
Author’s version of the work (2024)

Neural Texture Block Compression

S. Fujieda and T. Harada

Advanced Micro Devices, Inc.

Figure 1: Neural Texture Block Compression (NTBC) encodes multiple textures in a single material in BC formats with reduced
storage size while maintaining reasonable quality. Top row: block-compressed data in BC1 for diffuse. NTBC (bottom-right)
produces the equivalent compressed data to the reference BC (Ref. BC, top-left). Weight Index visualizes 2-bit indices for each
pixel with the viridis colormap where colors from black to yellow represent 0 to 3. Bottom row: zoom-ins of three textures in the
MetalPlates013 material from [Dem24] such as, from left to right, diffuse, normal, and roughness.

Abstract
Block compression is a widely used technique to compress textures in real-time graphics applications, offering a
reduction in storage size. However, their storage efficiency is constrained by the fixed compression ratio, which
substantially increases storage size when hundreds of high-quality textures are required. In this paper, we pro-
pose a novel block texture compression method with neural networks, Neural Texture Block Compression (NTBC).
NTBC learns the mapping from uncompressed textures to block-compressed textures, which allows for signifi-
cantly reduced storage costs without any change in the shaders. Our experiments show that NTBC can achieve
reasonable-quality results with up to about 70% less storage footprint, preserving real-time performance with a
modest computational overhead at the texture loading phase in the graphics pipeline.

1. Introduction

The desire for more immersive experiences in games and
virtual reality increases the demand for high visual fidelity
in real-time graphics applications. To meet this demand, tex-
tures play a crucial role in providing detailed and realistic

surfaces through a lot of material properties such as dif-
fuse color, normal maps, and other BRDF information. How-
ever, each material property requires a high-resolution tex-
ture which consumes a large amount of storage and is of-
ten the bottleneck for the performance of graphics applica-

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

tions. Block Compression (BC) is one of the most popular
techniques to reduce the storage footprint of textures. BC
has different types of formats (BC1-BC7), which are sup-
ported by most modern GPUs and graphics APIs such as
DirectX [Mic20]. These formats offer the desirable random-
access property with fixed-rate block compression, where
each 4× 4 texel block is compressed to a fixed number of
bytes. BC1 and BC4 compress each block to 8 bytes, while
other formats compress each block to 16 bytes. Therefore,
a single 4k texture compressed even with BC1 and BC4 re-
quires 8 MB of storage, which reaches the magnitude of gi-
gabytes for a scene with hundreds of 4k textures that are
common in modern high-quality games.

Recent formats in BC such as BC6H and BC7 achieve
higher-quality compression with a variety of modes and
spatial partitioning patterns for each block. More recently,
variable-rate compression formats such as ASTC [NLP∗12]
offer a well-balanced compression between quality and stor-
age, using variable block sizes and flexible bit rates. How-
ever, these formats require more expensive computations to
find optimal configurations for each block.

In this work, we propose a novel neural BC approach,
Neural Texture Block Compression (NTBC), that reduces
the storage requirements of BC formats. NTBC employs
multi-layer perceptions (MLPs) to simultaneously encode
block-compressed data of all textures in one material,
achieving lower bit rates than the standard BC while pro-
ducing the same block-compressed data format.

NTBC is meant to reduce the texture footprint on the disk.
Network weights are stored in the disk which are loaded
into the memory. Then inference is executed to reconstruct
block-compressed texture data which are copied to VRAM.
Therefore, it does not require any change in the shaders,
which makes our method easier to adopt in the existing
graphics pipelines. We also utilize multi-resolution feature
grids to encourage model optimization and compress them
through quantization-aware training to reduce storage costs.
This paper focuses on the BC1 and BC4 formats, which
are the simplest and most widely used for RGB and single-
channel textures, respectively.

The main contributions of this work are as follows:

• We introduce Neural Texture Block Compression
(NTBC), a novel block compression based on MLPs opti-
mized specifically for each material.

• We use multi-resolution feature grids compressed through
quantization-aware training for better model optimization
and storage efficiency.

• We demonstrate that NTBC reduces the storage cost of
BC textures with minimal quality loss.

• Our experiments show that NTBC can encode multiple 4k
textures in one material within 10 minutes and infer block-
compressed data with a modest overhead on a single GPU.

2. Related Work

We propose a neural texture compression method following
BC standards with compressed feature grids. Thus, in this
section, we begin by reviewing traditional BC and neural
texture compression methods, and then we present a brief
overview of quantization techniques for neural networks.

2.1. Traditional Texture Compression

The random access property of texture data is crucial for the
efficient handling of compressed textures in real-time graph-
ics pipelines on GPUs. Delp and Mitchell [DM79] introduce
block truncation coding (BTC) which is the first encoding
method with fixed bits per block for greyscale images. The
method divides the image into non-overlapping 4×4 blocks
and encodes them with two 8-bit values and 1-bit indices to
choose one of these two values.

Modern texture compression standards follow this BTC
approach, including the S3 texture compression (S3TC)
schemes [INH99]. S3TC is the first approach extending BTC
to RGB images, which is later called DXTC and renamed to
BC1 – BC3 in DirectX [Mic20]. BC1 encodes 4× 4 blocks
into 8-byte structures. This structure has two 16-bit RGB565
endpoints and a set of 16 2-bit indices to look up the corre-
sponding texel color from a color palette. The palette con-
tains four colors with two additional colors linearly interpo-
lated between the endpoints. BC1 has another mode to sup-
port a 1-bit alpha channel, but it is not our focus in this work.

BC4 is a specialized version of BC1 for single-channel
images. While utilizing the same 8-byte block size as BC1,
BC4 employs two 8-bit endpoints and a 3-bit index per pixel
to reference an 8-color palette. This palette consists of the
endpoints and either four or six linearly interpolated values,
depending on whether the first endpoint numerically exceeds
the second. In cases with fewer interpolated values, special
values 0 and 1 are incorporated. The expanded palette and
increased endpoint precision enable BC4 to achieve higher
quality than BC1 for single-channel cases. BC2, BC3, and
BC5 are simply combinations of BC1 and BC4, so we omit
their further descriptions. This work focuses on BC1 and
BC4 to encode RGB and single-channel textures, respec-
tively.

All these methods presented so far are designed to encode
all the pixels in a block as a single entity. On the other hand,
the idea of partitioning a block into multiple entities and en-
coding them separately is proposed [SP07]. BC7 further ex-
tends this idea by supporting a variety of partition shapes
and encoding each partition with different endpoints and in-
dices. More recently, ASTC [NLP∗12] has been introduced
as a more flexible and efficient approach. ASTC computes
the optimal partitioning using a hash function and encodes
variable-sized blocks to different numbers of bytes. These
modern complex methods are not our focus in this paper,

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

but extending our method to support them is an interesting
future work.

