
1 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GPU Reshape
Modern Shader Instrumentation and

Instruction Level Validation

Miguel Petersen | Striking Distance Studios

Lou Kramer | AMD

2 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE PROBLEM • Modern APIs are powerful, but highly complex

• Something inevitably goes wrong

• What went wrong?

• Where did it go wrong?

• How do we know?

• DXGI_ERROR_DEVICE_REMOVED /

VK_DEVICE_LOST

• Sometimes not so obvious

3 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE PROBLEM

Excellent validation tooling on the CPU timeline

• Standard validation layers

• Limited by available data

What if the issue occurs on the GPU timeline?

• May result in undefined behaviour, crashes, or worse

• Caused by dynamic data not visible on the CPU timeline

This is what

GPU Reshape is

all about!

4 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA • Conceptually, GPU Reshape is simple

• Before something bad can happen, validate it

• If something bad did happen, inform the user

5 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

6 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA

Element / Texel

Out Of Bounds

Exporting

Inf / NaN
Invalid Descriptor Indexing

Uninitialized Data Mismatched Descriptors Race Conditions

Infinite Loops

(TDR)

Hardware

Slow Paths
And a lot more!

So, what can go wrong? A lot!

7 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA

Validation takes many forms

• Static analysis

• Symbolic analysis

• Source instrumentation

• Binary instrumentation

GPU Reshape is an integration-free framework

• Leaves only binary instrumentation

Smarter people have already proved the point

8 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA

%image = OpLoad %imagePtr

%oob = OpUGreaterThanEqual %b %index %size

OpSelectionMerge %resume None

OpBranchConditional %oob %fail %resume

%fail = OpLabel

… failure code …

OpBranch %resume

%resume = OpLabel

%texel = OpImageRead %f4 %image %index None

%image = OpLoad %imagePtr

%texel = OpImageRead %f4 %image %index None

Binary instrumentation transforms code

• Inject user programs with validation code

• No modifications needed from the user

9 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA

Easier to think about with source code

• Injected validation of image load coordinates

• Numerous projects employ hand-written validation

• Fully automated through GPU Reshape

• Not all faults are immediately visible in source code

if (any(coordinates >= imageSize)) {

 ReportFault();

}

float4 texel = image[coordinates];

float4 texel = image[coordinates];

10 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA

Certain features may safe-guard operations

• Faulting operations can cause general instability

• Limits our ability to stream validation data back

float4 texel;

if (any(coordinates >= imageSize)) {

ReportFault();

texel = 0.0f.xxxx;

} else {

texel = image[coordinates];

}

if (any(coordinates >= imageSize)) {

ReportFault();

}

float4 texel = image[coordinates];

• Guard faulting instructions in a separate branch

11 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THE IDEA

Multiple backends, multiple intermediate languages

• Permutation problem

Resource Bounds

DirectX®12

Vulkan®

Future API

DXBC

DXIL

SPIRV

Future IL

Resource Bounds DXBC

Resource Bounds DXIL

Resource Bounds SPIRV

Resource Bounds Future IL

12 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE

LANGUAGES / GRIL

• Implementation per backend/intermediate-language

infeasible

• Representations may be different between the ILs

• Concepts are mostly the same

• We need a common form

Write once instrument everywhere

13 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Shared abstraction

• Intermediate Languages

• APIs

DirectX®12

Vulkan®

Future API

GRIL

SPIRV

Future IL

DXBC

DXIL

Reshape

API
Resource Bounds

14 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

GRIL is heavily LLVM inspired

• Single-static assignment

• Strong typing system

• Basic blocks (stream of instructions)

• Similar programming model

All instrumentation happens on GRIL

• Bi-directionally translated to and from backend languages

%1229 = BasicBlock

%1231 = addresschain Constant* %407 [uint32 0, int32 0, uint32 %2006]

%1232 = load int32* Constant %1231

%1233 = bitand int32 %1232 int32 1

%1234 = notequal int32 %1233 uint32 0

branchconditional bool %1234 label %1235 label %1248, merge %1248

%1235 = BasicBlock

%1236 = addresschain Constant* %49 [uint32 0, int32 10]

%1237 = load float* Constant %1236

15 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Custom parser and compiler

• DXIL, modified LLVM

• SPIRV, standardized format

GRILBackend IL DriverBackend IL

Single layer translation

• No intermediate representations from binary to GRIL

• Highly performant

16 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Feature parity with backend languages is not the

goal

• Too much work

• Expose a sub-set of each language

Behaviour of unexposed constructs maintained

• Instructions, constants, operands, etc.

• Reshape must not introduce side effects

Trivial differences in instructions abstracted away

• Difference in address spaces

• Specialized instruction operands

• Etc.

