
Practical DirectX 12
- Programming Model and Hardware Capabilities

Gareth Thomas & Alex Dunn
AMD & NVIDIA

2

Agenda

 DX12 Best Practices

 DX12 Hardware Capabilities

 Questions

3

Expectations

Who is DX12 for?
● Aiming to achieve maximum GPU & CPU performance

● Capable of investing engineering time

● Not for everyone!

4

Engine Considerations

Need IHV specific paths
● Use DX11 if you can’t do this

Application replaces portion of driver and
runtime

● Can’t expect the same code to run well on
all consoles, PC is no different

● Consider architecture specific paths

Look out for NVIDIA and AMD specifics

DX11 DX12

Driver Application

5

Work Submission

 Multi Threading

 Command Lists

 Bundles

 Command Queues

6

Multi-Threading

DX11 Driver:
● Render thread (producer)

● Driver thread (consumer)

DX12 Driver:
● Doesn't spin up worker threads.

● Build command buffers directly via the CommandList interface

Make sure your engine scales across all the cores
● Task graph architecture works best

● One render thread which submits the command lists

● Multiple worker threads that build the command lists in parallel

7

Command Lists

Command Lists can be built while others are being submitted
● Don’t idle during submission or Present

● Command list reuse is allowed, but the app is responsible for
stopping concurrent-use

Don’t split your work into too many Command Lists

Aim for (per-frame):
● 15-30 Command Lists

● 5-10 ‘ExecuteCommandLists’ calls

8

Command Lists #2

Each ‘ ExecuteCommandLists’ has a fixed CPU overhead
● Underneath this call triggers a flush

● So batch up command lists

Try to put at least 200μs of GPU work in each
‘ExecuteCommandLists’, preferably 500μs

Submit enough work to hide OS scheduling latency
● Small calls to ‘ExecuteCommandLists’ complete faster than the OS

scheduler can submit new ones

9

Command Lists #3

● Highlighted ECL takes ~20μs to execute

● OS takes ~60μs to schedule upcoming work

● == 40μs of idle time

IDLE

Example:

 What happens if not enough work is submitted?

10

Bundles

Nice way to submit work early in the frame

Nothing inherently faster about bundles on the GPU
● Use them wisely!

Inherits state from calling Command List – use to your
advantage

● But reconciling inherited state may have CPU or GPU cost

Can give you a nice CPU boost

● NVIDIA: repeat the same 5+ draw/dispatches? Use a bundle

● AMD: only use bundles if you are struggling CPU-side.

11

Multi-Engine

 3D Queue

 Compute Queue

 Copy Queue

3D

COMPUTE

COPY

12

Compute Queue #1
 Use with great care!

● Seeing up to a 10% win currently, if done correctly

Always check this is a performance win
● Maintain a non-async compute path

● Poorly scheduled compute tasks can be a net loss

Remember hyperthreading? Similar rules apply
● Two data heavy techniques can throttle resources, e.g. caches

If a technique suitable for pairing is due to poor utilization of
the GPU, first ask “why does utilization suck?”

● Optimize the compute job first before moving it to async compute

13

Compute Queue #2

(Technique pairing doesn’t have to be 1-to-1)

Good Pairing

Graphics Compute

Shadow Render
(I/O limited)

Light culling
(ALU heavy)

Poor Pairing

Graphics Compute

G-Buffer
(Bandwidth

limited)

SSAO
(Bandwidth

limited)

14

Compute Queue #3

Unrestricted scheduling creates
opportunities for poor technique
pairing

● Benefits are;
●Simple to implement

● Downsides are;
●Non-determinism frame-to-frame

●Lack of pairing control

Command
List

•Z-Prepass

•G-Buffer Fill

Command
List

•Shadow Maps
(depth only)

Fence

•Wait GPU: 2

Command List

•Light Culling

Fence

•Signal GPU: 2

3D COMPUTE

15

Compute Queue #4

Prefer explicit scheduling of
async compute tasks through
smart use of fences

● Benefits are;
● Frame-to-frame determinism

● App control over technique pairing!

● Downsides are;
●It takes a little longer to implement

Command
List

•Z-Prepass

•Fill G-Buffer

Fence

•Signal GPU: 1

Command
List

•Shadow Maps
(Depth Only)

Fence

•Wait GPU: 2

Fence

•Wait GPU: 1

Command
List

•Light Culling

Fence

•Signal GPU: 2

3D COMPUTE

16

Copy Queue

Use the copy queue for background tasks

● Leaves the Graphics queue free to do graphics

Use copy queue for transferring resources over PCIE
● Essential for asynchronous transfers with multi-GPU

Avoid spinning on copy queue completion

● Plan your transfers in advance

NVIDIA: Take care when copying depth+stencil resources –
copying only depth may hit slow path

17

Hardware State

 Pipeline State Objects (PSOs)

 Root Signature Tables (RSTs)

18

Pipeline State Objects #1

Use sensible and consistent
defaults for the unused fields

The driver is not allowed to
thread PSO compilation

● Use your worker threads to
generate the PSOs

● Compilation may take a few
hundred milliseconds

19

Pipeline State Objects #2

Compile similar PSOs on the same thread
● e.g. same VS/PS with different blend states

● Will reuse shader compilation if state doesn’t affect shader

● Simultaneous worker threads compiling the same shaders will wait
on the results of the first compile.