2.2. Neural Texture Compression

Neural network-based image compression methods com-
monly use a multi-resolution feature grid that stores latent
embeddings of the input images in each grid cell [MESK22,
TMND∗23]. For texture compression that requires random
access queries, Vaidyanathan et al. [VSW∗23] propose a
neural compression method specifically designed for tex-
tures. They use a specialized architecture to encode mul-
tiple textures and their mipmap chains together with a
small MLP and compressed representation of tailored fea-
ture grids. Compact NGP [TMND∗23] is the method of
compressing feature grids by indexing the spatial hash ta-
ble using the learned indexing codebook for collision de-
tection. It is not specialized for texture compression, but
it similarly has the random-access property which enables
its application to texture compression. Block-compressed
features (BCf) [WDOHN24] is the novel approach using
BC6 to compress learned neural texture features and de-
compress them in a real-time renderer. It uses BC as the
means of compressing neural features instead of learning
the encoding of block-compressed data. Inspired by these
neural texture compression methods, our method also en-
codes multiple textures with compressed feature grids de-
coded by small MLPs. However, unlike them, we focus on
block compression itself and propose a method to encode
block-compressed data that can be easily integrated into ex-
isting graphics pipelines.

Additionally, Pratapa et al. [POCM19] uses a neural net-
work (NN) for texture compression from a different per-
spective. They propose TexNN which replaces the expensive
search step of the optimal configuration such as partition-
ing and endpoints format in the recent texture compression
methods like BC7 and ASTC with a neural network.

2.3. Neural Network Quantization

Quantization is a technique to reduce the network size and
its inference costs by converting network weights and acti-
vations from high-precision floating points to low-precision
integers. There are two common approaches to quantizing
NNs: Post-Training Quantization (PTQ) and Quantization-
Aware Training (QAT) [GKD∗21, NFA∗21]. PTQ quantizes
the weights of a pre-trained network without any fine-tuning,
which is very fast but often comes with a significant loss
in accuracy. On the other hand, QAT fine-tunes the network
with quantized parameters so that the network can recover
the accuracy loss caused by quantization.

The standard operations used for quantization are based
on uniform affine transformations between a high-precision

real value r to a low-precision integer q as follows [ZCD22]:

q = clamp
(
⌊ r

s
⌉+ z;n, p

)
, (1)

r = s · (q− z), (2)

where ⌊·⌉ denotes the half-way rounding function, s is the
scale factor which is a positive real value, and z is the zero
point which is an integer value that ensures the real zero is
representable by an integer value in the quantized domain.
n and p are the minimum and maximum representable val-
ues, respectively. Given that q is an unsigned integer, n = 0
and p = 2b − 1, where b is the target bit width. We refer to
the operators that perform these transformations to emulate
quantization during training as quantizers which can be rep-
resented using Eq. 1 and Eq. 2 as the following function:

Q(w) = s ·
(

clamp
(
⌊w

s
⌉+ z;n, p

)
− z

)
, (3)

where w represents the real-valued weights of the network.

The choice of the scaling factor s is crucial for the quanti-
zation accuracy. It divides the range of the real value into 2b

intervals:

s =
β−α

2b −1
, (4)

where [α,β] is the range of the real value to be quantized.
Therefore, to determine the optimal scaling factor, the range
of the real value should be estimated. Using the minimum
and maximum values of the weights is a common approach
to estimating the range, which is often referred to as asym-
metric quantization because the range is not necessarily
symmetric concerning the origin. And, in practice, the zero
point z is computed as

z = ⌊α · s⌉. (5)

Note that the straight-through estimator (STE) [BLC13] is
commonly used during training to avoid extremely sparse
gradients due to the rounding function so that ∇x⌊x⌉ = 1.
Considering Eq. 3, the backward pass of QAT only depends
on the clamping function:

∇wQ(w) =

{
w, if w is not clamped,
0, otherwise.

(6)

To quantize the feature grids, Vaidyanathan et
al. [VSW∗23] simulate quantization by adding uniform
noise to the features in grids and using a fixed quantization
range instead of computing the optimal range [α,β] during
training. Instead, we quantize the feature grids by applying
QAT of NNs to the grids directly, which is more principled
and allows for better quantization accuracy.

3. Method

Colors on the palette cn are linearly interpolated between
two endpoints for each block e0 ∈ R3,e1 ∈ R3 for BC1 (or

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

e0 ∈ R1,e1 ∈ R1 for BC4) with weights wn with the follow-
ing equation:

cn = (1−wn) · e0 +wn · e1, (7)

where n is a 2-bit index per pixel (0 ≤ n ≤ 3) for BC1 and
a 3-bit index per pixel (0 ≤ n ≤ 7) for BC4. Weights wn for
BC1 can be represented as wn = n

3 . However, depending on
whether the first endpoint numerically exceeds the second,
the palette of BC4 contains either four or six linearly inter-
polated values, with special values 0 and 1 in the case with
fewer interpolated values. Therefore, if e0 > e1, weights wn
for BC4 can be represented as wn =

n
7 . On the other hand, if

e0 ≤ e1, we can represent them as the following equation:

wn =


e0

e0−e1
n = 0,

n−1
5 1 ≤ n ≤ 6,

1−e0
e1−e0

n = 7.

(8)

With Eq. 7 and the first and third cases of Eq. 8, we achieve
cn = 0 and cn = 1, respectively.

Our goal is to construct a neural model encoding block-
compressed data in BC1 and BC4 formats, and these e0,e1,
and n (i.e wn) consist of block-compressed data. Therefore,
the straightforward way to encode them using NNs is to di-
rectly optimize them through differentiation of Eq. 7. Fig. 2
illustrates the architecture of this naive approach, which we
will explain further in Sec. 3.1. However, the resulting block-
compressed data with the naive approach show only limited-
quality results in our experiments. This is because weights
are high-frequency and not spatially correlated, which makes
it hard for MLPs to be directly optimized [RBA∗19]. To
solve this problem, our method, NTBC, predicts the orig-
inal uncompressed colors instead of weights as shown in
Fig. 3. Uncompressed colors are lower-frequency and more
spatially correlated than weights, which is easier for MLPs
to learn. We will further describe our method in Sec. 3.2.

Material properties are usually represented by multi-
ple textures. Traditional block compression approaches can
only compress each texture individually which is memory-
intensive for materials (e.g. 8 MB for a single 4k texture in
BC1 or BC4 formats). On the other hand, NTBC encodes
multiple textures at once by being optimized for each mate-
rial, assuming a significant correlation across different tex-
tures as done by Vaidyanatha et al. [VSW∗23]. In this sec-
tion, we first describe the naive approach and then extend it
to NTBC, considering BC1 with a single texture for brevity.
The methods can be easily extended to multiple textures
by modifying the number of output nodes in each network.
They can be also extended to BC4 by modifying the color
space from R3 to R1 and the weight index computation con-
sidering Eq. 8.