17 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Non-trivial instructions may use “symbolic” representations

• Additional non-semantic instructions to represent behaviour

• DXIL descriptor “handle” creation has no equivalent instruction in SPIRV

• Emulate SPIRV model with symbolic instructions

• Scalarization/vectorized representations

• Structured/unstructed control flow

// Symbolic, result has no semantic relevance

%38 = addresschain Buffer<uint32>* %3 [uint32 0, uint32 25]

// Compiles to createHandleFromBinding,

%39 = load Buffer<uint32>* %38

@dx.op.createHandleFromBinding(i32 217, %dx.types.ResBind { … }, i32 25, i1 false)DXIL

GRIL

Language paradigm differences need to be addressed Infer when we can, expose when we cannot

18 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

SPIRV is a vectorized representation

DXIL is a scalarized representation

GRIL follows a vectorized form

More work to scalarize SPIRV than to scalarize

(instrumented) GRIL

• DXIL scalarization inferred in the backend

float a[4] = ...;

float b[4] = ...;

a[0] += b[0];

a[1] += b[1];

a[2] += b[2];

a[3] += b[3];

float4 a = ...;

float4 b = ...;

a += b;

• Applies to any vectorized operation (binary, unary, etc.)

19 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Structured control flow puts a strict set of requirements on branching

• SPIRV is fully structured

• DXIL is unstructured (e.g., goto)

Inferring structured control flow is difficult, and dangerous

• Inclusively exposed in the intermediate language

• Backends may rewrite shaders for relaxed control flow

pre.BranchConditional(

pre.Equal(terminationID, pre.UInt32(1u)),

terminationBlock,

selectionMergeBlock,

 // SPIRV Selection Merge Construct

IL::ControlFlow::Selection(selectionMergeBlock)

);

• Features written with structured control-flow in mind

• Backends may discard information

20 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Features may rely on structured control flow constructs

• Such as Loop manipulation

What is a loop really?

• It’s a for statement! A while statement! In source code 

• What about in ILs? A set of blocks branching to each other

• Headers represent the entry point

• Back edges represent the cyclical branching

Backend ILs may not preserve this information (DXIL)

• Metadata stripped out

• Requires reconstruction

Reshape provides tooling to reconstruct such constructs

• Lots of literature on this!

A

B

C

A -> B

B -> A

B -> C

Back Edge

Header

Exit

21 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INTERMEDIATE LANGUAGES

Numerous additional differences

• Instruction sets

• Binding models

• Type representation

• Constant representation

• Addressing mechanisms

• Metadata representation

• And so forth!

Not all that fun to talk about

Given compliance, translation is seamless

22 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

BUILDING BLOCKS • Instrumentation is half the battle

• Features never interact with the APIs

23 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

BUILDING BLOCKS

GPU Reshape is a collection of building blocks Standardized functionality

• GRIL manipulation

• Instruction emitters

• Basic block splitting

• Analysis passes

• Dominator/loop trees

• Conditional constant propagation

API abstractions

• Data streaming and synchronization

• Resource management

• Descriptor management

Some more interesting than others

24 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

BUILDING BLOCKS

Validation data streaming

• Something bad happened, stream back the details

• Backends handle state management and synchronization

Streaming data from GRIL is a one-liner

• Full interoperability with GPU, CPU, and networking friendly

• No post processing needed, send straight to the UI for presentation

• Binding code generated from schema files

• GRIL

• C++

• C#

// Export the message

ResourceRaceConditionMessage::ShaderExport msg;

msg.SGUID = oob.UInt32(sguid);

msg.LUID = eventDataID;

oob.Export(exportID, msg); // Send it!

25 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

BUILDING BLOCKS

IL::ResourceTokenEmitter token(pre,

resourceHandle);

// Get token details

IL::ID PUID = token.GetPUID();

IL::ID SRB = token.GetSRB();

Descriptor management

• One of the biggest differences between APIs

• Features mostly want to discern handles with ids and metadata

Abstracted as Resource Tokens

• Physical Unique ID

• Resource Type (Texture, Buffer, CBuffer, Sampler)

• Sub-resource Base (Slices, Mips, Etc.)

• Single (register) vectorized instruction with a couple scalarized

Exposed in GRIL as a one-liner

26 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

BUILDING BLOCKS

void SRBMaskingShaderProgram::Inject(IL::Program &program) {

... omitted few setup lines

IL::Emitter<> emitter(program, *basicBlock, basicBlock->GetTerminator());

// Get current mask

IL::ID srbMask = emitter.Extract(emitter.LoadBuffer(bufferID, puidEventDataID), 0u);

// Bit-Or with desired mask

IL::ID bufferID = emitter.Load(initializationMaskBufferDataID);

emitter.StoreBuffer(bufferID, puidEventDataID, emitter.BitOr(srbMask, maskEventDataID));

}

Feature programs

• Shaders written entirely in GRIL

• Translated to backend language

Features can manipulate state independent of shader operations

• Same programming model as instrumentation

• Minimal work to support it

27 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

BUILDING BLOCKS

CommandBuilder builder(context->buffer);

builder.SetShaderProgram(srbMaskingShaderProgramID);

builder.SetEventData(srbMaskingShaderProgram->GetPUIDEventID(), static_cast<uint32_t>(puid));

builder.SetEventData(srbMaskingShaderProgram->GetMaskEventID(), ~0u);

builder.Dispatch(1, 1, 1);

scheduler->Schedule(Queue::Compute, buffer);

Command abstraction

• Inject arbitrary commands prior to user operations

• Supply instrumentation data to pending dispatch/draw

• “User called you with 13 vertices!”

