
• Learned a lot about the performance
of D3D12 engine with Nitrous 1.0

• What does a second gen
D3D12/Vulkan engine look like?

• Direct control of synchronization
primitives: gives us control where
we need it

• Multi Core rendering: allow for
lower latency

• More complex multi-engine (aka
async compute): allows high
efficiency for VR

• Average FPS not a useful metric

• Must run at 90, consistently

• How to measure performance of an Engine on a
given System?

• CPU speed – all the stuff that a CPU has to do to
run our game scene filled with objects. Physics,
AI, skinning, simulation, gameplay etc.

• GPU speed – what we need to render the scene
on a display, VR or otherwise

• App Motion to Photon Latency is known quality bar,
but how do we improve?

• Need to understand
maximum load for a given
system e.g. like max towing
for a truck, or max loaded
weight for a bridge

• Number of Objects per unit
of time on a given system

POPS
Processed Objects Per Second

• Simple concept: Many engines can become CPU
bound. Becomes increasingly difficult to run
simulations at a consistent 90 fps

• 90 fps is misleading, because of time to photon-
loop, every millisecond that can be eliminated
improves experience

• Even if engine is fast enough to run all CPU side
work in 11 ms, a better experience if it can handle
it in far less time (e.g. 5 ms)

• TLDR: higher POPS = better experience. But how do
we get a higher POPS?

• Modern CPUs are fast

• Eliminate:

• Arbitrary branches

• Deep call stacks

• Poor cache use

• Do

• SSE instructions

• Vector Math

• Not small gains, most code could be 10x
faster!

Execution gaps due to warm up and imperfect execution of workload

Architecture: App: Starswarm

Architecture: Challenge

Chains of dependent systems can cause system level serialization.

Delayed processing (double/triple buffering) can help address this, but at
the cost of simulation and visual fidelity. Fast moving objects, fast camera
can make this problematic.

GamePlayView Update Effects Trails OSL Present

Architecture: Ashes: Systems Multi-Stage

Design systems to have multiple stages, useful to satisfy dependencies as
quickly as possible, as well as organize the frame better for performance.

Model Views: Multiple Phases

Msg
Update

Update Local
Sim

Build GPU
Cmds

Submit Cmd
Lists

GamePlay Effects

Trails

OSL Present

Architecture: Ashes: 14k Avg Num Tasks

Manual Priming for multi-parallel execution with some signals
Modules->Update(N-Threads, &PhysicsSignal);
Projectiles->Update(N-Threads);

On PhysicsSignal()
Physics->Update(N-Threads)

Nitrous 2.0: App as Collection of DAGs

Good
Location
for serial
phases

• The more cores you have,
the faster a frame can be
made

• Latency is reduced =
super critical for VR

On 16 cores, entire Frame
can be processed in just a
few MS

• The current way: Generate 2 eyes, 90 fps

• Lots of waste, lots of pixels to shade

• Techniques get complex trying to reduce shading,
e.g. foveated rendering

• Must be very careful about all sorts of aliasing,
especially shader aliasing and eye to eye
‘exactness

• If intend to use whole GPU, end up adding 11 ms
of latency

• Is there a better way?

• Can we shade less frequently?

• Can we share shading work between the eyes?

• Can we guarantee that each eye has the same
shading data?

• Can we do better about not dropping frames?

• Core concept – shade
once, at reduced FPS
(e.g. 30 fps) and share
data between the eyes

• Aliasing, performance,
eye coherency, all better

Graphics

11 ms

33 ms

Compute

Graphics

38 ms

Before

After

3X
Performance

Increase

• Small VR game/demo based on Nitrous 2.0

• Used as our prototype for Nitrous 2.0 concepts

• Space VR game with thousands of star fighters
and huge capital ships

• Called Not Enough Bullets in reaction to the
sheer chaos of space battle!

• VR tracking reduced to only the
rasterization portion - typically <
50% of GPU resource

• Thus, can shave off ~5-6 ms
latency

• High POPS + Decoupled Shading
= App Motion to Photon
Latency

• Next gen APIs benefits:

• Decoupled shading can be supported
natively

• CPU overhead reduced

• Multiple cores can be effectively used

• Strict scheduling can guarantee when work
will be done

• “Not Enough Bullets” demo shows all this in
action!