3.1. Naive Approach

As described in Fig. 2, we prepare two different MLPs to
predict endpoints and weights, referred to as the endpoint

Figure 2: Naive approach. Two MLPs infer weights and end-
points. The weight network is trained to output continuous
weights ŵ f , and the endpoint network is later fine-tuned with
quantized weights wn. Values in yellow squares form a com-
pressed block.

network and the weight network, respectively. The endpoint
network takes the 2D normalized block indices, s, t ∈ [0,1],
as inputs and predicts endpoints ê0, ê1 for each block. The
weight network uses the 2D texture coordinates, u,v ∈ [0,1],
as inputs, infers floating-point weights ŵ f for each texel, and
then, quantizes ŵ f to wn to construct block-compressed data.
These 2D inputs are encoded with multi-resolution feature
grids which excel at representing spatially-varying features.

The naive approach is trained to minimize the discrep-
ancy between reference uncompressed colors and decoded
colors derived from ê0, ê1, and wn with Eq. 7. To enhance
training efficiency and optimize for discrete weights wn, a
two-stage training procedure is employed: During the ini-
tial 80% of training iterations, an L2 loss function is applied
to decoded colors generated from ê0, ê1, and floating-point
weights ŵ f with Eq. 7. Subsequently, the endpoint network
is fine-tuned for the remaining iterations using quantized
weights wn, while the weights of the weight network are
frozen.

3.2. Neural Texture Block Compression

Our method, NTBC, is a novel method that encodes block-
compressed data in BC1 and BC4 formats using NNs. As
shown in Fig. 3, NTBC employs two networks similar to the
naive approach, but instead of the weight network, the color
network predicts the original uncompressed colors. Uncom-
pressed colors are lower-frequency and more spatially corre-
lated than weights, which is easier for MLPs to learn. Inputs
to the color network are 2D texture coordinates encoded with
multi-resolution feature grids, and it infers uncompressed
colors ĉ.

To construct block-compressed data from the predicted
ê0, ê1, and ĉ, we first compute colors on the palette ĉn from
ê0 and ê1 using Eq. 7, as shown in Fig. 3a. Second, we calcu-
late distances dn between ĉn and ĉ in the color space. Then,
a 2-bit index n for each texel is computed from dn. For sim-
plicity, distances dn are computed as negative values which

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

(a) Inference procedure (b) Training procedure

Figure 3: Neural Texture Block Compression. Two MLPs infer endpoints and uncompressed colors. (a) In the inference proce-
dure, we compute weight indices n using predicted endpoints and colors. A resulting compressed block is indicated by yellow
squares. (b) In the training procedure, two networks are trained with reference endpoints (Le) and uncompressed colors (Lc),
and additional errors of decoded colors (Lcd). Purple indicates reference values and their losses. For optimization, we propa-
gate the gradients through the argmax operation as if an index n was computed with the softmax operation.

allows for using the argmax operation to achieve n:

dn =

{
−∥c− ĉn∥ for endpoint network,
−∥ĉ− cn∥ for color network,

(9)

n = argmax(dn). (10)

The endpoint and color networks are trained indepen-
dently using the combined loss to facilitate the optimiza-
tions for both colors and weight indices. Fig. 3b illustrates
the training procedure. First, the endpoint and color net-
works learn the optimal endpoints and uncompressed colors
with an L2 loss for reference endpoints e0,e1 (Le) and ref-
erence uncompressed colors c (Lc), respectively. Reference
endpoints e0,e1 are obtained from block-compressed data
computed with Compressonator [AMD23a]. Also, for both
networks, we use the additional L2 loss for decoded colors
derived from e0,e1 and reconstructed 2-bit indices n (Lcd) to
consider an error from the weight index computation. There-
fore, the combined training loss we use for each network is:

Lend point = Le +Lcd , (11)

Lcolor = Lc +Lcd . (12)

As shown in Fig. 3b, to compute a 2-bit index n for each
texel, we use predicted endpoints ê0, ê1 and reference colors
c for the endpoint network while reference endpoints e0,e1
and predicted uncompressed colors ĉ are used for the color
network. With this weight index n and reference endpoints
e0,e1, the final decoded colors are computed with Eq. 7.

However, the argmax operation is not differentiable, so
we cannot directly optimize the networks using the loss
Lcd in Eq. 11 and Eq. 12. To solve this problem, we use
STE [BLC13] to backpropagate the gradients through the
argmax operation. In the forward pass, we take the argmax
operation of dn to obtain a weight index n, while in the
backward pass, we propagate the gradients of the softmax of
dn weighted by the corresponding weight wn = n

3 . In other
words, the gradients in the backward pass can be computed
as if we took the expectation of the weights wn with the nor-

malized probability computed with the softmax operation.
Further details of this gradient computation are described in
our supplemental document.

The softmax operation normalizes the distances dn to the
probability distribution as the following equation:

σ(dn) =
exp(dn/T )

∑i exp(di/T )
, (13)

where T is the temperature parameter controlling the sharp-
ness of the distribution. Larger T makes the probability dis-
tribution more uniform while smaller T makes it more con-
centrated on the largest dn. Our experiments use the small T
to make the gradients shaper and the training more stable.

3.3. Grids Quantization

Our goal is to encode block-compression data of multi-
ple textures with a reduced storage size. To achieve this,
we quantize the feature grids through QAT described in
Sec. 2.3. We empirically found that the 8-bit quantization
can achieve equivalent-quality results to the half-precision
floating points, processed with the following procedure: We
first train an NTBC model as described in Sec. 3.2 with the
half-precision floating points. Then, for 10% more steps, we
quantize only the feature grids into 8-bit discrete values us-
ing QAT with Eq. 3 and fine-tune MLPs with the quantized
feature grids. Once the model is trained, we store the fea-
ture grids as 8-bit integers on the disk which are loaded
into the memory. Then, the inference is executed in the half-
precision floating points by dequantizing them with Eq. 2.

To apply QAT to the multi-resolution feature grids, we
conduct asymmetric quantization for each level of the grids.
Therefore, we compute the ranges of the real value [α,β]
by taking the minimum and maximum values in each level
of the grids. Then, the scaling factor s and zero-point z are
computed with Eq. 4 and Eq. 5 and are dynamically updated
in each training iteration. Using these parameters for each
level with Eq. 3, we emulate the 8-bit quantization of the
multi-resolution feature grids in the training procedure.

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

3.4. Model Configurations

We use small MLPs for all networks having three hidden lay-
ers with 64 neurons each with half-precision floating points.
A sigmoid activation function is applied to all output layers
to predict the values in the range of [0,1]. Empirical eval-
uation of various activation functions for three hidden lay-
ers indicated that a selu activation function [KUMH17] is
the most effective. Multi-resolution feature grids have dif-
ferent configurations for 2D block indices and texture coor-
dinates. The 2D block indices are represented using 7 lev-
els with the finest resolution of 1,024, while 8 levels with
the finest resolution of 2,048 are employed for the 2D tex-
ture coordinates. All grids comprise 2D features per level
and a coarsest resolution of 16. These grid configurations re-
sult in 14-dimensional inputs for the endpoint network and
16-dimensional inputs for the weight and color networks.
Reducing the model size, we compress these feature grids
through QAT into 8-bit integers as described in Sec. 3.3.