• Push/root constants, descriptor data, etc.

• Execute feature programs

• Anything the feature needs

Submit commands independent of user operations

28 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

FEATURES • So now that we have everything

• How are we using it?

29 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

FEATURES

Most features follow the same doctrine Simple splitting allocates an ERROR block

• Find all potentially faulting instructions

PRE POSTERROR INSTR

PRE INSTR POST

• Validate operands prior to instruction

• Split the basic block according to needs

• Conditionally branched to if a fault was detected

• ERROR exports validation data

• POST acts as structured merge block

30 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

FEATURES

PRE POST

ERROR

INSTR GUARD

φ

Safe-Guarding splitting requires an additional

block

• Migrate dangerous instruction to guarded block

• Allocate dummy values in case of an error

POST block merges instruction result

𝜑(𝐸𝑅𝑅𝑂𝑅, 𝐺𝑈𝐴𝑅𝐷)

• 𝜑 selects a value based on the control flow predecessor

• 𝑣𝑎𝑙𝑢𝑒 = 𝑤𝑎𝑠𝐸𝑟𝑟𝑜𝑟 ? 𝑑𝑢𝑚𝑚𝑦𝑉𝑎𝑙𝑢𝑒 : 𝑖𝑛𝑠𝑡𝑟𝑉𝑎𝑙𝑢𝑒

31 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

RESOURCE BOUNDS

Validation of texel/element addressing in bounded resources

• [RW]Buffer / [RW]StructuredBuffer / [RW]Texture[…]

Most functionality supplied by hardware/ILs

• SPIRV OpImageQuerySize

• DXIL @dx.op.getDimensions

IL::ID cond = pre.Any(pre.GreaterThanEqual(index, pre.ResourceSize(instr->buffer)));

Let GRIL handle the heavyweight work

• Just assume vectorization

• Export data on errors

32 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

EXPORT STABILITY

IL::ID isInf = pre.Any(pre.IsInf(value));

IL::ID isNaN = pre.Any(pre.IsNaN(value));

Validation of floating-point stability on export operations

• Writes to unordered access views

• Writes to render targets

• Writes to inter-stage structures (e.g., vertex exports)

Very simple test

33 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DESCRIPTORS

Validation of descriptor validity

Resource Token abstraction provides all the data needed

• Fully guarded

• Reports exact descriptor present

• Undefined

• Out of bounds indexing

• Compile-time to runtime mismatch

• Missing table bindings

IL::ID runtimeType = IL::ResourceTokenEmitter(pre, resourceHandle).GetType();

IL::ID mismatch = pre.NotEqual(compileType, runtimeType);

• Feature validates the runtime descriptor type against instruction

Guarding of instruction using descriptor data

34 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INITIALIZATION

Validation of resource writes prior to reads
Initialization states tracked on a per texel/element

basis

• Large persistent buffer, tiled/sparse memory

• Each resource sub-allocates into it

• Manual texel addressing logic

• Limited by 32-bit addressing

• One bit per texel

• Atomically assigned

• Myriad of ways resources can be initialized

• Command buffers: Clears/Render Pass flags/Copies/…

• Shaders: UAV writes

35 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INITIALIZATION

Command KernelvkCmdCopyBuffer …

Initialization

Masks
source buffer

Shader OpImageRead OpImageWrite …

Mask initialization must occur in shader

• Reads validate mask against expected state

• Writes atomically assign mask bits

• Command buffer writes (e.g., copies) launch a separate kernel

for initialization logic

Transfer/copy queues are emulated

• Cannot execute compute kernels on native queues

• Transparent to the application

36 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CONCURRENCY

Validation of single-producer/multiple-consumer

relations

Command buffer induced race conditions not

implemented yet

Atomic guards on resource operations (writes,

loads, samples, etc.)

