
1

DGF: A Dense, Hardware-Friendly Geometry Format for
Lossily Compressing Meshlets with Arbitrary Topologies

JOSHUA BARCZAK, Advanced Micro Devices, Inc., USA
CARSTEN BENTHIN, Advanced Micro Devices, Inc., Germany
DAVID MCALLISTER, Advanced Micro Devices, Inc., USA

Fig. 1. A variety of models compressed using DGF. Left:Reef Crab (2.1M triangles 2.9B/triangle). Center:
Bicycle with individually modeled chain links (1.7M triangles, 3.73B/triangle). Right: Powerplant with many
long, axis-aligned triangles (12.7M triangles, 3.05B/triangle)

Thewidespread availability of hardware accelerated ray tracing solutions is driving a gradual sea-change in the
real-time graphics space. The major graphics APIs now offer standardized support for accelerated ray tracing.
In the same time frame, rasterization-based systems such as Nanite [Karis et al. 2021] have significantly raised
geometric complexity in games. The state of the art in raster graphics now enables lossy compressed geometry
representations that are decoded on the-fly during rendering. This trend conflicts with current ray tracing
interfaces, which require opaque acceleration structures to be built from uncompressed input data. This paper
seeks to close the gap by defining a block-compressed geometry format that is designed for arbitrary geometry
topologies and can be directly consumed by future fixed-function hardware.

CCS Concepts: •Computingmethodologies→Graphics systems and interfaces;Ray tracing;Visibility;
• Theory of computation→ Sorting and searching;Massively parallel algorithms.

Additional Key Words and Phrases: bounding volume hierarchy, ray tracing

ACM Reference Format:
Joshua Barczak, Carsten Benthin, and David McAllister. 2024. DGF: A Dense, Hardware-Friendly Geometry
Format for Lossily Compressing Meshlets with Arbitrary Topologies. Proc. ACM Comput. Graph. Interact. Tech.
7, 3, Article 1 (July 2024), 17 pages. https://doi.org/10.1145/3675383

1 INTRODUCTION
The widespread availability of hardware-accelerated ray tracing solutions is gradually altering the
real-time graphics landscape. The major graphics APIs, DXR [Microsoft 2020] and Vulkan [Khronos
Group 2020] now offer cross-vendor extensions for hardware-accelerated ray tracing that have seen
solid adoption by applications. In the same time frame, software innovations on the rasterization
front have raised the geometric complexity bar. Epic’s Nanite system [Karis et al. 2021] – based on
lossily compressed meshlets – enables practical real time rendering of billions of (virtual) triangles.

Authors’ addresses: Joshua Barczak, Advanced Micro Devices, Inc., USA; Carsten Benthin, Advanced Micro Devices, Inc.,
Germany; David McAllister, Advanced Micro Devices, Inc., USA.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3675383.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0002-0630-7612
HTTPS://ORCID.ORG/0000-0003-3337-1636
HTTPS://ORCID.ORG/0009-0006-5006-5074
https://doi.org/10.1145/3675383
https://orcid.org/0009-0002-0630-7612
https://orcid.org/0000-0003-3337-1636
https://orcid.org/0009-0006-5006-5074
https://doi.org/10.1145/3675383
https://doi.org/10.1145/3675383

1:2 Joshua Barczak, Carsten Benthin, and David McAllister

However, Nanite’s meshlet-based architecture does not compose well with the existing ray tracing
interfaces. API-compatible acceleration structure inputs for meshlets do not exist at any point in
its pipeline, and conversion to the API formats increases the data size by a large factor. Moreover,
current ray tracing hardware uses low-density triangle representations designed for lossless storage
of floating-point coordinates. These factors prevent ray tracing-based applications from rendering
the same level of geometric complexity as rasterizers.

In this paper, we propose a ray tracing friendly block-compressed data format for dense geometric
models named Dense Geometry Format (DGF). The format has been designed to support arbitrary
geometry topologies and efficient ray tracing.Wewill address format details, introduce an aggressive
tri strip generalization, discuss a reference encoding pipeline, ray tracing performance, and possible
hardware and API support. Our format achieves compression rates comparable to Nanite’s format,
while at the same time providing efficient access to individual triangle data inside the meshlet,
which is crucial for efficient ray tracing support.

2 RELATEDWORK
Geometry compression has been a research focus for decades. For a general overview we refer to
Maglo et al. [2015]. Compressing vertex position data is typically done by quantization [Alliez and
Gotsman 2005; Deering 1995; Peng et al. 2005]. For better vertex compaction and crack prevention,
Lee et al. [2010] aligned a vertex position to a global grid and subdivided the mesh until vertices
inside the smaller meshlets allowed 8-bit quantization. Meyer [2012] dynamically changed the bit
rate for vertex encoding in a view-dependent manner.

Epic’s Nanite system [Karis et al. 2021] combines several important ideas into a cohesive system.
Geometry is represented using clusters or meshlets of up to 128 triangles, and a fine-grained
level-of-detail system is used to manage the working set by replacing groups of adjacent high detail
clusters with a low-detail equivalent. The set of active clusters is tracked on the GPU by performing
a per-frame traversal of the cluster graph using compute shaders. Compressed geometry data is
streamed on demand from disk and decoded into a compact in-memory representation, which
is then directly rasterized. Vertex positions are tightly packed and stored in variable-precision
fixed point. The bit rate is adjustable and can be tuned to the needs of the content, providing a
size/quality trade-off. Recently, Kuth et al. [2024] proposed lossy meshlet compression techniques
explicitly optimized for rasterization and mesh shaders.

In the context of ray tracing complex geometry, various approaches for compressing geometry
data have been proposed. In the following we will briefly discuss the most relevant.
Segovia and Ernst [2010] applied hierarchical mesh quantization combining BVH and triangle

data into a single data structure. Vertices within BVH leaves are quantized with respect to the
leaves’ bounding boxes. Cracks due to different quantization anchors (leaf bounding boxes) are
prevented by aligning vertices and leaf bounding boxes to a global fixed point grid.

Tessellation of subdivision surfaces or displaced height fields can often be represented locally by
a small grid-like topology. A fixed grid topology does not require adjacency information.This allows
for a more compact representation. Several works propose efficient methods for lossy compression
of grid-like topologies. For example, Benthin et al. [2021] compress vertex data of small grids by
encoding them as offsets from a base primitive, i.e., a bilinear patch.