We jointly optimize multi-resolution feature grids and
MLPs using gradient descent with the Adam opti-
mizer [KB15], where we set β1 = 0.9, β2 = 0.999, and
ε = 10−15. We use a high initial learning rate of 0.01 for fea-
ture grids and a low initial learning rate of 0.005 for MLPs
and apply cosine annealing [LH17] with warm-up iterations
of 10 to lower the learning rate to 0 at the end of training.
The weights of MLPs are initialized with He initialization
procedure [HZRS15] and stored in half-precision floating-
point formats. And, feature grids are initialized with the uni-
form distribution in the range of [−10−4,10−4] and stored
in quantized 8-bit integers. Also, for the softmax computa-
tion in Eq. 13, we use the small temperature T = 0.01 in all
our experiments.

4. Results

We implemented the naive approach and NTBC from scratch
using C++ and HIP [AMD23b] for GPU programming lan-
guage to train the models and run inference on GPUs. In-
spired by the previous work from Müller et al. [MRNK21],
our implementation is to fuse operations from all layers into
a single kernel to minimize the overhead of memory ac-
cess and kernel launch. We used the same model parameters
and training configurations as much as possible both for the
naive approach and NTBC (Sec. 3.4) for a fair comparison.
All the evaluations in this paper are performed on a single
AMD Radeon™ RX 7900 XT GPU on a Windows machine.

4.1. Evaluation Methods

Our proposed method, NTBC, encodes block-compressed
data in BC1 and BC4 formats in this research. To the best
of our knowledge, no existing method compresses textures
using NNs in BC formats. Therefore, in this paper, we eval-
uate NTBC compared to the reference BC computed with

Compressonator [AMD23a] and the naive approach intro-
duced in Sec. 3.1. To compress RGB textures in BC1 using
Compressonator, we used two refine steps for the compres-
sion setting.

The naive approach and NTBC encode multiple textures
in a material at once. A material usually contains both RGB
and single-channel textures to represent variable material
properties, which are compressed in the different BC for-
mats, BC1 and BC4, respectively. These two formats have
different numbers of channels and colors in a palette, which
makes it inefficient to compress them together. Then, in this
paper, we evaluate two different approaches to compressing
RGB and single-channel textures separately and together:
conservative and aggressive. In the following descriptions,
we refer to the numbers of RGB and single-channel textures
in a material as NRGB and NSC, respectively.

Conservative approach. This approach compresses RGB
and single-channel textures separately using two distinct
models. For RGB textures, the model is trained with BC1
compression, employing 6 ·NRGB, NRGB, and 3 ·NRGB out-
put nodes for the endpoint, weight, and color networks, re-
spectively. On the other hand, single-channel texture com-
pression relies on a BC4-trained model with 2 ·NSC and NSC
output nodes for the endpoint and weight/color networks, re-
spectively. While straightforward, this approach suffers from
inefficiency due to the storage overhead of maintaining two
separate models.

Aggressive approach. This approach utilizes a single
model to compress both RGB and single-channel textures to
improve storage efficiency. This model is trained jointly for
BC1 and BC4 by incorporating dummy nodes in computing
distances dn. Specifically, while eight distance nodes (d0 to
d7) are used for BC4, only the first four are active during
BC1 training, with the remaining four serving as dummies.
Gradients for dummy nodes are zero during backpropaga-
tion. The numbers of output nodes are 6 ·NRGB +2 ·NSC for
the endpoint network, NRGB +NSC for the weight network,
and 3 ·NRGB +NSC for the color network. This approach re-
duces the storage footprint compared to the conservative ap-
proach but increases training complexity due to the need to
learn the characteristics of both compression formats.

4.2. Texture Dataset

We collected 10 different materials from ambi-
entCG [Dem24] and Poly Haven [Pol24] to evaluate
different block compression methods described in Sec. 4.1.
Materials contain different numbers of RGB and single-
channel textures, and their contents represent varying
characteristics such as noisy, smooth, and high-frequency
patterns. Resolutions of all textures in the materials are
40962. More details for this dataset can be found in our
supplemental document.

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Figure 4: Quantitative comparison for all materials in our dataset for different methods. Materials are retrieved from [Dem24]
and [Pol24]. CS. and AG. are short for conservative and aggressive, respectively. Diffuse, Normal, and ARM are RGB textures
compressed as BC1, while others are single-channel textures compressed as BC4.

4.3. Evaluation

Quantitative results. We evaluate our method quantita-
tively using the PSNR and SSIM [WBSS04] metrics com-
puted against uncompressed textures, and higher values in-
dicate better quality. The naive approach and NTBC are
trained for 20k iterations in all the experiments with all tex-
tures in each material.

Fig. 4 shows PSNR metrics of the reference BC, the naive
approach, and NTBC for all the textures in our dataset.
NTBC achieves higher PSNR than the naive approach for
almost all textures, especially the conservative approach of
NTBC shows the best results among all NN-based methods.
However, for normal textures, the naive approach has similar
results to NTBC, which indicates that NTBC is more effec-
tive for textures with high-frequency patterns. Also, com-
paring the conservative and aggressive approaches, the con-
servative one shows a significant improvement for single-
channel textures, while it shows equivalent or a bit better
results for RGB textures. It indicates that the aggressive ap-
proach is more sensitive to texture characteristics across all
the textures in the material, so we recommend users select
the proper approach depending on the use cases to achieve
the best results. More detailed numbers for PSNR can be
found in our supplemental document.

Fig. 5 visually shows the ratio of average PSNR and SSIM
of the naive approach and NTBC to the reference BC over
their storage costs, which are averaged over all the mate-
rials in the dataset. It illustrates the tradeoff between the
storage cost and the quality of the compressed textures. The
conservative approach consumes 26.74 MB of the storage
which is about 40% of BC with Compressonator (41.6 MB)
while maintaining the quality with a reasonable degradation
of about 15% in PSNR and 5% in SSIM. And, more ag-
gressively, the storage cost is reduced to 13.37 MB by the
aggressive one with a bit more quality loss of about 20% in
PSNR and 10% in SSIM. Thus, users can choose the appro-
priate approach of NTBC depending on the storage budget
and the quality requirement. Additionally, because NTBC is
a simple replacement for the existing BC methods, the stan-
dard BC can be also used for the textures that NTBC cannot
compress well.

Figure 5: Ratio of average PSNR and SSIM of the naive
approach and NTBC to the reference BC vs. their storage
costs. The solid lines show the average PSNR ratio while the
dashed lines show the average SSIM ratio. AG. and CS. are
short for aggressive and conservative, respectively.

Qualitative results. Fig. 6 shows compression results of
BC1 and BC4 for the diffuse and displacement textures in
the Carpet015 material along with their PSNR values. For
both textures, the naive approach shows visible block ar-
tifacts. NTBC significantly alleviates the artifacts, which
results in higher PSNR values, but it also produces a bit
blurry images. We observe the aggressive and conservative
approaches show similar results for the diffuse texture, while
the conservative approach produces much better results for
the displacement texture. As quantitative results in Fig. 4
also indicate, the conservative approach can achieve visually
smoother results for the single-channel textures.