Not a hazard check

• Lock states tracked on a per texel/element basis

• Same mechanism as initialization tracking, one bit per

texel/element

• Lock bit allocation with an atomic or

• If the lock failed, (i.e, another thread acquired the bit) potential

race condition

• Granularity between events (draw, dispatch, etc.) and queues

INSTRLOCK UNLOCK

37 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WATERFALLING

Validation of waterfalling conditions

• Serialization of dynamic register indexing (S/VGPR)

• Architecturally specific (AMD)

• Performance implications

Local addressing is serialized if

• The data accessed cannot be deduced at compile time

• The indexing requested cannot be deduced at compile time

• The indexing requested is potentially divergent across a wave

Constant data can be moved to memory
(global_load_dword)

Constant indexing can (try to) inline the element

38 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WATERFALLING

Serialization commonly takes two forms

Set of conditional masking instructions for small

data types, not free

“Waterfall” loop for large data types and

descriptors, expensive

 s_mov_b32 exec_lo, s1

label_00B4:

 s_mov_b32 vcc_lo, exec_lo

 v_readfirstlane_b32 s2, v12

 s_mov_b32 m0, s2

 v_cmpx_eq_i32 exec_lo, s2, v12

 v_movrels_b32 v0, v0

 s_andn2_b32 exec_lo, vcc_lo, exec_lo

 s_cbranch_execnz label_00B4

 v_cndmask_b32 v2, v3, v2, vcc_lo

 v_cmp_eq_i32 vcc_lo, 0, v4

 v_cndmask_b32 v1, v2, v1, s0

 v_cndmask_b32 v0, v1, v0, vcc_lo

• Actual loop, reduces execution mask by unique value grouping

until done

39 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WATERFALLING

Validation is non-trivial 

Determine if either can be constant-folded

• Compilers resolve this through a chain of optimization passes

• SSA-Rewrite > Loop-Unrolling > CCP > …

Conditional Constant Propagation (CCP) with

Constant Folding

• D. Novillo, "A propagation engine for GCC", GCC Developers

Summit, pages 175–185, 2005

• Mark N. Wegman and F. Kenneth Zadeck, "Constant

propagation with conditional branches", ACM Trans. Program.

Lang. Syst. 13, 2 (April 1991), 181–210.

10.1145/103135.103136

• Conservative Load/Store Propagation

• Simulated Loop Propagation

Whole program divergence analysis

• Propagate divergence/uniformity

• Check if known uniform at compile time

• Some exceptions apply, but good estimate!

40 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WATERFALLING

Trivial to detect missing NonUniformResourceIndex

• No instrumentation when values are known uniform at compile time

Validate assumed-uniform values are the same within a wave

• Divergent indexing into descriptor arrays must be annotated

• Generates waterfall loop

• Otherwise assumes uniform indexing

• Missing annotations may result in visual artifacts, or worse

IL::ID anyRuntimeChainDivergent = pre.Not(pre.WaveAllEqual(chain.index));

41 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

LOOPS

Guarding of potentially infinite/TDR loops

• Monitors all active submissions

• Signals termination if elapsed time exceeds

threshold

CPU heartbeat thread

Queue Submission Submission Submission

Heartbeat Thread

Completed

𝑡 = 20𝑚𝑠
Executing

𝑡 = 750𝑚𝑠
Pending

𝑡 = 0𝑚𝑠

Signal termination

• Escape loops before potential driver timeouts

42 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

LOOPS

Loop headers atomically read signal each iteration

IL::ID signal = pre.AtomicAnd(pre.AddressOf(buffer, submissionID), pre.UInt32(1u));

• Unstructured programs reconstruct loop tree

• Branching to loop exits requires resolving 𝜑 merges

• 𝜑(𝐵0 …, 𝐵𝑛) → 𝜑(𝐵0 …,𝐵𝑛, 𝐵𝑆𝐼𝐺𝑁𝐴𝐿)

Unsolved problem is getting data to a running shader

• Makes architectural assumptions as of today

• If signaled for termination, escape the loop

B CHEADER EXIT

Terminated

SIGNAL

43 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

LOOPS

Optional iteration limit safe-guard

Faulting loops may have side effects affecting stability

Per thread/lane counter

• Each loop iteration increments counter

IL::ID value = emitter.Load(counterAddr);

emitter.Store(counterAddr, emitter.Add(value, constants.UInt(1u)->id));

• Terminate program if counter exceeds limit (user configurable)

terminated = emitter.GreaterThanEqual(counter, maxIterations);

• Termination signals all other loops in submission for early exit

emitter.AtomicOr(emitter.AddressOf(bufferID, terminationID), constants.UInt(1u)->id);

44 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

FEATURES

• Validation must never produce issues

• Resource Bounds validation expects valid descriptors

• Size queried on buffer/texture descriptors

• Invalid descriptors will fault the GPU

Features are not infallible Add feature dependencies

• Hierarchical instrumentation

• Resource Bounds / Initialization / Etc. → Descriptors

(Safe Guarded)

φ
PRE

DESCRIPTOR

ERROR

DESCRIPTOR

INSTR

GUARD

PRE

BOUNDS

ERROR

BOUNDS

POST

45 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

HOW TO USE • General use instructions

• Case study

46 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GPU RESHAPE – HOW TO USE

Let's look at GPU Reshape from an end-user's perspective: https://gpuopen.com/gpu-reshape/

https://gpuopen.com/gpu-reshape/

47 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

Let's look at GPU Reshape from an end-user's perspective

GPU RESHAPE – HOW TO USE

• New features and bug fixes are

on separate branches

• Once stable they get merged to

the development branch

• No pre-built packages

• Official releases are on the

main branch

• Pre-built packages ready to

download

Latest official

release

48 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

HOW TO BUILD

• Requirements:

• CMake, Python 3.x, .NET Framework 4.8 (.NET 5.0), .NET Core SDK

• Windows 11 SDK 10.0.22000.0

• Run VisualStudio2022.bat file (or VisualStudio2019.bat)

• Go into the newly created \cmake-build-vs2022 folder

• Open GPU-Reshape.sln solution

• Build Solution

• Build process pulls automatically all 3rd party dependencies

• Binaries will be in the \Bin folder (e.g., \Bin\MSVC\RelWithDebInfo\GPU-Reshape.exe)

• Launch executable

49 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GPU RESHAPE UI

50 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DISCOVERY

Discovery icon –

disabled (yellow)

51 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DISCOVERY

Click on ‘Start

discovery’

52 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DISCOVERY

Discovery icon –

enabled (green)

53 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DISCOVERY

• It tells GPU Reshape to track all newly launched

DirectX®12 and Vulkan® applications

• It hooks into the applications but just forwards the

function calls

• No instrumentation yet!

• Already running processes will be ignored

Launch GPU Reshape

Enable Discovery via “Start Discovery” button

What is “Discovery”?

You can also go to File → Settings to start

discovery

54 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DISCOVERY

Once discovery is enabled, we still need to establish a workspace with your application

Or

55 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WORKSPACE CONNECTION

Launch your game as you would normally do (e.g.,

via Steam, out of Visual Studio, …)

It will show up in the ‘Create Workspace

Connection’ window

Double-click or select + connect to create a

workspace with your application

56 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WORKSPACES

57 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GLOBAL HOOK

• When starting Discovery, there is also the option to enable “Global Discovery”, also called global hook

• Clicking here will install GPU Reshape services

• GPU Reshape services are added to the (OS) startup programs

• The service starts GPU Reshape Discovery on PC boot

• Disabling global discovery will uninstall the services again

58 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WHY DO I WANT THE GLOBAL HOOK?

• An artist works on a new effect

• Suddenly, artefacts appear on the screen

• You can remotely connect, create a workspace with

GPU Reshape and instrument

• No need to relaunch the application

→ Useful if the artefacts are difficult to reproduce

It ensures GPU Reshape always tracks your

applications

You can create a workspace whenever you want

Example scenario:

59 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

LAUNCH APPLICATION

You can also launch applications directly via GPU Reshape

• Safe guarding

• Detailed reporting

• Synchronous recording

Provides additional options for your workspace

Initialization feature requires Synchronous recording

to work correctly

60 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GLOBAL INSTRUMENTATION

61 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GLOBAL INSTRUMENTATION

62 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

GLOBAL INSTRUMENTATION

• start instrumentation in the main menu

• 251 shaders and 123 pipelines get instrumented

• Load into a level

• 400 shaders and 261 pipelines get instrumented

Instruments all shaders and pipelines in your

application

Affects already existing shaders and pipelines,

but also new ones

Example:

63 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

PER SHADER INSTRUMENTATION

64 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

PER SHADER

65 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

PER PIPELINE

Instrument individual pipelines

Filter for graphics or compute pipelines and instrument

• type:graphics

• type:compute

Switch between shaders

and pipelines

66 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INSTRUMENTATION FAILURE

Sometimes instrumentation fails

DXBC is not natively supported

The log outputs further information

67 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

SETTINGS

• File → Settings → Applications

• Click on the plus sign

• Double click on the text in the
field box to enter your
application name

• A substring of the application name is
sufficient!

68 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

SETTINGS

Symbol Paths

• Add a path to your symbols if not

embedded

Enable IL Conversion

• Uses dxilconv.dll to convert DXBC to DXIL

• Instrumentation will happen on converted DXIL code

Conversion

sometimes fails

and leads to a

crash within

dxilconv.dll –

GPU Reshape

cannot do

anything in this

case

69 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INSTRUMENTATION DETAILS

Double

Click on

message

70 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INSTRUMENTATION DETAILS

Click on

message

71 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

INSTRUMENTATION DETAILS

72 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CASE STUDY: OUT-OF-BOUNDS DESCRIPTOR INDEXING

Application crashes on AMD RDNA 2 architecture, but runs fine on AMD RDNA 3

Idea: run app on AMD RDNA 3 architecture and see if GRS reports something

Detects out-of-bounds

descriptor indexing and

points to the offending

line in the shader code

73 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE

Features are separate modules

You can write your own feature! → Let’s have a brief look into how

The example custom feature:

For more information on this topic: https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

• We all know by now that mesh shaders are great

• 3 talks about mesh shaders at this conference

• And yes, mesh shader support is coming to GPU Reshape!