Benthin and Peters [2023] provide a partial solution to ray tracing Nanite-like lossy compressed
meshlets. They demonstrate a cluster-based level-of-detail system for dense geometric models by
providing lossily compressedmeshlet structures as direct input to the hardware-specific acceleration
structure builder. However, this assumes that the builder knows the exact input format, but this is
not given in today’s ray tracing APIs. Hence, a need for a standard lossily compressed input format
that can be directly consumed by API implementations is pointed out.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:3

Recently, hardware support for ray tracing of displaced micro meshes (DMM) [Bickford and
Moreton 2023] was introduced. A DMM consists of base triangles with a displacement vector per
vertex. These are hierarchically subdivided into micro triangles. The level of hierarchical subdi-
vision is user defined. Displacement vectors are interpolated across the base triangles, scaled by
hierarchically encoded scalars, and applied as offsets to the newly created micro vertices. This
approach offers a very compact geometry representation and level of detail support. However, the
approach cannot represent arbitrary geometry topologies due to the restriction of applying scalar
adjustments to modify the interpolated displacement vectors. Models with complex topology, sharp
features, or high depth complexity must be represented using a large number of base triangles,
which eliminates the advantage. Examples of such problematic models are the Bicycle and Power-
plant model shown in Figure 1. Additionally, the DMM base triangles are the coarsest available
simplification of geometry.

3 DENSE GEOMETRY FORMAT (DGF)
3.1 Requirements
As a compressed format for dense geometry data suitable for efficient ray tracing needs to address
various requirements, we will discuss those here in more detail.

Topology The format must be able to represent any mesh topology and must not impose any
restrictions on connectivity. This also implies that any standard triangle mesh asset must be easily
convertible to the format. Additionally, it must be possible to guarantee water-tightness for any
kind of connected triangles.

Density Lossy compression of positions is essential to achieve high compression rates. Ideally, the
compression rate should be adjustable, so artists can make precise size and quality trade offs for
different use cases. Supporting degenerate data containing INF, NAN, etc, is not a requirement.

Efficient Access The data layout should be block-based, and all data of a given triangle should
reside in the same block. This property facilitates efficient parallel decoding and access to individual
triangles during ray tracing or shading. Ideally the block size should be chosen with respect to the
cache line size of the target hardware to guarantee minimal cache line transfers per block fetch.

Existing API Compliance It is important to comply with existing API specifications, hence the
format must be able to encode additional data such as IDs for primitive and object, as well as an
opacity flag per triangle.

Encoding Time Encoding time must be reasonable to allow for quick artist turnaround and
conversion times. The encoder should be as simple as possible but at the same time maximize
encoding density.

Animated Geometry To facilitate animated geometry, it must be possible to quickly update the
vertex positions without breaking the block-based structure.

Many of these properties also apply to existing standards for texture compression like DXT [Wa-
veren 2006] or ASTC [Nystad et al. 2012], for many of the same reasons. In the following we will
describe our format, which meets all of the above requirements.

3.2 Format Description
Our dense geometry format (DGF) consists of an array of 128 byte blocks that encode triangle
data. Each block holds a maximum of 64 triangles and 64 vertices. The block layout is illustrated in
Figure 2. The first 20 bytes are a header that contains vertex anchors (see Section 3.2.1) and encoding

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:4 Joshua Barczak, Carsten Benthin, and David McAllister

Fig. 2. Layout of a 128 bytesDense Geometry Format (DGF) block. Thick lines indicate byte-aligned boundaries.
Light grey regions show unused padding bits. The vertex offsets are used to reconstruct vertex positions
(see Section 3.2.1). The geometry ID palette encodes an optional material ID per triangle (see Section 3.2.3).
The remaining regions encode the mesh topology (see Section 3.2.2). The control bits and first-index bits are
packed from back to front.

parameters for that block. Per-vertex offsets are tightly packed following the header, followed
by an optional Geometry ID palette (see Section 3.2.3), and a compressed topology encoding (see
Section 3.2.2).

3.2.1 Vertex Position Encoding. Floating-point vertices often have excessive precision near the
origin, and not enough when further away. This is generally undesirable for geometric models,
especially micropolygon geometry. DGF vertices are therefore defined on a 24-bit signed integer
grid, inspired by Nanite [Karis et al. 2021]. Each block stores an anchor position for each axis
(signed, 24b), a per-vertex offset from the anchor (unsigned, 1-16 bit), and a power-of-two scale
factor to map from integer coordinates to world coordinates (8-bit IEEE-compliant exponent). Given
anchor position A, offset O, and exponent E, a decoded vertex V is given as:

+ = (� +$) · 2�−127 .
The intermediate sum is a 25-bit signed integer which is then converted to floating-point. The

full range of possible values can be converted exactly. The result is losslessly multiplied by a power-
of-two floating-point scale factor. We disallow any encoded value outside the IEEE single-precision
float range, and also prohibit denormals, NaNs, and infinite values.

The bit width of the offsets is specified in the block header. An application can trade off between
precision and encoding density by adding or removing least significant bits and adjusting the
exponent accordingly. We require the sum of the x, y, and z bit widths to be a multiple of 4 in
order to minimize muxing cost in a possible hardware decoder. We briefly experimented with
parallelogram prediction [Jie et al. 2011], but found it did not benefit our test models (see Section 5),
and complicated random access to the vertices.

3.2.2 Topology Encoding. Our topology encoding is a simplification of Deering’s more general
scheme [Deering 1995]. We use a compressed, generalized triangle strip and allow limited back-
tracking to increase strip length. The behavior of our strips is illustrated in Figure 3. Each triangle’s
vertices are ordered such that the edge between the first two vertices is the one that is shared with
the predecessor. We store a 2-bit control field per triangle indicating one of the four actions to take
to generate triangle 8:
• RESTART(0): Consume 3 indices and restart the strip.
• EDGE1(1): Consume 1 index and re-use edge 1 of triangle 8 − 1
• EDGE2(2): Consume 1 index and re-use edge 2 of triangle 8 − 1
• BACKTRACK(3): Consume 1 index and re-use the remaining edge of triangle 8 − 2

The first triangle is always a RESTART, and its control bits are omitted. Vertices of re-used edges
are swapped on re-use to preserve winding. Mixed winding can be encoded by restarting the strip

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:5

Fig. 3. Generalized backtracking triangle strips. Left: Strip continuation options. Edges of the current triangle
are numbered in yellow. Options are EDGE1 (red), EDGE2 (green), and BACKTRACK (blue). Red labels show
vertex indices. Right: A challenging topology that our method can encode in a single strip. The strip path is
shown in yellow. Dotted lines indicate backtracks.

on each winding change. BACKTRACK is only allowed if the predecessor used EDGE1 or EDGE2. It
enables the encoder to handle isolated triangles without restarting the strip (see Figure 3).
In addition to the control bits, we store an index buffer for the strip. We compress the index

buffer in the manner of Meyer [2012]. Vertices are ordered by first-use. A bit per index indicates
if it is the first reference to its vertex. Vertex offsets are referenced directly on first use, but for
subsequent uses are accessed via an indirect index stored in the re-use buffer. The re-use index
width is selected on a per-block basis to address the unique vertices and can be set from 3 to 6 bits.