Fig. 1 also provides other compression results for the Met-
alPlates013 material, which has two RGB and four single-
channel textures. Though the PSNR values of NTBC are
lower than the reference BC due to a bit blurred results,
NTBC shows visually equivalent results, despite using 45%
less storage.

Overall, the reference BC with Compressonator shows the
best results, but NTBC still provides reasonable results, es-
pecially with the conservative approach, with the reduced
size of storage. The standard BC consumes 8 MB of storage
for each texture in the materials, while NTBC with the con-
servative approach only consumes 26.74 MB regardless of
the number of textures in the materials.

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Aggressive Conservative
Naive NTBC Naive NTBC Ref. BC

Size 13.37 MB 26.74 MB 40 MB

D
iff

us
e

PSNR 28.21 dB 30.90 dB 27.81 dB 30.98 dB 37.44 dB

D
is

pl
ac

em
en

t

PSNR 34.02 dB 36.85 dB 38.53 dB 44.20 dB 53.06 dB

Figure 6: Qualitative comparison of the naive approach and NTBC for the diffuse and displacement textures in the Carpet015
material retrieved from ambientCG [Dem24]. Diffuse and displacement textures are compressed as BC1 and BC4, respectively.

Figure 7: NTBC training times vs. average PSNRs of the
conservative and aggressive approaches over six 4k textures
in the MetalPlates013 material.

4.4. Performance

In this section, we demonstrate the training and inference
times of our NTBC implementation both for the conserva-
tive and aggressive approaches. We use six 4k textures in the
MetalPlates013 material from ambientCG [Dem24].

Training. Fig. 7 shows the training times of NTBC mea-
sured for the conservative and aggressive approaches with
the PSNR values averaged over all the textures in the mate-
rial. The conservative approach requires more training time
than the aggressive one because it has to train two distinct
models for RGB and single-channel textures. Almost satu-
rated results can be achieved after 20k iterations for both
approaches, which takes about 10 minutes and 16 minutes
for the aggressive and conservative approaches, respectively.
The aggressive approach can obtain results with a certain
quality in just less than one minute with about 1.5 dB below
the optimal results.

Table 1: NTBC inference times to predict compressed blocks
for MetalPlates013 material with 2 BC1 and 4 BC4 com-
pressed textures. Performance is similar for all materials.

Conservative Aggressive
BC1 & BC4 BC1 only BC1 & BC4 BC1 only

49.84 ms 25.57 ms 27.31 ms 25.96 ms

Inference. NTBC predicts block-compressed data instead
of loading block-compressed textures from the disk, and
then texel values are decoded from the compressed data
using the existing BC decompression method at runtime.
Therefore, the inference times are simply overhead of NTBC
compared to the standard BC. Tab. 1 lists the inference times
of our conservative and aggressive approaches to construct
compressed blocks of all textures in the material. The ag-
gressive approach has faster inference than the conservative
one because the conservative approach has to run two dis-
tinct models for RGB and single-channel textures, which
requires four network executions in total. However, when
processing the material containing solely RGB or single-
channel textures, the computational workload is reduced to
a single model execution. The results with only two RGB
textures are shown in BC1 only in Tab. 1 where the infer-
ence times of the conservative and aggressive approaches
are almost equivalent. Additionally, the BC1 only case of
the aggressive one shows a similar inference to its BC1 &
BC4 case, which indicates that NTBC inference remains
relatively consistent regardless of the number of textures
in the material. Overall, although NTBC has the computa-
tional overhead for the inference of block-compressed data

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Figure 8: Weight indices of two textures in the Carpet015
material. References are obtained by Compressonator.

between 27.31 ms and 49.84 ms, it is still practical for real-
time applications because the inference is executed only
once per material instead of loading textures from the disk.

5. Discussion and Future Work

Our method, NTBC, aims to efficiently compress textures in
BC formats with a small storage footprint while maintain-
ing reasonable quality results. To achieve this goal, NTBC
learns the original uncompressed colors of textures instead
of their compressed weights. Fig. 8 visualizes weight indices
in the resulting block-compressed data for diffuse and dis-
placement textures in the Carpet015 material, acquired by
three different methods. The color from black to yellow rep-
resents the indices from 0 to 3 for diffuse and from 0 to 7 for
displacement. The naive approach whose network directly
infers weights produces low-frequency results. On the other
hand, NTBC produces high-frequency results that are more
equivalent to references with Compressonator, resulting in
better-quality BC textures. Fig. 1 also shows another exam-
ple of its capability to maintain high-frequency weights for
the other material. In this section, we discuss the limitations
of our method and propose future research directions.

NTBC sometimes produces errors, such as discoloration,
block artifacts, and blurred details, as shown in Fig. 9.
Fig. 9a shows a discolored texture example which occurs if
textures have high-frequency patterns both in contents and
colors. NTBC can achieve good results for high-frequency
patterns only in contents, such as normal maps, but if it
is also shown in colors, it is challenging to handle both
simultaneously. Fig. 9b and Fig. 9c illustrate examples of
the loss of details in the compressed textures. If the tex-
ture has smooth gradients, NTBC may produce block ar-
tifacts as shown in Fig. 9b. And, NTBC may blur the de-
tails of the texture if having strong high-frequency patterns
as shown in Fig. 9c. These errors are caused by the limi-
tation of the NTBC network, which uses lower-resolution
grids than the original texture to reduce storage costs. To

(a) Discoloration (b) Block artifact (c) Blurred details

Figure 9: Typical error cases of our method. Top-left: Com-
pressonator, bottom-right: NTBC.

address these issues, we can consider other encoding meth-
ods, such as texture-focusing encoding [VSW∗23] and local
positional encoding [FYH23] using frequency information
to handle high-frequency patterns efficiently. Also, we can
use a more sophisticated loss function that considers the per-
ceptual quality of colors in luminance-chrominance space to
prevent color degradation. These are promising and interest-
ing future research directions.

Our experiments described in Sec. 4 show the storage ef-
ficiency of our method for materials with a large number
of textures. The conservative and aggressive approaches of
NTBC consume almost fixed sizes of storage, 26.74 MB
and 13.37 MB, respectively. On the other hand, the standard
BC1 and BC4 formats require 8 MB for a single 4k texture.
Therefore, our approach has advantages in terms of storage
efficiency if a material contains two or more textures.

In this paper, we focus on BC1 and BC4 which are simple
but widely-used formats in real-time applications. However,
these formats only show limited-quality results compared to
more complex formats such as BC6H and BC7. They em-
ploy more sophisticated encoding methods, such as block
partitioning and flexible bit-rate endpoints using a variety of
modes. We believe that our method can be extended to these
formats and leave it as one of interesting future works.