20

Root Signature Tables #1
Keep the RST small

● Use multiple RSTs

● There isn’t one RST to rule them all…

Put frequently changed slots first

Aim to change one slot per draw call

Limit resource visibility to the minimum set of stages
● Don’t use D3D12_SHADER_VISIBILITY_ALL if not required.

● Use the DENY_*_SHADER_ROOT_ACCESS flags

Beware, no bounds checking is done on the RST!

Don’t leave resource bindings undefined after a change of Root
Signature

21

Root Signature Tables #2

AMD: Only constants and CBVs changing per draw should be
in the RST

AMD: If changing more than one CBVs per draw, then it is
probably better putting the CBVs in a table

NVIDIA: Place all constants and CBVs in RST
● Constants and CBVs in the RST do speed up shaders

● Root constants don’t require creating a CBV == less CPU work

22

Memory Management

 Command Allocators

 Resources

 Residency

23

Command Allocators

Aim for number of recording threads * number of buffered
frames + extra pool for bundles

● If you have hundreds of allocators, you are doing it wrong

Allocators only grow
● Can never reclaim memory from an allocator

● Prefer to keep them assigned to the command lists

Pool allocators by size where possible

24

Resources – Options?

Type Physical Page Virtual Address

Committed

Heap

Placed

Reserved

25

Committed Resources
Allocates the minimum size heap
required to fit the resource

App has to call MakeResident/Evict on
each resource

App is at the mercy of OS paging logic
● On ‘MakeResident’, the OS decides where

to place resource

● You're stuck until it returns

V
id

e
o
 M

e
m

o
ry

Texture2D

Buffer

26

Heaps & Placed Resources

Creating larger heaps

● In the order of 10-100 MB

● Sub-allocate using placed resources

Call MakeResident/Evict per heap
● Not per resource

This requires the app to keep track of
allocations

● Likewise, the app needs to keep track of
free/used ranges of memory in each heap

V
id

e
o
 M

e
m

o
ry

H
e
a
p
 Texture2D

Buffer

27

Residency
MakeResident/Evict memory to/from GPU

● CPU + GPU cost is significant so batch MakeResident and
UpdateTileMappings

● Amortize large work loads over multiple frames if necessary

● Be aware that Evict might not do anything immediately

MakeResident is synchronous
● MakeResident will not return until the resource is resident

● The OS can go off and spend a LOT of time figuring out where to
place resources. You're stuck until it returns

● Be sure to call on a worker thread

28

Residency #2

How much vidmem do I have?

● IDXGIAdapter3::QueryVideoMemoryInfo(…)

● Foreground app is guaranteed a subset of total vidmem

● The rest is variable, app should respond to budget changes from OS

App must handle MakeResident fail.
● Usually means there’s not enough memory available

● But can happen even if there is enough memory (fragmentation)

Non-resident read is a page fault! Likely resulting in a fatal crash

What to do when there isn’t enough memory?

29

Vidmem Over-commitment

Create overflow heaps in sysmem, and move some resources over from
vidmem heaps.

● The app has an advantage over any driver/OS here, arguably it knows what’s most
important to keep in vidmem

Idea: Test your application with 2 instances running

Video Memory

Heap Texture2D Heap

Texture3D

Vertex
Buffer

System Memory

Overflow
Heap

Vertex
Buffer

30

Resources: Practical Tips

Aliasing targets can be a significant memory saving
● Remember to use aliasing barriers!

Committed RTV/DSV resources are preferred by the driver

NVIDIA: Use a constant buffer instead of a structured buffer
when reads are coherent. e.g. tiled lighting

31

Synchronization

 Barriers

 Fences

32

Barriers #1

Don’t let resource barriers become a performance barrier!