3.2.3 Primitive and Geometry IDs. To comply with the existing ray tracing APIs [Khronos Group
2020; Microsoft 2020] it is also necessary to encode a 29-bit primitive ID, a 24-bit geometry ID,
and 1-bit opacity for each triangle. The opacity value determines whether or not any-hit shaders
are executed when the triangle is intersected. We encode the primitive IDs implicitly by storing a
29-bit base in the header, and adding the triangle’s index in the block. The geometry ID, despite
its name, often functions as a material ID. A single, small ID for an entire block is a very common
case. It is also common for the opaque flag to correlate with material, so we concatenate the two to
produce a 25-bit result with the opacity in the lowest bit. We offer two mechanisms for storing this
information:
• Constant mode: A 10-bit value is stored in the block header and used by all triangles. This
mode is used when all triangles use the same value and the upper bits are zeros.
• Palette mode: A geometry ID palette is stored in the block, and the 10-bit header field defines
the number of entries (5-bit,1-32), and the number of high-order bits common to all entries
(5-bit,0-25).

The layout of the geometry ID palette is illustrated in Figure 4. Its size and position are byte
aligned, and it contains the shared most significant bits (MSBs), followed by the set of varying least
significant bits (LSBs), followed by an entry index for each triangle in the block. The bit width of

Fig. 4. Example geometry ID palette containing three entries. Each entry stores a 25-bit value (24-bit geomID
and 1-bit opacity). High-order bits with the same value across all entries are stored only once. Following the
IDs is an array of 2-bit fields that select an ID from the palette for each triangle in the block.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:6 Joshua Barczak, Carsten Benthin, and David McAllister

the indices is inferred from the number of entries in the palette. The indices are not present if there
is only one entry. This can occur if all triangles use the same ID and its value is too large to use the
constant mode.

3.3 Attribute Data
In real-time applications it is common to have vertex or triangle attribute data that depends on
the triangle order. Examples might include colors, normals, or index buffers. To achieve low bit
rates the DGF encoder requires the ability to reorder the triangles within the mesh, and to rotate
triangle vertices in a winding-preserving way. When converting a model to DGF, an application
must also post-process any sideband data that depends on the input ordering. The widely used
methods for post-transform cache optimization [Hoppe 1999; Kerbl et al. 2018; Sander et al. 2007]
impose similar requirements. To facilitate this, the encoder produces a remapping table that gives,
for each output triangle, the index of the corresponding input triangle, and the position of each
vertex in the original vertex order. It also provides a table that holds the original vertex index for
each block vertex.

To access per-triangle attribute data, an application can simply use the reconstructed primitive
ID stored in the DGF block. Per-vertex data is more nuanced because the same input vertex can
appear in multiple blocks. Our approach is to duplicate the shared vertices in each block, and store
a per-block offset into the duplicated vertex buffer. If the vertex attributes are large, it is better to
keep them in their original order and store the original index for each duplicated vertex. This costs
4 bytes per vertex, but allows the attribute data to be de-duplicated. The crossover point depends
on the amount of duplication and the size of the vertex data. Tables 1 and 3 quantify the amount of
vertex duplication.

4 DGF GENERATION
Encoding DGF blocks must strike a balance between ray tracing efficiency and encoding density.
For ray tracing efficiency (see Section 5.4), it is best to group triangles according to the surface area
heuristic (SAH) [Goldsmith and Salmon 1987]. For encoding density, we want to minimize vertex
duplication. Optimizing both metrics at once is a challenging problem, so we approximate it by
optimizing for SAH at a coarse granularity, and vertex reuse at a finer granularity.

4.1 SAH-Based Clustering
We begin by partitioning the set of triangles into SAH-optimal clusters in the same manner as
Benthin and Peters [2023]. We use a binned-SAH algorithm [Wald et al. 2008] with 256 bins and
continue partitioning until the triangle count is below a user-specified threshold (we used 128
for all experiments). Using SAH-based clustering enables a fast, cluster-granular BVH build, and
improves vertex compression by arranging triangles into compact spatially localized groups.

4.2 Quantization
After SAH-based clustering, the next step is to snap the floating-point vertices to a global integer
grid. A single quantization factor is chosen for all triangles, thus preventing cracks. A quantized
vertex +@ is computed as:

+@ = round (+ /24) .

The exponent 4 is computed as:

4 =

⌈
log2

(
�>/21−1 − 1

)⌉
,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:7

where �> is the maximum edge length of the bounding box over the entire model and 1 is a target
signed bit width. The value of 4 must be adjusted to avoid overflow in the 24-bit per-block anchors
or the 16-bit per-vertex offsets. To prevent offset overflow, the value of 4 must satisfy:

4 ≥
⌈
log2 (�2) − 16

⌉
,

where �2 is the maximum edge length for any cluster’s AABB. To prevent overflow and underflow
in the anchor fields, we need two additional constraints:

4 ≥
⌈
log2

(
−$min/

(
223 − 1

))⌉
,

4 ≥
⌈
log2

(
$max/223

)⌉
,

where $min, $max are the minimum and maximum vertex coordinate values. The corresponding
constraints are ignored if $min > 0 or $max < 0.

The quantization step produces 24-bit integer coordinates for each vertex, and guarantees nomore
than 16-bit of difference between two vertices in the same cluster. Note that the target precision can
be higher than 16-bit as long as triangle sizes are small. The 24-bit inputs are converted to offsets
when blocks are formed, and the grouping into SAH-optimized clusters keeps these offsets small.

The exponent selection above can lead to precision loss when the model contains a mix of large
and small triangles. In a production pipeline, this can be mitigated by subdividing large triangles,
or by isolating and compressing them independently. This is discussed further in Section 5.6.

4.3 Block Packing
After vertex quantization, the next step is to decompose each cluster into one or more DGF blocks.
Each cluster is encoded independently, using a greedy algorithm that tries to maximize vertex
re-use. The first triangle in the cluster is selected to start a new block, and we search the list for
an unused triangle that shares the most vertices with those already in the block. Ties are broken
by comparing Morton codes of the triangle centroids and choosing the candidate with lowest
Morton code. Once a candidate is found, we attempt to form a block from the current triangle set.
If successful, the triangle is retained and we search for another. If unsuccessful, we start a new
block, beginning with the unused triangle with lowest Morton code. This process repeats until all
triangles are consumed.

The procedure for constructing a block from a triangle set is as follows:
• Compute the set of unique vertices referenced by the triangles.
• Compute the integer axis-aligned bounding boxes (AABB) of the vertices.
• Compute the x, y, z bit widths from the AABB size.
• Scan the geometry IDs and decide whether to use palette or constant mode. If palette mode
is selected, compute the size of the palette.
• Construct the triangle strip and compress the triangles index buffer.
• Compute the size of the vertices, topology, and geometry IDs and test the sizes fit.

The encoder retains an intermediate state for the current block, so most of the steps above require
only constant work for each new triangle. For example: updating the vertex set simply requires
testing 3 entries in a bit vector and adjusting the vertex count and the AABB as required. Triangle
strip construction is the exception, and must be repeated each time a new triangle appears.