6. Conclusion

In this paper, we introduced Neural Texture Block Compres-
sion (NTBC) which compresses textures in BC formats by
learning encoding functions using two MLPs. It has been
designed to be compatible with existing BC formats, espe-
cially BC1 and BC4, with the reduced size of storage, and
can be used as a drop-in replacement for existing graphics
pipelines. We proposed two different methods to train the
encoding functions: one encoding BC1 and BC4 separately
(conservative) and the other encoding them together in one
model (aggressive). We have shown that NTBC can achieve
better compression ratios than the standard BC for both ap-
proaches while generating reasonable-quality textures. How-
ever, there is a trade-off between quality and compression
ratio for the aggressive and conservative approaches, with
the aggressive approach achieving better compression ratios

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

at the cost of small quality degradation. Therefore, we leave
it to users to decide which approach, including the standard
BC, to use depending on their requirements. We think this
flexibility is one of the strengths of NTBC thanks to its com-
patibility with the existing BC.

We consider this work as a first step towards learning-
based block compression and believe that there is still much
potential to improve the quality and compression ratio. In the
future, we plan to explore other input encodings such as local
positional encoding [FYH23] and extend NTBC to support
more advanced block compression formats such as BC6H
and BC7, to achieve more flexibility and better quality.

Ackowledgements

We thank Sylvain Meunier for his inspiring study and in-
sights for this project. We also thank Joel Jordan at AMD
for his feedback and help with the publication.

References
[AMD23a] AMD: Compressonator. https://gpuopen.
com/compressonator/, 2023. 5, 6, 11

[AMD23b] AMD: HIP Documentation. https:
//rocm.docs.amd.com/projects/HIP/en/latest/
index.html, 2023. 6

[BLC13] BENGIO Y., LÉONARD N., COURVILLE A. C.: Es-
timating or propagating gradients through stochastic neu-
rons for conditional computation. ArXiv abs/1308.3432
(2013). URL: https://api.semanticscholar.org/
CorpusID:18406556. 3, 5

[Dem24] DEMES L.: ambientcg, 2024. URL: https://
ambientcg.com/. 1, 6, 7, 8, 11, 12, 15

[DM79] DELP E., MITCHELL O.: Image compression using
block truncation coding. IEEE Transactions on Communications
(1979). 2

[FYH23] FUJIEDA S., YOSHIMURA A., HARADA T.: Local Po-
sitional Encoding for Multi-Layer Perceptrons. In Pacific Graph-
ics Short Papers and Posters (2023). doi:10.2312/pg.
20231273. 9, 10

[GKD∗21] GHOLAMI A., KIM S., DONG Z., YAO Z., MA-
HONEY M. W., KEUTZER K.: A Survey of Quantization Meth-
ods for Efficient Neural Network Inference. arXiv, June 2021.
3

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving deep
into rectifiers: Surpassing human-level performance on imagenet
classification. In 2015 IEEE International Conference on Com-
puter Vision (ICCV) (2015), pp. 1026–1034. doi:10.1109/
ICCV.2015.123. 6

[INH99] IOURCHA K. I., NAYAK K. S., HONG Z.: System and
method for fixed-rate block-based image compression with in-
ferred pixel values, U.S. Patent 5956431, Sept. 21, 1999. 2

[KB15] KINGMA D. P., BA J.: Adam: A method for stochas-
tic optimization. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings (2015), Bengio Y., LeCun
Y., (Eds.). URL: http://arxiv.org/abs/1412.6980. 6

[KUMH17] KLAMBAUER G., UNTERTHINER T., MAYR A.,
HOCHREITER S.: Self-normalizing neural networks. In Proceed-
ings of the 31st International Conference on Neural Information
Processing Systems (2017), p. 972–981. 6

[LH17] LOSHCHILOV I., HUTTER F.: SGDR: stochastic gra-
dient descent with warm restarts. In 5th International Con-
ference on Learning Representations (2017). URL: https:
//openreview.net/forum?id=Skq89Scxx. 6

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.:
Instant neural graphics primitives with a multiresolution hash
encoding. ACM Trans. Graph. 41, 4 (July 2022), 102:1–
102:15. URL: https://doi.org/10.1145/3528223.
3530127, doi:10.1145/3528223.3530127. 3

[Mic20] MICROSOFT: Texture block compression
in direct3d 11. https://learn.microsoft.
com/en-us/windows/win32/direct3d11/
texture-block-compression-in-direct3d-11,
2020. 2

[MRNK21] MÜLLER T., ROUSSELLE F., NOVÁK J.,
KELLER A.: Real-time neural radiance caching for path
tracing. ACM Trans. Graph. 40, 4 (jul 2021). URL:
https://doi.org/10.1145/3450626.3459812,
doi:10.1145/3450626.3459812. 6

[NFA∗21] NAGEL M., FOURNARAKIS M., AMJAD R. A., BON-
DARENKO Y., VAN BAALEN M., BLANKEVOORT T.: A White
Paper on Neural Network Quantization. arXiv, June 2021.
URL: http://arxiv.org/abs/2106.08295, doi:10.
48550/arXiv.2106.08295. 3

[NLP∗12] NYSTAD J., LASSEN A., POMIANOWSKI A., ELLIS
S., OLSON T.: Adaptive scalable texture compression. In High-
Performance Graphics (2012), p. 105–114. 2

[POCM19] PRATAPA S., OLSON T., CHALFIN A., MANOCHA
D.: TexNN: Fast Texture Encoding Using Neural Networks.
Computer Graphics Forum (2019). doi:10.1111/cgf.
13534. 3

[Pol24] Poly haven, 2024. URL: https://polyhaven.
com/. 6, 7, 11, 12, 13, 14, 16

[RBA∗19] RAHAMAN N., BARATIN A., ARPIT D., DRAXLER
F., LIN M., HAMPRECHT F., BENGIO Y., COURVILLE A.:
On the spectral bias of neural networks. In Proceedings
of the 36th International Conference on Machine Learn-
ing (2019). URL: https://proceedings.mlr.press/
v97/rahaman19a.html. 4

[SP07] STROEM J., PETTERSSON M.: ETC2: Texture Compres-
sion using Invalid Combinations. In SIGGRAPH/Eurographics
Workshop on Graphics Hardware (2007). 2

[TMND∗23] TAKIKAWA T., MÜLLER T., NIMIER-DAVID M.,
EVANS A., FIDLER S., JACOBSON A., KELLER A.: Compact
neural graphics primitives with learned hash probing. In SIG-
GRAPH Asia 2023 Conference Papers (2023). 3

[VSW∗23] VAIDYANATHAN K., SALVI M., WRONSKI B.,
AKENINE-MÖLLER T., EBELIN P., LEFOHN A.: Random-
Access Neural Compression of Material Textures. In Proceed-
ings of SIGGRAPH (2023). 3, 4, 9

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.:
Image quality assessment: from error visibility to structural sim-
ilarity. IEEE Transactions on Image Processing 13, 4 (2004),
600–612. doi:10.1109/TIP.2003.819861. 7