• On AMD RDNA architecture, we recommend that in a mesh shader thread i exports vertex i and primitive i

• Otherwise the compiler might need to use groupshared memory to swizzle the indices

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Thread

Vertex

https://gpuopen.com/learn/mesh_shaders/mesh_shaders-index/

74 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE

Idea: Write a feature that validates if the vertex and primitive export indices are equal the thread index

[NumThreads(128, 1, 1)]

[OutputTopology("triangle")]

void main(

 uint threadIndex : SV_GroupIndex,

 out indices uint3 tris[126],

out vertices VertexOut verts[64]

)

{

 uint exportIndex = 0;

 …

 verts[exportIndex] = GetVertex(exportIndex);

 tris[exportIndex] = GetPrimitive(exportIndex);

}

Our feature should validate that

(exportIndex == threadIndex) is true

75 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE

The easiest way to start is to copy+paste an existing feature and rename

Rename it to ExportIndices

A feature consists of a backend (C++ project) and a frontend (C# project)

Since we want to check export indices, it makes sense to copy+paste the ExportStability feature

• ExportStability feature is also one of the least complex features → great starting point

76 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - BACKEND

Feature.cpp

Strategy: Catch each vertex and primitive export and inject our validation code

Inject function

• Goes through the GRIL code of our shader line by line via VisitUserInstructions

• Can inject custom GRIL code via IL::Emitter<>

77 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

Strategy: Catch each vertex and primitive export and inject our validation codeStrategy: Catch each vertex and primitive export and inject our validation code

CUSTOM FEATURE - BACKEND

Feature.cpp

Inject function

• Goes through the GRIL code of our shader line by line via VisitUserInstructions

• Can inject custom GRIL code via IL::Emitter<>

Since everything happens on the GRIL level, we need to know the HLSL – GRIL mapping of the vertex and primitive exports

• verts[exportIndex] = GetVertex(exportIndex);

• tris[exportIndex] = GetPrimitive(exportIndex);

Two possible paths:

• HLSL → DXIL → GRIL

• HLSL → SPIRV → GRIL

In this presentation, we only look at the DXIL path

78 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

HLSL → DXIL → GRIL

• verts[exportIndex] = GetVertex(exportIndex);

• Vertex exports in mesh shaders translate to the DXIL operation dx.op.storeVertexOutput

• tris[exportIndex] = GetPrimitive(exportIndex);

• And likewise, primitive exports translate to dx.op.emitIndices

We do have a mapping from DXILOpcodes::StoreVertexOutput to IL::OpCode::StoreVertexOutput

Sadly, there is no mapping for EmitIndices. We need to add one ourselves!

We need to check if there is an existing mapping from these DXIL operations to GRIL

• DXILPhysicalBlockFunction::TryParseIntrinsic

• Is there a switch for

• DXILOpcodes::StoreVertexOutput

• DXILOpcodes::EmitIndices

79 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DX.OP.EMITINDICES

• When adding a new mapping, the easiest is if there is an already existing similar instruction

• Then we can just copy+paste

• Important! Make sure to search+copy+paste in all files of the solutions

• For EmitIndices, we follow the logic of StoreVertexOutput.

See also: https://github.com/microsoft/DirectXShaderCompiler/blob/main/docs/DXIL.rst

When inspecting the DXIL instructions, we can see that both instructions store the export index directly!
/*

 * DXIL Specification

 * declare void @dx.op.storeVertexOutput.f32(

 * i32, ; opcode

 * i32, ; output ID

 * i32, ; row (relative to start row of output ID)

 * i8, ; column (relative to start column of output ID), constant in

[0,3]

 * float, ; value to store

 * i32) ; vertex ID

 */

https://github.com/microsoft/DirectXShaderCompiler/blob/main/docs/DXIL.rst

80 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - BACKEND

Feature.cpp

Strategy: Catch each vertex and primitive export and inject our validation code

Inject function

• Goes through the GRIL code of our shader line by line via VisitUserInstructions

• Can inject custom GRIL code via IL::Emitter<>

IL::VisitUserInstructions(program, [&](IL::VisitContext& context, IL::BasicBlock::Iterator it)

-> IL::BasicBlock::Iterator{

 // Instruction of interest?

 IL::ID exportIndex;

 switch (it->opCode) {

 default: return it;

 case IL::OpCode::StoreVertexOutput:

 exportIndex = it->As<IL::StoreVertexOutputInstruction>()->vertexIndex;

 break;

 case IL::OpCode::EmitIndices:

 exportIndex = it->As<IL::EmitIndicesInstruction>()->primitiveIndex;

 break;

 }

We extract the

vertexIndex and

primitiveIndex

information from

the instructions

81 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - BACKEND

Feature.cpp

Strategy: Catch each vertex and primitive export and inject our validation code

Inject function

• Goes through the GRIL code of our shader line by line via VisitUserInstructions

• Can inject custom GRIL code via IL::Emitter<>

This is done via Emitters → they work on the GRIL level

//

// ┌─────┐ ┌─────────────┬──────┐

// │ │ OK │ │ │

// │ Pre ├───────────────────┤ Instruction │ Post │

// │ │ │ [RESUME] │ │

// └──┬──┘ └──────┬──────┴──────┘

// │ ┌────────────┐ │

// INV │ │ │ │

// └────┤ noThreadID ├───────────┘

// │ │

// └────────────┘

GRIL code that emits a message to the frontend

→ Informs the user about the validation failure

e.g., IL::OpCode::StoreVertexOutput

Our GRIL validation code

82 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - BACKEND

• IL::Emitter<> pre(program,

context.basicBlock);

• Use Emitter pre to write in GRIL the
following conditional check:

exportIndex != threadIndex

• We need:

• exportIndex

• threadIndex

• !=

• We already have exportIndex from the
export instruction that we caught during
VisitUserInstructions

83 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - BACKEND

How do we get threadIndex?