4.4 Triangle Strip Construction
To construct triangle strips, we use a simple greedy traversal of the triangle adjacency graph
(half-edge structure). We build a cluster-level graph once, and use it to quickly build block-level
graphs on demand by extracting a subset of the nodes and edges.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:8 Joshua Barczak, Carsten Benthin, and David McAllister

Algorithm 1 Decompressing vertex data for the 8th triangle in a DGF block. We compute three
index buffer addresses by scanning the triangle strip, decode the index value at each address, and
reconstruct the corresponding vertices.

A ← 1
8=34G�33A4BB ← [0, 1, 2]
for : = 1→ 8=34G do ⊲ Scan strip from the beginning

2CA; ← �>=CA>; [:]
?A4E ← 8=34G�33A4BB

if 2CA; = '�()�') then
A ← A + 1 ⊲ Count restarts
8=34G�33A4BB ← [2A + 8 − 2, 2A + 8 − 1, 2A + 8]

else if 2CA; = ����1 then
8=34G�33A4BB ← [?A4E [2], ?A4E [1], 2A + :]
1C ← ?A4E [0]

else if 2CA; = ����2 then
8=34G�33A4BB ← [?A4E [0], ?A4E [2], 2A + :]
1C ← ?A4E [1]

else if 2CA; = ���)'�� then
if ?A4E�CA; = ����1 then

8=34G�33A4BB ← [1C, ?A4E [0], 2A + :]
else

8=34G�33A4BB ← [?A4E [1], 1C, 2A + :]
end if

end if
?A4E�CA; ← 2CA;

end for
for : = 0→ 2 do ⊲ Decode indices and vertices

E83 ←CountFirst(FirstIndex,indexAddress[k])
if �8ABC�=34G [8=34G�33A4BB [:]] = 0 then

E83 ← '4DB4�D5 5 4A [8=34G�33A4BB [:] − E83]
end if
+4AC4G [:] ← (�=2ℎ>A +$5 5 B4C [E83]) ∗ (20;4

end for

We specialize our structure for valence 3 to speed up the implementation. For non-manifolds
where more than two triangles share the same edge, we discard edges until all nodes have at most
3 neighbors. Non-manifolds are correctly encoded, but extreme cases might cause frequent strip
restarts and reduce compression rate.
To construct a strip from a graph, an arbitrary node with minimum valence is chosen and its

triangle added to the strip. The node is deleted, and the valences of the neighbors adjusted. The
neighbor with minimum valence is added to the strip, deleted from the graph, and the process
continues. Whenever a triangle is added, its vertices are rotated to align the first edge to the one
connecting it to the strip.
If a triangle has no more neighbors, we attempt to backtrack to the opposite neighbor of the

preceding triangle. Backtracking is allowed when the prior triangle has an unused neighbor, and
was not a restart or backtrack. If backtracking fails, we restart from an arbitrary minimum-valence
node. The combination of backtracking and the minimum valence heuristic is very effective because
it causes the strip to walk block boundaries in a spiral pattern, rather than venturing into the
interior and becoming trapped. Isolated ear triangles, which would otherwise cause restarts, are

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:9

1 = 11 1 = 12 1 = 13 1 = 14 1 = 15 1 = 16 1 = 24 DMM
Average Geometric Error (%)

Lowest 0.0314 0.0157 0.0078 0.0039 0.0020 0.001 0.0000 0.001
Highest 0.0812 0.0405 0.0203 0.0101 0.0051 0.0025 0.0006 0.011

Maximum Geometric Error (%)
Lowest 0.0564 0.0282 0.0141 0.0071 0.0035 0.0018 0.0000 0.1
Highest 0.1458 0.0729 0.0363 0.0182 0.0091 0.0045 0.0012 2.4

Bytes per Triangle
Lowest 2.74 2.77 2.82 2.87 3.24 3.05 3.68 0.81
Highest 3.30 3.65 4.05 4.37 4.95 5.42 6.95 2.38

DGF Vertex Duplication
Lowest 1.49 1.51 1.51 1.53 1.54 1.55 1.59 —
Average 1.56 1.57 1.58 1.61 1.65 1.68 1.82 —
Highest 1.85 1.88 1.90 1.92 1.95 2.00 2.16 —

Table 1. Geometric error and memory cost for DGF and DMM. Geometric error is expressed as percentage of
AABB diagonal. DGF results use the models from Tables 2 and 3. DMM figures are derived from Figure 19 and
Table 1 of [Maggiordomo et al. 2023]. We compute average and maximum error for each model and report
the range of results across the model set. Vertex duplication gives the ratio of block vertices to input vertices.

instead our preferred choice, since the strip can detour into them and backtrack back into place, as
shown in Figure 3.

4.5 Decompression
Algorithm 1 illustrates the steps to decompress the vertex data of the 8th triangle in a DGF block.
We scan the strip from the beginning until the desired triangle is found. The address for the third
vertex of triangle 8 is computed by adding 2 for each restart at positions at or before 8 . If 8 is a
RESTART, the second and first vertices decrement this index by 1 and 2, respectively. Otherwise,
the index addresses are inferred from the two preceding triangles. This is done by advancing until
the desired triangle is reached, retaining four previous index values, and the previous control value.
Once the index addresses are known, we retrieve the index values as proposed by Meyer [2012].
If the index at a specified address is the first reference to its vertex, its value is computed by an
inclusive prefix sum on the ’is-first’ bits. Otherwise, it is extracted from the re-use buffer. The
result gives the position of one of the stored vertex offsets. This is then used to reconstruct the
floating-point vertex data (see Section 3.2.1).

5 RESULTS
For our evaluation, all pre-processing steps – scene subdivision into DGF meshlets and DGF
encoding itself – were run on a CPU (Intel Core I9-13900KF), while for direct ray tracing of DGFs
we use a software implementation based onDXR intersection shaders [Microsoft 2020]. All rendering
tests were conducted on an AMD® Radeon™ 7900 XT GPU and Windows 11.

We start by providing a detailed comparison in terms of compression density, geometric error, and
encoding time between DMM and different DGF encodingmodes (see Section 5.1). Next, we compare
DGF against other alternative compression formats (see Section 5.2), followed by evaluation of
using DGF as BVH leaf representation (see Section 5.3). We provide a ray tracing performance
comparison between DGF and standard indexed mesh triangles as BVH leaf representation (see
Section 5.4). Finally, we provide statistics on triangle strip length and quad formation (Section 4.4).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:10 Joshua Barczak, Carsten Benthin, and David McAllister

Bike Crytek Sponza SanMiguel Sibenik Rungholt Powerplant
Triangles (M) 1.67 0.26 9.98 0.075 6.70 12.76
Materials 10 25 287 15 84 66

B/Tri With/Without 3.75/3.73 4.84/4.81 3.47/3.34 5.36/5.17 4.49/4.21 3.05/3.02
Palette 4.98% 8.08% 31.27% 35.48% 51.31% 9.78%

Table 2. Effect of geometry ID compression. Palette gives the percentage of blocks using geometry ID palettes.
1 = 16 is used due to the larger spatial extent of these scenes.

