custom intersection function.

Using shared stack for traversal which is essential to get a good performance.

Loading a BVH a user provides.

Loading obj file and rendering AO.

Rendering objects under motion.

Advanced Rendering Research Group

AMDZU

26

Closing

Next Release
At SIGGRAPH2022
Bounding box program
More optimization

Thanks for HIPRT development team in ARR, David McAllistor, Bruno Stefanizzi

Project page:
https://gpuopen.com/hiprt/

Blog:
https://gpuopen.com/learn/introducing-hiprt/

Github repository:

https://github.com/gpuopen-LibrariesAndSDKs/hiprtsdk
Documentation
https://radeon-pro.qithub.io/RadeonProRenderDocs/en/hiprt/about.html

ARR

Advanced Rendering Research Group

AMDZU

https://gpuopen.com/hiprt/
https://gpuopen.com/learn/introducing-hiprt/
https://github.com/gpuopen-LibrariesAndSDKs/hiprtsdk
https://radeon-pro.github.io/RadeonProRenderDocs/en/hiprt/about.html

ARR

D is c I a i m e r Advanced Rendering Research Group

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation
to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make
changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON
FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

2022, Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in
this publication are for identification purposes only and may be trademarks of their respective companies.

Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc.
DirectX is either registered trademark or trademark of Microsoft Corporation in the US and/or other countries.

AMDZU

