
Subsurface Scattering

in the Unreal Forward Renderer

David Wilkinson / AMD

Tom Sanocki / Limitless Ltd

Moving Forward
An Optimized Path For VR Rendering

David Wilkinson
Developer Technology Engineer, AMD

Introduction

• Overview of Forward Rendering

• Pros and Cons

• Feature Support

• Example: Subsurface Rendering

Forward Rendering Overview

• Scenes are rendered with multiple lights for each prim
• Lighting and shading happen together during rasterization

• Legacy forward renderers were inefficient with large # lights

• Only a subset of lights are selected
• Using Compute shaders

• Lights and reflections are tiled and culled into frustum-spaced grid

• Only lights influencing a local grid tile are considered

• Only top ‘m’ contributors considered during rendering

• 1000s of lights per scene no problem

Forward Rendering Overview

• Rendering performance is significantly increased
• Around 20% increase for base pass (UE4)

• Average 25-30% increase for total frame time (on UE4)

• Overdraw is avoided by using a depth pre-pass

• Hardware Anti-aliasing (MSAA) can be enabled

• Translucency just works

Forward Rendering – Pros and Cons

Pros

• MSAA

• Complex Materials

• Bandwidth friendly

• Translucency just works

• Features can be enabled per-material

Cons

• No screen-space operations

• SSR, SSAO, Contact Shadows, IES,

Subsurface Profiles.

• GPU Occupancy suffers

• Tiny triangles

• VGPR Usage

Why Are Some Features Unsupported?

• Maturity of Implementation
• Not a trivial amount of work, porting each feature takes time

• Technical Complexity
• Some features may not have a viable equivalent forward implementation

• May require hybrid solution (forward + mini-gbuffer)

• Or, looking forward, a Texel Shader / Object Space approach

Working Around Unsupported Features

• Screen Space Alternatives
• SSR -> Planar Reflections and Reflection Captures

• SSAO -> AO using depth pre-pass buffer

• SSSS -> Texture Space Diffusion Or Diffuse Wrap w/ textures

• Use Hybrid Rendering
• Use the full screen depth-pass to perform deferred rendering passes

• Keep Gbuffers small – 1-2 packed 64-bit params

• Do not adopt deferred bottlenecks!

Working Around Unsupported Features

• Look for forward based substitutes
• Revisit older algorithms that may not have been previously feasible for RTR

• See what other studios are doing
• ‘RoboRecall’ by Epic is a great example of what can be done in the Forward

path

• Check the forums, others are likely tackling similar issues

• Definitely approach IHVs and engine developers, there may be a solution in the

works…

• Plus, it assists them in evaluating and prioritizing in-demand features

Example: Subsurface Rendering

Skin Rendering Example
• ‘Reaping Rewards’ contains many assets that feature skin, cloth, hair

• In UE4, these could be implemented with the skin subsurface profile

• However, this is a screen space technique – not available in the forward path

• Limitless is currently experimenting with two alternative techniques
• Diffuse wrap shaders w/ textures

• Hybrid mini-Gbuffer pass for subsurface scattering

• The wrap shader will be shown here

• Can be implemented in UE4 material editor, no engine changes

Diffuse Wrap

• Simulates subsurface scattering
• A key part of skin rendering

• Models the translucent nature of skin

• Light enters, and bounces numerous times

• Then exits at a different place

• Extends diffuse lighting to wrap around an object
• Gives a translucent appearance

• Forms the base layer of the skin surface

• Can be implemented as a Material shader in UE4
• Create a material and set shader model to:

• Two sided foliage

• Subsurface

• Pre-integrated skin

Diffuse Wrap

Hm. Needs less cowbell.

Let’s texture some layers…

ScatterMap

Roughness

Sheen

Subsurface Color

Final Result

Thank You