5.1 Compression Density and Encoding Time
We first compare geometric error and memory footprint between DGF and DMM (see Table 1).
For DGF results, we measure distance between encoded and decoded vertices and express this
as a percentage of the AABB diagonal. For DMM, we report the results from Maggiordomo et al.
[2023], which measure distance between the input and `-mesh surfaces. At low bit rates, DGF often
has higher error, while at high bit rates, the reverse is true. For the tested scenes, using 1 = 14
roughly matches the average error for DMM. Crucially, DGF error is more stable and predictable.
The maximum error is always roughly 1.8× the average, and scales linearly with quantization level,
while for DMM the error can vary by as much as 10×. A qualitative analysis is given in Section 5.6.

Table 2 shows the impact of geometry ID compression. We use a selection of OBJ models with
different materials and use material ID as geometry ID. The per-triangle IDs tend to be locally
similar, and the palette compression de-duplicates them efficiently.

5.2 Comparison to Alternative Methods
Table 3 compares DGF to DMMs [Bickford and Moreton 2023], compressed meshlets [Kuth et al.
2024] and Draco [Google 2017]. Draco is an implementation of EdgeBreaker [Rossignac 1999] and
aims at reducing disk footprint and download size. Its sequential representation is not suitable
for direct ray tracing, but provides a lower bound on compression rate. The compressed meshlets
by Kuth et al. [2024] are designed for efficient decompression by rasterization-based mesh shaders.
The format is not ideal for ray tracing because accessing a single triangle requires multiple block
reads. The meshlets are also larger than DGF, but their reduced vertex duplication may compensate
for this in practice. Compared to DMMs, DGF uses roughly 3× more memory, but in exchange, can
handle any input mesh topology, and takes considerably less time for encoding. The majority of
the execution time for DGF encoding is spent in repeatedly constructing triangle strips and testing
for block fullness.

The reported data rate for Nanite is roughly 9 B/tri in memory and 5.6 B/tri on disk [Karis et al.
2021]. Those figures include level-of-detail hierarchy and vertex attribute data, which makes a
direct comparison difficult. However, the position-only numbers in Tables 1 and 3 highlight the
competitiveness of DGF.

5.3 BVH Memory Footprint
Table 4 projects the memory savings from using DGF blocks as the leaf triangle format in a BVH.
We use the DXR API to obtain compacted BVHs for the input geometry and compute the size of the
BVH’s (uncompressed) triangle leaf data representation. This is possible because the acceleration
structure builder for our target GPU is open-source [AMD 2024a]. DGF reduces the triangle leaf
data by 6-10× and total BVH size by 50%. Our target hardware requires uncompressed nodes. BVHs
with denser internal node encoding [Liktor and Vaidyanathan 2016; Ylitie et al. 2017] would derive
a greater size reduction.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:11

Telegraph GW Bust Murex Lucy Statuette Dragon Fangyi Ewer
Triangles (M) 7.94 26.06 3.52 28.06 10.00 7.22 21.57 7.94
Verts (M) 3.97 13.03 1.76 14.03 5.00 3.61 10.79 3.97

Triangle Size (Bytes/Triangle)
VB/IB 18 18 18 18 18 18 18 18
Draco 0.69 0.91 0.95 0.71 0.85 0.48 0.90 0.94
DMM 0.99 0.81 1.16 0.85 2.38 0.97 1.00 1.29

Meshlets 3.99 4.02 3.98 4.00 3.96 4.00 3.98 3.95
DGF 2.96 3.02 3.29 2.87 3.17 3.24 3.29 3.08

Vertex Duplication Factor
Meshlets 1.23 1.24 1.22 1.23 1.22 1.23 1.24 1.24
DGF 1.53 1.58 1.58 1.53 1.56 1.58 1.57 1.55

Encoding Time (seconds)
Draco 2 18 3 9 3 2 6 3
DMM 436 1660 317 1661 563 399 1215 462
DGF 13 46 6 49 17 12 34 13

Table 3. Memory consumption and execution time. DMM figures are based on Table 1 of [Maggiordomo
et al. 2023]. Meshlets uses the method of [Kuth et al. 2024] (authors’ implementation), with vertex buffer size
scaled to approximate 1 = 14. Draco and DGF execution times use 1 = 14 and were measured on an Intel
Core I9-13900KF (single-threaded). Draco [Google 2017] is not suitable for direct rendering, but provides a
lower bound on compression rate.

Our test hardware stores a maximum of two triangles in a BVH leaf, intersecting them one by
one, but many ray tracers have wider triangle processing. For example, Embree [Wald et al. 2014]
tests up to 8 triangles at once using vector instructions. In the limit, an implementation might treat
entire DGF blocks as BVH leaves and brute-force the intersection tests [Benthin et al. 2021], use
ray-space pruning [Benthin et al. 2004], or use a small strip-level structure similar to [Lauterbach
et al. 2007]. A full exploration of the design space is beyond the scope of this paper, but we attempt
to map it in Table 4 by creating procedural primitives to represent groups of consecutive DGF
triangles.

DXR DGF Inner Nodes DXR DGF Totals
Leaves Blocks Δ=2 Δ=4 Δ=8 Δ=64 Total Δ=2 Δ=4 Δ=8 Δ=64

Bike 34.22 3.75 39.51 16.84 8.68 1.69 73.73 43.27 20.59 12.44 5.45
Sponza 34.24 4.84 28.59 11.81 6.26 1.61 62.83 33.43 16.65 11.10 6.45
San Miguel 35.78 3.47 41.51 15.89 8.19 1.49 77.29 44.98 19.35 11.66 4.96
Sibenik 34.24 5.36 29.46 12.33 6.56 1.74 63.70 34.82 17.69 11.92 7.11
Rungholt 32.00 4.49 22.90 10.80 5.77 1.36 54.90 27.40 15.30 10.26 5.85
Powerplant 34.72 3.64 41.36 14.38 7.48 1.35 76.08 45.01 18.03 11.12 5.00

Table 4. Projected acceleration structure size for a set of models (bytes per triangle). DXR Leaves is the size of
the triangle data for the DXR BVH. DGF Blocks is the triangle data size for DGF using 1 = 16. Inner Nodes
columns give the size of internal nodes and meta-data for a given maximum triangle count per leaf (Δ). DGF
Totals is the sum of DGF block size and internal nodes for a given leaf size.