First, we check what Emitter provides already. If we are lucky, there is an existing function that emits the threadIndex
(uint threadIndex : SV_GroupIndex)

There is IL::Emitter::KernelValue

• In KernelValue.h, there is a mapping for DispatchThreadID

• Not exactly what we want, but close

• Let’s add a new mapping in KernelValue for FlattenedThreadIdInGroup

• Again, do a search+copy+paste

84 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - BACKEND

How do we get != ?

Check Emitter again

Luckily, Emitter has that already! Let’s write our GRIL code:

This is everything for our pre block

Next step: a block for emitting the failure message to the frontend

// Failure condition: export index is not thread ID

IL::ID isNotThreadIndex = pre.NotEqual(exportIndex,

pre.KernelValue(Backend::IL::KernelValue::FlattenedThreadIdInGroup));

85 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE - FRONTEND

We need a new Emitter, that sets up the message

Just re-use what ExportStability feature has done, but use an own ExportMessage

Modify ExportIndices.xml in Schemas folder if you need to export variables to the frontend (e.g., isNan for

the Export Stability feature)

You need at least a padding, so you can’t just remove all entries

Go to the Frontend

ExportIndicesService.cs contains the error message displayed to the user

Modify it as you please, (e.g., "Export index is not the thread id")

86 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

CUSTOM FEATURE

87 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WHAT ABOUT

TOMORROW?

• Instrumentation is here to stay

• Upcoming release

• Road map for future features

• Debugging

• Profiling

88 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WHAT ABOUT TOMORROW?

Upcoming Release

Mesh shader support Waterfall feature

• Address scalarization

• Missing NonUniformResourceIndex validation

• Pending Raytracing support

• Inline Raytracing already supported

Per-texel tracking Vast set of general improvements and bug fixes!

• Initialization validation

• Concurrency validation

89 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WHAT ABOUT TOMORROW?

Full fledged in-shader debugging

See exactly what shaders see with “live” instruction breakpoints

(Not a real screenshot)

• Realtime, as it is happening

• Visualize values however you please (e.g., 2D

texture for post processing debugging)

Make shader assertions common place

assert(roughness > kGGXMinRoughness, "Invalid roughness encoded");

• Staple of the CPU world

• Requires source integration/annotation

90 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WHAT ABOUT TOMORROW?

In-shader profiling

Inspect branch timings in real-time, where is the shader spending its time?

• Some challenges with (driver) pipeline reordering

Inspect branch coherence and
coverage in real-time

• Turn the camera, another branch lit up!

• Diagnose highly divergent paths

(Not a real screenshot)

91 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

WHAT ABOUT TOMORROW?

I don’t see instrumentation as
something niche

• Has serious potential to become part of
everyday development

• Offers a unique way to unbox the GPU

A long road ahead

• Numerous features planned

• Ongoing stabilization efforts

A fully open-source collaboration

• For issues, proposals, and general
discussion, please reach out!

• https://github.com/GPUOpen-Tools/GPU-
Reshape

Genuine thanks

• Avalanche Studios Group

• AMD

• Striking Distance Studios

QUESTIONS?

93 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

DISCLAIMER AND ATTRIBUTIONS

GENERAL DISCLAIMER

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been

taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no

obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with

respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied

warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware,

software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted

by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement

between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon and combinations thereof are trademarks of

Advanced Micro Devices, Inc. DirectX is a registered trademark of Microsoft Corporation in the US and other jurisdictions. Linux is a

registered trademark of Linus Torvalds. OpenCL is a trademark of Apple, Inc. used by permission from The Khronos Group. LLVM is a

trademark of LLVM Foundation. SPIR, SPIR-V and the SPIR logo are trademarks of the Khronos Group Inc. Vulkan and the Vulkan logo are

registered trademarks of the Khronos Group Inc. Windows is a registered trademark of Microsoft Corporation in the US and other

jurisdictions. Other product names used in this publication are for identification purposes only and may be trademarks of their respective

companies

Follow us on X
https://twitter.com/GPUOpen

Follow us on Mastodon
https://mastodon.gamedev.place/@gpuopen

Visit our website
https://gpuopen.com

Follow us on Zhihu
https://www.zhihu.com/org/gpuopen-7

https://twitter.com/GPUOpen
https://mastodon.gamedev.place/@gpuopen
https://gpuopen.com/
https://www.zhihu.com/org/gpuopen-7

