
D3D12 & Vulkan Done Right

Gareth Thomas
Developer Technology Engineer, AMD



Agenda

●Barriers

●Copy Queue

●Resources

●Pipeline Shaders



What is *not* in this talk…

●Async compute
●Check out Async Compute: Deep Dive @ 13:20

●New features
●Wave level programming: Stay in your seat! 



Barriers

●Still the #1 cause of poor performance over higher level APIs

●But barriers are hard to get right!



Barrier Issues
●Missing barriers

●Corruption (Maybe)

●Too many barriers
●Not batched

●Not transitioning to the right state first time

●Incorrect barriers
●Debug layers and GPU validation layers are 
your friends!

●Catching 99% of issues

● …and they are improving



Barrier Solutions
●Manual placement of barriers

●Works well for simple engines

●But gets complicated quickly

●Auto generation of barriers “behind the scenes”
●Per resource tracking

●Difficult to get right

●Transition “on demand” can lead to lack of batching and often barriers in sub optimal places

●Simulate render passes on D3D12
●Better portability



Barrier Solutions
●Frame graph

●Analyse each pass to work out dependencies

●Can then determine scope of each resource for memory aliasing

●Case studies:
●Tiago’s talk today

●Yuriy’s talk on Thursday

If you aren’t looking ahead, you probably aren’t making the 
most of D3D12/Vulkan



Copy Queue

●Dedicated hardware designed specifically for copying over PCIE
●Operates independently to the other queues

The rule is simple:

If copying from system memory to local, use the copy queue!



● Ideal for streaming

● mGPU p2p transfers

● Make sure there is enough work on the GPU to ensure 
you don’t wait on the copy queue
● Start the copy early as possible, ideally several frames, before it is 

required in local memory

Copy Queue



●Don’t use the copy queue:

● For local to local copies*
● Use the graphics or compute queues

● Copy queue runs at PCIE speed

(*However, you can use the copy queue for “background” local to local operations like memory defragging)

Copy Queue



Memory Defragging

● Use the copy queue to move say 1% bw/frame
●Leaves the graphics queue to continue rendering

●Do this on frames where copy queue is not busy streaming

~10MB

Frame n

Frame n+1



Pipeline Shader Management

● Try to minimize combinatorial explosions

● Prune unused permutations early

● Consider Ubershaders where appropriate

● Root constants in D3D12

● Specialization constants in Vulkan

● If building PSOs on the fly, build them well enough in advance



●You are in full control of resource management
●You know how much memory is physically on the GPU

●You know how much memory your game requires

●Up to you to ensure local memory is not oversubscribed

Resource Management



Take action if you do end up oversubscribing

● Oversubscription can cause sharp fluctuations in performance

● Causes:
●Other memory intensive apps gaining focus, browsers etc..

●User changing resolution/quality settings

● Consider capping settings on 1GB, 2GB etc. hardware



How much memory is available?

● IDXGIAdapter3::QueryVideoMemoryInfo()

● Can lose budget dynamically

Poll each frame or register for callback



Render 
Target

What can you do to limit local memory?
● Move non performance-critical assets out of local 

memory
●Into overflow heaps in system memory

● Drop top mip levels

Local Memory System Memory

Heap Heap Heap Overflow Heap

Render 
Target

Render 
Target

Texture Texture Texture Buffer Buffer Buffer Buffer



Moving assets out of local memory

● Free up local copy

● Understand the access pattern of your resources before 
moving to system memory

●Read once 

●Predictable access pattern with high locality: good



Dropping top mips

Saves ~70% memory
● Little visual difference if done dogmatically

● No visual difference if done intelligently

● Easier to implement when textures are 
placed resources in a heap



Try testing with two 
instances of your title



MakeResident

● MakeResident can fail!
●Must be handled

● MakeResident is a synchronous call
●Does not return until every resource is ready

●Batch it up and run it asynchronously

●Small batches are inefficient -> lots of small paging operations

● Evict is less costly
●Cost likely to be deferred to next MakeResident call



Conclusion

●Embrace the new concepts as first class citizens
●Multithreading

●Multiple queues

●Render passes + frame graphs

●Explicit resource management

●If you aren’t looking ahead, you probably aren’t making the 
most of D3D12 and Vulkan

●Use your high level view to orchestrate your queues and barriers



Questions