5.4 Rendering
We implement DGF ray intersection by using procedural primitives to invoke an intersection
shader for each triangle. The shader performs on-the-fly format decompression into 32-bit floating-
point numbers followed by ray triangle intersections in software. We compare this against a

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:12 Joshua Barczak, Carsten Benthin, and David McAllister

Cache Requests(M) (Hit %)
VALU Instruction L0 L1 L2 L2 Miss Time
Util. 32KB 16KB 256KB 4MB (Millions) (ms)

Telegraph (7.9M Triangles, 242K DMM Base Triangles)
Reference 50% 682 (100) 316 (49) 162 (14) 138 (32) 93 (1.00×) 9.39 (1.00×)
DGF (1 = 16) 89% 1431 (100) 411 (67) 134 (21) 105 (42) 61 (0.65×) 17.97 (1.89×)
DMM Proxy 66% 692 (100) 322 (64) 114 (28) 81 (71) 23 (0.24×) 6.79 (0.72×)

Crytek Sponza (0.26M Triangles, 40K DMM Base Triangles)
Reference 68% 1483 (100) 838 (51) 406 (33) 271 (79) 56 (1.00×) 14.30 (1.00×)
DGF (1 = 16) 94% 2875 (100) 1350 (74) 345 (46) 187 (81) 35 (0.63×) 34.09 (2.38×)
DMM Proxy 74% 1907 (100) 945 (62) 347 (38) 212 (94) 11 (0.19×) 13.90 (0.97×)

Table 5. Statistics for ray traversal of two scenes at 1080p. Scenes are rendered with simple diffuse path
tracing, 3 samples per pixel, up to 3 bounces per sample. We used the Radeon™ GPU Profiler [AMD 2024b] to
collect statistics. DGF decoding has up to 2.4× higher cost, but reduces the L2 misses (memory bandwidth)
by 40-50%. DMM further reduces L2 miss rate since its BVH is built over a small set of coarse base triangles.

reference intersection shader that retrieves data from a conventional vertex and index buffer (see
Table 5). Comparing software tests ensures that the BVH topology and ray traversal loop are as
similar as possible between the two scenarios. We approximate DMM by testing against the base
triangles, using the AABBs of the extruded prism. Each triangle fetches a dummy displacement
block containing zeros. This approach underestimates the computational cost of DMM but produces
comparable memory traffic.
For the reference shader, we use one procedural primitive for each input triangle. For DGF, we

supply 64 procedural primitives per DGF block and use degenerate AABBs for the unused slots.
These are removed by the BVH builder. This allows our intersection shader to obtain the DGF block
ID from the primitive ID MSBs and the triangle index from the LSBs. The GPU driver constructs
4-wide (uncompressed) internal BVH nodes over these input primitives, each 128 bytes in size.

The DGF intersection test performs many additional loads to retrieve data from various parts of
the block. The control bits and first-index bits are all loaded, placed in registers and then parsed
to determine the index buffer addresses. The extra memory reads are absorbed by the first-level
cache, but the ALU cost of scanning the triangle strip reduces performance by a factor of up to
2.3×. Importantly, misses in the last-level cache are sharply reduced, because the compact triangle
representation reduces the working set size and thereby frees up cache space for more BVH nodes.
As in section 5.3, an architecture with a more compact BVH node can be expected to derive a larger
benefit. The DMM implementation traverses a smaller BVH, and can offer better performance as
long as the content can be well represented (see section 5.6).

5.5 Strips andQuads
Table 6 compares the generalized triangle strip builder described in section 4.4 to competing
methods that build traditional strips. For each DGF block we decode its triangle list, and construct
strips using the alternative method. The DGF strip builder achieves the highest average strip length
due to its use of generalized backtracking strips.

Several ray tracing architectures [Intel Corporation 2024] [Simon Fenney 2024] natively intersect
pairs of edge-adjacent triangles, so we also report the probability that consecutive triangles in a
DGF block have a shared edge between them. This occurs over 90% of the time.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:13

Telegraph GW Bust Murex Lucy Statuette Dragon Fangyi Ewer
Average Strip Length

Zeux 10.00 8.04 8.54 9.24 8.93 9.73 8.86 8.96
Tunneling 13.52 11.93 11.61 12.22 12.04 13.45 12.10 11.80

DGF (1 = 16) 19.32 14.81 15.42 17.82 16.13 18.06 16.38 16.25
Quad Rate 91.80% 90.72% 90.85% 91.50% 91.20% 91.51% 91.27% 91.25%

Table 6. Comparison of triangle strip lengths produced by various methods. Zeux uses the method of [Evans
et al. 1996] as implemented by [Kapoulkine 2024]. Tunneling uses our implementation of [Stewart 2001]. Our
strip builder achieves the highest strip length.Quad Rate is the probability that two consecutive triangles in a
block share an edge. Our use of strips enables good utilization rates for quad-based intersection pipelines.

5.6 Qualitative Error Analysis
DMM is a displacement mapping technique, and automatic base mesh generation does not always
capture high-frequency detail, as shown in Figure 6. These errors could be mitigated in practice
through manual tuning of the base mesh, but this is labor-intensive. Other potential problem cases
for DMM are detailed in [Nvidia 2023]. In this case, DGF needs no manual intervention to produce
an acceptable result.

Figure 5 shows a failure case for DGF. As discussed in Section 4.2, the encoder can lose precision if
the input contains a mix of large and small triangles. The San Miguel scene contains large backdrops
that are visible through doorways. These cause the encoder to choose a lower quantization factor
to avoid offset overflow, which results in inadequate precision for the high-polygon tableware. The
resulting errors have a low magnitude (relative to scene size), but are problematic nonetheless. In
this case, visible artifacts are eliminated simply by encoding with 1 = 24, which increases the byte
per triangle ratio by 18% (see Figure 5b).
Since a problematic triangle can be arbitrarily large, we also evaluated other mitigations at

1 = 16. Figure 5d shows the result of encoding the scene with the backdrops removed. This
improves accuracy, and has the counter-intuitive effect of reducing the compression rate, since the
vertices use larger offsets. Another strategy (Figure 5e) is compressing triangle groups in isolation

(a) 1 = 16 (3.47B/tri) (b) 1 = 24 (4.12B/tri) (c) Uncompressed (19.7B/tri)

(d) 1 = 16 (3.77B/tri) (e) 1 = 16 (5.51B/tri)

Fig. 5. Compression errors in the San Miguel scene, with mitigations. (5a) Direct encoding, (1 = 16). (5b)
Direct encoding (1 = 24). (5c) Uncompressed reference. (5d) 1 = 16 with large tris removed. (5e) 1 = 16
compressing individual triangle groups in isolation.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:14 Joshua Barczak, Carsten Benthin, and David McAllister

and concatenating the blocks. This eliminates the artifacts, but hurts compression rate even more,
by creating larger numbers of low density clusters.

Another potential failure case is a large, elongated mesh with large coordinate values on one axis
and small ones on the others. In this case the only option is to divide the mesh into locally encoded
pieces and use instance transforms to position them. This is likely to align with best-practice
anyway, since large, monolithic BLAS can degrade TLAS quality.

Fig. 6. DMM failure case. Left: A DMM representation of the Sponza scene (40K base tris, 16M `-tris, 16MB),
created using the toolchain of [Maggiordomo et al. 2023]. DMM struggles with sharp corners and small,
high-frequency features. Right: DGF encoding of the original mesh with 1 = 16 (262K tris, 1.23MB).

6 EXTENSIONS
In the followingwewill discuss possible hardware and API support for DGF and outline an extension
for dynamic content.