[WDOHN24] WEINREICH C., DE OLIVEIRA L., HOUDARD A.,
NADER G.: Real-time neural materials using block-compressed
features. Computer Graphics Forum 43, 2 (2024), e15013. 3

[ZCD22] ZHANG X., COLBERT I., DAS S.: Learning low-
precision structured subnetworks using joint layerwise chan-
nel pruning and uniform quantization. Applied Sciences 12,
15 (2022). URL: https://www.mdpi.com/2076-3417/
12/15/7829. 3

© 2024 The Author(s)

https://gpuopen.com/compressonator/
https://gpuopen.com/compressonator/
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:18406556
https://ambientcg.com/
https://ambientcg.com/
http://dx.doi.org/10.2312/pg.20231273
http://dx.doi.org/10.2312/pg.20231273
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
https://learn.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://learn.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://learn.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://doi.org/10.1145/3450626.3459812
http://dx.doi.org/10.1145/3450626.3459812
http://arxiv.org/abs/2106.08295
http://dx.doi.org/10.48550/arXiv.2106.08295
http://dx.doi.org/10.48550/arXiv.2106.08295
http://dx.doi.org/10.1111/cgf.13534
http://dx.doi.org/10.1111/cgf.13534
https://polyhaven.com/
https://polyhaven.com/
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
http://dx.doi.org/10.1109/TIP.2003.819861
https://www.mdpi.com/2076-3417/12/15/7829
https://www.mdpi.com/2076-3417/12/15/7829


S. Fujieda & T. Harada / Neural Texture Block Compression

Appendix A: Straight-through Estimator for Argmax
Operation

As discussed in Sec. 3.2, we use STE to approximate the gra-
dients of the argmax operation which is not differentiable. In
this section, we discuss the details of this gradient computa-
tion considering BC1 for simplicity, and it can be easily ex-
tended to BC4 by considering 8 distances and corresponding
weights, described in Sec. 3.

We can represent weights for BC1 as Eq. 14:

wn =
n
3
, (14)

where n is a 2-bit index per pixel (0 ≤ n ≤ 3). Distances dn
represent the similarity between four colors on the palette
and an uncompressed color. Thus, the probability σ(dn) in
Eq. 13 acts as the likelihood of each corresponding weight
wn in Eq. 14. Then, we can achieve the optimal weight wn
by taking one distance with the maximum likelihood us-
ing the argmax operation. Instead, in the backward pass,
we consider that the resulting weight was computed as the
probability-weighted sum which is equivalent to the expec-
tation of the weights:

ŵn = ∑
i∈n

wiσ(di), (15)

=
1
3

σ(d1)+
2
3

σ(d2)+σ(d3), (16)

with Eq. 13 and Eq. 14.

The derivative of the softmax operation σ(dn) can be com-
puted as Eq. 17:

∂σ(di)

∂d j
=

{
1
T ·σ(di) · (1−σ(d j)) (i = j)
− 1

T ·σ(di) ·σ(d j) (i ̸= j)
(17)

Then, considering Eq. 16 and Eq. 17, the derivatives of the
expected weight ŵn with respect to each distance are com-
puted as following equations:

∂ŵn

∂d0
= ∑

i∈n

∂ŵn

∂σ(di)
· ∂σ(di)

∂d0
(18)

= − 1
3
· 1

T
·σ(d1) ·σ(d0)

− 2
3
· 1

T
·σ(d2) ·σ(d0)−

1
T
·σ(d3) ·σ(d0)

(19)

=
1
T
·σ(d0) · (0− ŵn), (20)

∂ŵn

∂d1
= ∑

i∈n

∂ŵn

∂σ(di)
· ∂σ(di)

∂d1
(21)

=
1
3
· 1

T
·σ(d1) · (1−σ(d1))

− 2
3
· 1

T
·σ(d2) ·σ(d1)−

1
T
·σ(d3) ·σ(d1)

(22)

=
1
T
·σ(d1) · (1− ŵn), (23)

∂ŵn

∂d2
= ∑

i∈n

∂ŵn

∂σ(di)
· ∂σ(di)

∂d2
(24)

= − 1
3
· 1

T
·σ(d1) ·σ(d2)

+
2
3
· 1

T
·σ(d2) · (1−σ(d2))−

1
T
·σ(d3) ·σ(d2)

(25)

=
1
T
·σ(d2) · (2− ŵn), (26)

∂ŵn

∂d3
= ∑

i∈n

∂ŵn

∂σ(di)
· ∂σ(di)

∂d3
(27)

= − 1
3
· 1

T
·σ(d1) ·σ(d3)−

2
3
· 1

T
·σ(d2) ·σ(d3)

+
1
T
·σ(d3) · (1−σ(d3))

(28)

=
1
T
·σ(d3) · (3− ŵn). (29)

Therefore, with Eq. 20, Eq. 23, Eq. 26, and Eq. 29, we can
summarize the derivatives of the expected weight as

∂ŵn

∂dn
=

1
T
·σ(dn) · (n− ŵn). (30)

Using the gradients in Eq. 30 in the backward pass, the net-
works can be optimized with the loss Lcd .

Appendix B: Additional Results

Tab. 2 and Tab. 3 list the PSNR values for all the ma-
terials in our dataset retrieved from ambientCG [Dem24]
and Poly Haven [Pol24], respectively. PSNR values are
calculated between the original uncompressed textures and
the decompressed textures from block-compressed data
achieved with the naive approach, NTBC, and Compres-
sonator [AMD23a]. Compressonator uses two refine steps
for BC1 compression, and the naive approach and NTBC
are trained for 20k steps. We compress diffuse, normal, and
ARM textures as BC1 and other textures as BC4.

The results show that conservative NTBC achieves the
best PSNR values for most textures among all NN-based
methods, and NTBC outperforms the naive approach in
most cases. Comparing the aggressive and conservative ap-
proaches for each method, they have similar results for
BC1-compressed textures while the conservative approach
shows a significant improvement for BC4-compressed tex-
tures. BC1-compressed textures have more spatial informa-
tion than BC4-compressed textures thanks to multiple chan-
nels and show relatively lower PSNR values even com-
pressed with Compressonator, which results in a smaller gap
between the aggressive and conservative approaches. Also,
focusing on normal textures, even the naive approach can
obtain relatively high PSNR, leading to similar results for
all methods. Normal textures have similar endpoints across
the texture, which makes weights relatively lower-frequency

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Table 2: Qualitative comparison with PSNR for materials
from ambientCG [Dem24]. Ref. BC shows the reference re-
sults with Compressonator. The bold numbers indicate the
best results for each texture among NN-based approaches.