Batch barriers together

Use the minimum set of usage flags
● Avoiding redundant flushing

Avoid read-to-read barriers
● Get the resource in the right state for all subsequent reads

Use “split-barriers” when possible

33

Barriers #2

COPY_SOURCE will probably be significantly more expensive
than SHADER_RESOURCE

• Enables access on the copy queue

Barrier count should be roughly double the number of
surfaces written to

34

Fences

GPU Semaphore
• e.g. Make sure GPU is done with resource before evict

Each fence is about the same CPU and GPU cost as
ExecuteCommandLists

Don’t expect fences to trigger signals/advance at a finer
granularity than once per ExecuteCommandLists call

35

Miscellaneous

 Multi-GPU

 Swap Chains

 Set Stable Power State

 Pixel vs Compute

36

Multi GPU

Functionality now embedded in DirectX 12 API

Trade-offs for cross-adapter vs. linked-node
● See Juha Sjöholm’s talk later today for more on this

Explicitly sync resources across devices
● Use proper CreationNodeMask

Be mindful of PCIe bandwidth

● PCI 3.0 (8x) – 8GB/s (expect ~6GB/s)

● PCI 2.0 (8x) – 4GB/s (expect ~3GB/s) Still common…
● e.g. transferring a 4k HDR buffer will limit you to ~50/100 FPS right away

37

Swap Chains

App must do explicit buffer rotation!

● IDXGISwapChain3::GetCurrentBackBufferIndex()

To replicate VSYNC-OFF
● SetFullScreenState(TRUE)

● Use a borderless fullscreen window

● Flip model swap-chain mode

Very rich, new API!

Screen

38

Set Stable Power State

● This reduces performance

● Alters performance ratio of GPU components within chip

Don’t do it! (Please)

HRESULT ID3D12Device::SetStablePowerState(BOOL Enable);

39

Pixel vs Compute - Performance
NVIDIA

 No shared memory?
 Threads complete at

same time?
 High frequency cbuffer

accesses?
 2D buffer stores?

 Using group shared
memory?

 Expect out-of-order
thread completion?

 Using high # regs?
 1D/3D buffer stores

Pixel Shader Compute Shader

AMD

 Benefit from
depth/stencil rejection?

 Requires graphics
pipeline?

 Want to leverage color
compression?

 Everything else

Pixel Shader Compute Shader

Best performance gained from following these guidelines

(Consider the perf benefit of using async compute)

40

Hardware Features

 Conservative Rasterization

 Volume Tiled Resources

 Raster Ordered Views

 Typed UAV Loads

 Stencil Output

41

Hardware Features Stats
AMD Radeon NVIDIA GeForce Intel HD Graphics

GCN 1.1 GCN 1.2 Kepler Maxwell 2 Skylake

Feature Level 12_0 11_0 12_1 12_1

Resource Binding Tier 3 Tier 2 Tier 3

Tiled Resources Tier 2 Tier 1 Tier 3 Tier 3

Typed UAV Loads Yes No Yes Yes

Conservative
Rasterization

No No Tier 1 Tier 3

Rasterizer-Ordered
Views

No No Yes Yes

Stencil Reference
Output

Yes No Yes

UAV Slots full heap 64 full heap

Resource Heap Tier 2 Tier 1 Tier 2

42

Conservative Rasterization
 Draws all pixels a primitive touches

● Different Tiers – See spec

Possible before through GS trick but
relatively slow

● See; J. Hasselgren et. Al, “Conservative
Rasterization“, GPU Gems 2

Now we can use rasterization do
implement some nice techniques!

● See; Jon Story, “Hybrid Raytraced
Shadows”, D3D day - GDC 2015

43 Ray traced shadows in, ‘Tom Clancy’s The Division’, using conservative rasterization

44

Volume Tiled Resources
 Tiled resources from DX11.2, now
available for volume/3D resources

● Tier 3 tiled resources

Tiles are still 64kb
● And tile mapping still needs to be

updated from the CPU

Extreme memory/performance
benefits

● Latency Resistant Sparse Fluid
Simulation [Alex Dunn, D3D Day – GDC
2015]

45

Raster Ordered Views
 Ordered writes

● Classic use case is OIT

● See K+ Buffer OIT [Andreas A. Vasilakis,

SIGGRAPH, 2014]

● Programmable blending
● Completely custom blending, not bound by
fixed HW

Use with care! Not free
● Watch the # conflicts

46

Typed UAV Loads
 Finally, no more 32-bit restriction
from the API

May allow you to remove console
specific paths in engine

Loading from UAV slower than
loading from SRV

● So still use SRV for read-only
access

// Can do this e.g.
RWTexture2D<float4>

// and in conjunction with ROV :)
RasterizerOrderedTexture2D<float4>

47

Stencil Output
 Implementations?

● N-ary algorithm using stencil?

●Previous; clear + N passes

●Now; Single pass

Performance considerations
● Comparable to using depth out

48

Questions?

adunn@nvidia.com

@AlexWDunn

#HappyGPU

gareth.thomas@amd.com

DX12PerfTweet

mailto:adunn@nvidia.com
mailto:gareth.thomas@amd.com