6.1 Hardware Support
TheDGF decoding cost (see Section 5.4) can be remedied by deploying dedicated decoding hardware.
For example, a hardware strip-scan unit could be built that executes an unrolled strip decoding
loop, computing index buffer addresses in parallel, and passing them through a chain of conditional
swaps until the desired triangle is reached. If a large strip cannot be fully decoded in one cycle,
multiple smaller decoders could be chained in a pipeline. The result could be returned to a shader
or used as input for additional decoding logic. Overall, the hardware investment would be well
justified by DGF’s reduction in memory footprint (see Table 3) and memory bandwidth (see Table 5).

6.2 Dynamic Geometry
Full DGF encoding is too expensive to run per frame, but the simple linear vertex structure facilitates
fast vertex update. To support animation, DGF blocks can be built for a model’s rest pose, with
the encoder modified to lock the vertex offsets at a particular, high bit width, instead of choosing
a tight fit to the input data. This reduces density by ∼ 2 − 4× (see Table 7), but it enables the
coordinate values to expand and contract as necessary. An application can use a compute shader to
evaluate the vertex animation, quantize the results, and pack new vertex positions into the blocks,
while leaving topology and geometry IDs intact. Locked DGF blocks are less compact than the
compressed meshlets of [Kuth et al. 2024], but retain the important property that triangle data can
be accessed using a single memory fetch. DMM trivially enables animation of the base mesh, but
only to the extent that a static, scalar displacement from a moving base surface can provide an
acceptable result. When the mesh is subjected to complex deformations such as skinning this will
often not be the case.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

DGF 1:15

Telegraph GW Bust Murex Lucy Statuette Dragon Fangyi Ewer
Bytes Per Triangle

DGF (1 = 14) 2.96 3.02 3.29 2.87 3.17 3.24 3.29 3.08
Locked 12b 6.28 6.45 6.36 6.38 6.37 6.37 6.31 6.37
Locked 16b 8.66 8.77 8.71 8.77 8.73 8.78 8.67 8.71

Ratios
Locked 12b 2.12× 3.18× 1.93× 2.22× 2.01× 1.97× 1.92× 2.07×
Locked 16b 2.92× 4.32× 2.65× 3.05× 2.76× 2.71× 2.63× 2.83×

Table 7. Impact of locked offset width for update-able blocks. Using locked offsets reduces density by ∼ 2−4×,
but enables the vertex positions to change. With locked offsets, DGF offers ∼ 2 − 3× higher density than
standard indexed meshes, but ∼ 1.5 − 2× lower than the compressed meshlets of [Kuth et al. 2024] (see
Table 3.

6.3 API support
For maximum benefit, DGF must be standardized by the major graphics APIs [Apple 2023; Khronos
Group 2020; Microsoft 2020]. This could by done by extending the acceleration structure build
APIs to accept an array of pre-computed DGF blocks as input, just as they currently accept pre-
compressed textures. An implementation would copy the input blocks and construct vendor-specific
internal nodes above them. Implementation-specific post-processing, such as quad formation,
might be applied at this stage. The total triangle count for the blocks would also be supplied, since
implementations might need to reference triangles individually. Existing shader intrinsic functions
that provide access to primitive and geometry IDs would return the values encoded in the input.
To facilitate access to vertex attributes (see Section 3.3), the application could optionally specify a
32bit meta-data field for each block to indicate the location of its attributes. Additional intrinsic
functions could retrieve this meta-data and the block-local vertex indices for a hit triangle.

7 CONCLUSION AND FUTUREWORK
We propose DGF, a block-based format for efficiently storing dense geometry data. Its design and
structure have been optimized for ray tracing specific use cases. Although it offers a lower density
than competing displacement-based lossy compression approaches, it is able to support any mesh
topology, and offers higher density than other meshlet-based lossy compression formats. The ability
to quickly encode any topology allows for an easier integration into existing asset creation pipelines.
Even though software-based intersection of DGFs is currently slower than a simpler uncompressed
leaf data representation, future direct decoding support in hardware would completely offset this
current limitation, and unlock substantial memory footprint and bandwidth reductions. In the
future, we are interested in simulating different variants of direct hardware decoding support for
DGF and in improving the encoding algorithm.

ACKNOWLEDGEMENT
Model courtesy: Reef Crab (threedscans.com), Bike (Yasutoshi Mori), Powerplant (University of
North Carolina). The authors would like to thankQuirin Meyer, Holger Gruen, and the anonymous
reviewers for their feedback. Max Oberberger provided meshlet data for Table 3. The authors would
like to acknowledge Andrew Kensler, Trevor Hedstrom, and Mohammed Al-Obaidi for significant
contributions to DGF.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

1:16 Joshua Barczak, Carsten Benthin, and David McAllister

Copyright Notice and Trademarks
©2024 Advanced Micro Devices, Inc. All rights reserved. AMD, Ryzen, Radeon, and combinations
thereof are trademarks of AdvancedMicroDevices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks of their respective companies.

REFERENCES
Pierre Alliez and Craig Gotsman. 2005. Recent Advances in Compression of 3D Meshes. (2005), 3–26.
AMD. 2024a. GPU Raytracing Library. Retrieved April 22, 2024 from https://github.com/GPUOpen-Drivers/gpurt
AMD. 2024b. Radeon GPU Profiler. Retrieved April 22, 2024 from https://gpuopen.com/rgp/
Apple. 2023. Metal Documentation. https://developer.apple.com/documentation/metal
Carsten Benthin and Christoph Peters. 2023. Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of

Detail. Computer Graphics Forum 42, 8 (2023).
Carsten Benthin, Karthik Vaidyanathan, and Sven Woop. 2021. Ray Tracing Lossy Compressed Grid Primitives. In Euro-

graphics 2021 - Short Papers.
Carsten Benthin, Ingo Wald, and Philipp Slusallek. 2004. Interactive ray tracing of free-form surfaces. In Proceedings of the

3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (Stellenbosch,
South Africa) (AFRIGRAPH ’04). Association for Computing Machinery, New York, NY, USA, 99–106. https://doi.org/10.
1145/1029949.1029968

Neil Bickford and Henry Moreton. 2023. Getting Started with Compressed Micro-Meshes. In NVIDIA GPU Technol-
ogy Conference. https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/
1666430278669001BFSR

Michael Deering. 1995. Geometry compression. (1995), 13–20.
F. Evans, S. Skiena, and Amitabh Varshney. 1996. Optimizing triangle strips for fast rendering. In Proceedings of Visualization.

319 – 326.
Jeffrey Goldsmith and John Salmon. 1987. Automatic Creation of Object Hierarchies for Ray Tracing. Computer Graphics

and Applications 7, 5 (1987), 14–20.
Google. 2017. Draco Geometry Compression. https://google.github.io/draco/
Hugues Hoppe. 1999. Optimization of mesh locality for transparent vertex caching. In Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). 269–276.
Intel Corporation. 2024. Intel® Arc™ Graphics Developer Guide for Real-Time Ray Tracing in Games. https://www.intel.com/

content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
Xu Jie, Jiang Hao, and Li Zhen. 2011. 3D Mesh Compression by Generalized Parallelogram Predictive Vector Quantization.