Aggressive Conservative
Ref. BC Naive NTBC Naive NTBC

Size 40 / 48 MB 13.37 MB 26.74 MB

B
ri

ck
s0

90

Diffuse 39.43 31.47 34.92 31.59 34.90
Normal 35.48 32.22 32.48 32.50 32.86

Displacement 52.55 42.96 44.74 47.53 49.42
Roughness 47.42 33.02 34.80 35.84 36.66

AO 51.95 35.03 35.65 38.97 39.85

C
ar

pe
t0

15

Diffuse 37.44 28.21 30.90 27.81 30.98
Normal 29.18 26.40 26.59 26.67 26.78

Displacement 53.06 34.02 36.85 38.53 44.20
Roughness 49.45 35.17 35.86 37.64 38.89

AO 47.88 31.04 31.98 34.16 39.04

M
et

al
Pl

at
es

01
3 Diffuse 42.53 35.46 37.76 36.10 38.64

Normal 38.34 34.02 33.92 35.26 35.38

Displacement 56.09 43.68 44.44 45.80 48.08
Roughness 49.39 33.40 36.20 37.16 38.87

AO 67.84 45.75 46.22 47.77 50.61
Metalness 46.73 31.99 33.25 33.66 34.26

Pa
vi

ng
St

on
es

07
0 Diffuse 31.20 23.59 24.90 23.95 25.12

Normal 27.44 24.51 24.10 24.65 24.48

Displacement 53.55 35.21 37.45 43.18 44.01
Roughness 45.77 28.01 28.51 32.91 32.76

AO 46.44 30.90 31.16 34.94 36.91

R
ai

ls
00

1

Diffuse 35.90 27.16 29.85 27.20 30.16
Normal 27.09 24.89 24.54 24.90 24.72

Displacement 53.11 41.41 41.57 46.53 47.97
Roughness 52.69 33.71 33.81 40.76 43.71

AO 49.81 32.78 32.60 39.08 40.99
Metalness 68.63 44.55 47.20 47.33 53.34

W
oo

d0
63

Diffuse 33.79 26.02 27.90 26.12 28.22
Normal 26.81 24.30 24.15 24.58 24.65

Displacement 48.40 30.35 34.29 35.04 41.26
Roughness 44.73 28.58 29.60 31.81 37.65

AO 46.12 31.26 31.22 34.92 35.13

and easier to compress. So, we recommend users select the
proper approach depending on the use cases to achieve the
best results. Higher-quality formats like BC7 and other more
texture-specific input encodings could improve the quality of
these textures further, but we leave them for our future work.

Fig. 10 and Fig. 11 illustrate qualitative comparisons
for all textures in the roof_09 and forest_sand_01 mate-
rials, respectively. For both materials, the naive approach
produces block artifacts, while NTBC significantly reduces
these artifacts by yielding a bit blurry images. Conserva-
tive NTBC achieves good quality for the roof_09 material,
which shows about 10% quality loss with about 67% size
reduction. This material has a significant correlation across
all textures, which makes it easier for our method to learn
intrinsic features inherent in the material. On the other hand,
the forest_sand_01 material is one of the most challenging
cases where all the textures have very high-frequency con-
tents, and ARM, displacement, and specular textures seem
to show different spatial features. It results in similar results

Table 3: Qualitative comparison with PSNR for materials
from Poly Haven [Pol24]. Ref. BC shows the reference re-
sults with Compressonator. The bold numbers indicate the
best results for each texture among NN-based approaches.

Aggressive Conservative
Ref. BC Naive NTBC Naive NTBC

Size 40 MB 13.37 MB 26.74 MB

ae
ri

al
_r

oc
ks

_0
2 Diffuse 36.82 28.31 30.41 28.46 30.74

Normal 29.01 26.25 26.12 26.41 26.41

Displacement 56.62 41.18 42.33 47.55 48.77
Roughness 49.20 34.16 36.93 36.63 39.21

AO 47.32 30.03 31.11 34.82 36.48

fo
re

st
_s

an
d_

01 Diffuse 31.39 23.71 26.00 24.04 25.95
Normal 31.82 27.53 27.20 27.30 27.20
ARM 38.29 29.96 30.92 29.79 31.01

Displacement 55.79 41.39 40.79 45.98 48.45
Specular 45.21 31.30 31.37 35.31 35.27

re
d_

di
rt

_m
ud

_0
1 Diffuse 35.89 27.65 31.62 27.82 31.91

Normal 35.20 30.36 30.20 30.40 30.03
ARM 34.19 28.40 31.13 28.67 31.35

Displacement 53.56 36.59 39.28 44.03 48.99
Specular 51.41 39.57 41.04 42.73 44.45

ro
of

_0
9

Diffuse 40.29 32.39 37.34 32.51 37.44
Normal 45.05 37.53 38.61 37.73 38.65
ARM 39.50 32.87 37.40 32.97 37.78

Displacement 55.52 41.53 45.29 44.20 50.32
Specular 52.02 41.81 43.63 44.22 46.40

of NTBC to the naive approach even with the conservative
approach, especially for a specular texture.

Appendix C: Texture Dataset Details

Fig. 12 and Fig. 13 show all textures of 10 materials in
our dataset, retrieved from ambientCG [Dem24] and Poly-
Haven [Pol24] websites. All materials contain 5 or 6 tex-
tures with various numbers of RGB and single-channel tex-
tures. All textures have a resolution of 4096× 4096 pixels.
MetalPlates013 and Rails001 materials have 6 textures, for
which NTBC shows the best storage efficiency compared to
the standard BC. Our aggressive and conservative methods
consume 13.37 MB and 26.74 MB, respectively, while the
standard BC consumes 48 MB, resulting in about 72% and
45% reduction in storage footprint.

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Aggressive Conservative
Ref. BC Naive NTBC Naive NTBC

Size 40 MB 13.37 MB 26.74 MB

D
iff

us
e

N
or

m
al

A
R

M
D

is
pl

ac
em

en
t

Sp
ec

ul
ar

Figure 10: Comparison of different methods for the roof_09 material, retrieved from Poly Haven [Pol24]. All methods show
relatively higher PSNR values for this material.

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Aggressive Conservative
Ref. BC Naive NTBC Naive NTBC

Size 40 MB 13.37 MB 26.74 MB

D
iff

us
e

N
or

m
al

A
R

M
D

is
pl

ac
em

en
t

Sp
ec

ul
ar

Figure 11: Comparison of different methods for the forest_sand_01 material, retrieved from Poly Haven [Pol24]. This material
shows relatively lower PSNR and is one of the most difficult cases containing high-frequency details and different spatial
patterns on textures.

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

Bricks090 Carpet015 MetalPlates013 PavingStones070 Rails001 Wood063
D

iff
us

e
N

or
m

al
A

m
bi

en
tO

cc
lu

si
on

D
is

pl
ac

em
en

t
R

ou
gh

ne
ss

M
et

al
ne

ss

Figure 12: Materials retrieved from ambientCG [Dem24].

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

aerial_rocks_02 forest_sand_01 red_dirt_mud_01 roof_09

D
iff

us
e

N
or

m
al

A
R

M
D

is
pl

ac
em

en
t

Sp
ec

ul
ar

A
m

bi
en

tO
cc

lu
si

on
R

ou
gh

ne
ss

Figure 13: Materials retrieved from Poly Haven [Pol24].

© 2024 The Author(s)