96 | AMD PUBLIC | DIGITAL DRAGONS 2024 | GPU RESHAPE | MAY 2024

THANK YOU
FOR YOUR ATTENTION

	Slide 1
	Slide 2: THE PROBLEM
	Slide 3: THE PROBLEM
	Slide 4: THE IDEA
	Slide 5
	Slide 6: THE IDEA
	Slide 7: THE IDEA
	Slide 8: THE IDEA
	Slide 9: THE IDEA
	Slide 10: THE IDEA
	Slide 11: THE IDEA
	Slide 12: INTERMEDIATE LANGUAGES / GRIL
	Slide 13: INTERMEDIATE LANGUAGES
	Slide 14: INTERMEDIATE LANGUAGES
	Slide 15: INTERMEDIATE LANGUAGES
	Slide 16: INTERMEDIATE LANGUAGES
	Slide 17: INTERMEDIATE LANGUAGES
	Slide 18: INTERMEDIATE LANGUAGES
	Slide 19: INTERMEDIATE LANGUAGES
	Slide 20: INTERMEDIATE LANGUAGES
	Slide 21: INTERMEDIATE LANGUAGES
	Slide 22: BUILDING BLOCKS
	Slide 23: BUILDING BLOCKS
	Slide 24: BUILDING BLOCKS
	Slide 25: BUILDING BLOCKS
	Slide 26: BUILDING BLOCKS
	Slide 27: BUILDING BLOCKS
	Slide 28: FEATURES
	Slide 29: FEATURES
	Slide 30: FEATURES
	Slide 31: RESOURCE BOUNDS
	Slide 32: EXPORT STABILITY
	Slide 33: DESCRIPTORS
	Slide 34: INITIALIZATION
	Slide 35: INITIALIZATION
	Slide 36: CONCURRENCY
	Slide 37: WATERFALLING
	Slide 38: WATERFALLING
	Slide 39: WATERFALLING
	Slide 40: WATERFALLING
	Slide 41: LOOPS
	Slide 42: LOOPS
	Slide 43: LOOPS
	Slide 44: FEATURES
	Slide 45: HOW TO USE
	Slide 46: GPU RESHAPE – HOW TO USE
	Slide 47: GPU RESHAPE – HOW TO USE
	Slide 48: HOW TO BUILD
	Slide 49: GPU RESHAPE UI
	Slide 50: DISCOVERY
	Slide 51: DISCOVERY
	Slide 52: DISCOVERY
	Slide 53: DISCOVERY
	Slide 54: DISCOVERY
	Slide 55: WORKSPACE CONNECTION
	Slide 56: WORKSPACES
	Slide 57: GLOBAL HOOK
	Slide 58: WHY DO I WANT THE GLOBAL HOOK?
	Slide 59: LAUNCH APPLICATION
	Slide 60: GLOBAL INSTRUMENTATION
	Slide 61: GLOBAL INSTRUMENTATION
	Slide 62: GLOBAL INSTRUMENTATION
	Slide 63: PER SHADER INSTRUMENTATION
	Slide 64: PER SHADER
	Slide 65: PER PIPELINE
	Slide 66: INSTRUMENTATION FAILURE
	Slide 67: SETTINGS
	Slide 68: SETTINGS
	Slide 69: INSTRUMENTATION DETAILS
	Slide 70: INSTRUMENTATION DETAILS
	Slide 71: INSTRUMENTATION DETAILS
	Slide 72: CASE STUDY: OUT-OF-BOUNDS DESCRIPTOR INDEXING
	Slide 73: CUSTOM FEATURE
	Slide 74: CUSTOM FEATURE
	Slide 75: CUSTOM FEATURE
	Slide 76: CUSTOM FEATURE - BACKEND
	Slide 77: CUSTOM FEATURE - BACKEND
	Slide 78: HLSL  DXIL  GRIL
	Slide 79: dx.op.emitindices
	Slide 80: CUSTOM FEATURE - BACKEND
	Slide 81: CUSTOM FEATURE - BACKEND
	Slide 82: CUSTOM FEATURE - BACKEND
	Slide 83: CUSTOM FEATURE - BACKEND
	Slide 84: CUSTOM FEATURE - BACKEND
	Slide 85: CUSTOM FEATURE - FRONTEND
	Slide 86: CUSTOM FEATURE
	Slide 87: WHAT ABOUT TOMORROW?
	Slide 88: WHAT ABOUT TOMORROW?
	Slide 89: WHAT ABOUT TOMORROW?
	Slide 90: WHAT ABOUT TOMORROW?
	Slide 91: WHAT ABOUT TOMORROW?
	Slide 92: QUESTIONS?
	Slide 93: DISCLAIMER AND ATTRIBUTIONS
	Slide 94
	Slide 95
	Slide 96