Information Technology Journal 10 (2011).
Arseny Kapoulkine. 2024. MeshOptimizer. https://github.com/zeux/meshoptimizer
Brian Karis, Rune Stubbe, and Graham Wihlidal. 2021. A Deep Dive into Nanite Virtualized Geometry. https://advances.

realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf in Advances in Real-Time Rendering
in Games: Part I (proc. SIGGRAPH courses).

Bernhard Kerbl, Michael Kenzel, Elena Ivanchenko, Dieter Schmalstieg, and Markus Steinberger. 2018. Revisiting The Vertex
Cache: Understanding and Optimizing Vertex Processing on the modern GPU. Proc. ACM Comput. Graph. Interact. Tech.,
Article 29 (2018).

Khronos Group. 2020. Vulkan Ray Tracing Extensions Specification. https://www.khronos.org/registry/vulkan/specs/1.2-
extensions/man/html/VK_KHR_ray_tracing.html

Bastian Kuth, Max Oberberger, Felix Kawala, Sander Reitter, Sebastian Michel, Matthäus Chajdas, and Quirin Meyer. 2024.
Towards Practical Meshlet Compression. arXiv:2404.06359 [cs.GR]

Christian Lauterbach, Sung-Eui Yoon, and DineshManocha. 2007. Ray-Strips: A CompactMesh Representation for Interactive
Ray Tracing. In 2007 IEEE Symposium on Interactive Ray Tracing. 19–26. https://doi.org/10.1109/RT.2007.4342586

J. Lee, S. Choe, , and S. Lee. 2010. Compression of 3d mesh geometry and vertex attributes for mobile graphics. 09 (2010).
G. Liktor and K. Vaidyanathan. 2016. Bandwidth-efficient BVH Layout for Incremental Hardware Traversal. In Proceedings

of High-Performance Graphics. 51–61.
Andrea Maggiordomo, Henry Moreton, and Marco Tarini. 2023. Micro-Mesh Construction. ACM Trans. Graph. 42, 4, Article

121 (jul 2023), 18 pages. https://doi.org/10.1145/3592440
Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot. 2015. 3D Mesh Compression: Survey, Comparisons,

and Emerging Trends. ACM Comput. Surv. 47, 3, Article 44 (2015).
Quirin Meyer. 2012. Real-Time Geometry Decompression on Graphics Hardware. (2012).
Microsoft. 2020. DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

https://github.com/GPUOpen-Drivers/gpurt
https://gpuopen.com/rgp/
https://developer.apple.com/documentation/metal
https://doi.org/10.1145/1029949.1029968
https://doi.org/10.1145/1029949.1029968
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666430278669001BFSR
https://register.nvidia.com/flow/nvidia/gtcspring2023/attendeeportal/page/sessioncatalog/session/1666430278669001BFSR
https://google.github.io/draco/
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://github.com/zeux/meshoptimizer
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_tracing.html
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_ray_tracing.html
https://arxiv.org/abs/2404.06359
https://doi.org/10.1109/RT.2007.4342586
https://doi.org/10.1145/3592440
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

DGF 1:17

Nvidia. 2023. Nvidia Gameworks DMM Toolkit. https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit/
blob/main/docs/asset_pipeline.md

J Nystad, A Lassen, A Pomianowski, S Ellis, and T Olson. 2012. Adaptive Scalable Texture Compression. High-Performance
Graphics 2012, HPG 2012 - ACM SIGGRAPH / Eurographics Symposium Proceedings (2012).

Jingliang Peng, Chang-Su Kim, and C. C. Jay Kuo. 2005. Technologies for 3D mesh compression: A survey. J. Vis. Comun.
Image Represent. 16, 6 (2005), 688–733.

Jarek Rossignac. 1999. Edgebreaker: Connectivity Compression for Triangle Meshes. IEEE Transactions on Visualization and
Computer Graphics (1999).

Pedro V. Sander, Diego Nehab, and Joshua Barczak. 2007. Fast triangle reordering for vertex locality and reduced overdraw.
ACM Trans. Graph. 26, 3 (jul 2007), 89–es. https://doi.org/10.1145/1276377.1276489

Benjamin Segovia and Manfred Ernst. 2010. Memory Efficient Ray Tracing with Hierarchical MeshQuantization. In Graphics
Interface. 153–160.

Simon Fenney. 2024. Hot3D: Ray Tracing With Imagination. https://www.highperformancegraphics.org/slides23/2023-06-
_HPG_IMG_RayTracing_2.pdf

A. James Stewart. 2001. Tunneling for Triangle Strips in Continuous Level-of-Detail Meshes. In Graphics Interface. 91–100.
Ingo Wald, Carsten Benthin, and Solomon Boulos. 2008. Getting Rid of Packets - Efficient SIMD Single-Ray Traversal using

Multi-Branching BVHs. In Symposium on Interactive Ray Tracing. 49–57.
Ingo Wald, Sven Woop, Carsten Benthin, Gregory Johnson, and Manfred Ernst. 2014. Embree: A Kernel Framework for

Efficient CPU Ray Tracing. ACM Transactions on Graphics 33 (2014).
J.M.P. Waveren. 2006. Real-Time DXT Compression. (05 2006).
Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient incoherent ray traversal on GPUs through compressed wide

BVHs. In Proceedings of High Performance Graphics (Los Angeles, California) (HPG ’17). Association for Computing
Machinery, New York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3105762.3105773

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article 1. Publication date: July 2024.

https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit/blob/main/docs/asset_pipeline.md
https://github.com/NVIDIAGameWorks/Displacement-MicroMap-Toolkit/blob/main/docs/asset_pipeline.md
https://doi.org/10.1145/1276377.1276489
https://www.highperformancegraphics.org/slides23/2023-06-_HPG_IMG_RayTracing_2.pdf
https://www.highperformancegraphics.org/slides23/2023-06-_HPG_IMG_RayTracing_2.pdf
https://doi.org/10.1145/3105762.3105773

	Abstract
	1 Introduction
	2 Related Work
	3 Dense Geometry Format (DGF)
	3.1 Requirements
	3.2 Format Description
	3.3 Attribute Data

	4 DGF Generation
	4.1 SAH-Based Clustering
	4.2 Quantization
	4.3 Block Packing
	4.4 Triangle Strip Construction
	4.5 Decompression

	5 Results
	5.1 Compression Density and Encoding Time
	5.2 Comparison to Alternative Methods
	5.3 BVH Memory Footprint
	5.4 Rendering
	5.5 Strips and Quads
	5.6 Qualitative Error Analysis

	6 Extensions
	6.1 Hardware Support
	6.2 Dynamic Geometry
	6.3 API support

	7 Conclusion and Future Work
	References

