
Scriptable Render Pipeline
Future of Rendering in Unity

Aras Pranckevičius



Problem In Pictures



Ori And The Blind Forest



P.A.M.E.L.A.



Night In The Woods



Manifold Garden



INSIDE



Osiris: New Dawn



Pokémon Go



Firewatch



TIS-100



Cities: Skylines



Job Simulator



Crossy Road



Eagle Flight



Why is that a problem?!



Unity’s Render Pipeline Today, In Theory
● Forward or Deferred
● Configurable

○ Custom shaders, both for materials and lighting
○ Compute shaders
○ Custom post-processing effects
○ Command Buffers

● Works well on all platforms



Unity’s Render Pipeline Today, In Practice...
● Big black box system
● Hard to configure right
● Flexibility is not awesome
● Performance is not awesome
● “One Size Fits All” trap
● Often does not use platform specific strengths
● Changing the behavior is hard

:(



New Goals!
● Small C++ core
● Expose APIs
● High level “render loop” logic in C#



What do we want our renderer to be?
Lean

● Minimal surface area
● Testable
● Loosely coupled



What do we want our renderer to be?
User Centric

● Lives as extension or in user’s project directly
● Debuggable
● Extend and modify
● Fast iteration time for changes



What do we want our renderer to be?
Optimal

● Perform fast, duh
● Optimal for:

○ Particular platform
○ Particular application type

● Allow removing things your project does not need



What do we want our renderer to be?
Explicit

● Does exactly what you tell it. Nothing more. Nothing less.
● No magic
● Clean API



Scriptable Render Pipeline



Engine (C++) vs userland (C#) split
● If it’s perf critical, it’s done in engine/C++

○ Future: maybe in C# if we can make it fast (ongoing research)

● Engine C++ code:
○ Culling
○ Sorting / Batching / Rendering sets of objects
○ Internal graphics platform abstraction

● C# / shader code:
○ Camera setup
○ Lighting / shadows setup
○ Frame render passes setup / logic
○ Shader & compute code



This is not rocket surgery
● High level code / config to describe rendering idea is not new:

○ “Benefits of a data-driven renderer”, Tobias Persson, GDC 2011
○ “Destiny’s Multi-Threaded Rendering Architecture”, Natalya Tatarchuk, GDC 2015
○ “Framegraph: Extensible Rendering Architecture in Frostbite”, Yuriy O’Donell, GDC 2017

● Should it be data (graph / config files) or code (C# / Lua / …)?
○ We went for code
○ Programmers like code more than noodle graphs :)
○ Some decisions are branchy and game state dependent

https://www.slideshare.net/tobias_persson/bstech-gdc2011
http://advances.realtimerendering.com/destiny/gdc_2015/
http://schedule.gdconf.com/session/framegraph-extensible-rendering-architecture-in-frostbite


Main C# APIs
● Cull specific views
● Render subset of visible objects

○ With info on what material/shader passes to use
○ With sorting flags
○ With “what kind of per-object data to setup” (light probes, per-object light lists, etc.) to set up

● Already existing APIs for:
○ Setting up render passes / render targets
○ Setting up shader constants / global resources
○ Dispatching compute shaders
○ Rendering individual meshes (for special fx / post fx)

● APIs build a “command buffer” that is later analyzed/executed



C#?! U MAD?!?!
● This is high-level code operating on frame structure
● No per-visible-object C# bits
● Actually runs faster and schedules better than our old C++ render loops!
● We also have a bunch of threading / no-GC things cooking for C#, soon...

Existing C++ render loop Scriptable Pipeline



Want to ship out of the box
● PC/Console/High-Mobile pipeline (codename “HD”... naming is hard!)
● Low-end mobile pipeline
● VR



HD Pipeline
● PBR, GGX, area lights, FPTL/clustered, aniso GGX, layered, SSS, …

○ All the buzzwords :)

● Requires compute shader support
● Watch it live! github.com/Unity-Technologies/ScriptableRenderLoop

https://github.com/Unity-Technologies/ScriptableRenderLoop


Great. When?
● “Experimental” in Unity 5.6 since last year!

○ unity3d.com/unity/beta 
○ github.com/Unity-Technologies/ScriptableRenderLoop 
○ API keeps on changing

● Want to ship “for reals” in release after 5.6

https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://github.com/Unity-Technologies/ScriptableRenderLoop
https://github.com/Unity-Technologies/ScriptableRenderLoop

