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D3D12 – What‘s new?

● DXIL

● DXGI  & UWP 
updates

● Root Signature 1.1

● Shader cache

● GPU validation

● PIX



D3D12 / DXIL

● DXBC gets replaced by DXIL

● Language based on LLVM IR

● New open-source frontend based on 
Clang (dxc)



D3D12 / DXIL

float4 PSMain(PSInput input) : SV_TARGET
{

return input.color;
}

define void @PSMain() {
%1 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 0, i32 undef)

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
%2 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 1, i32 undef)  

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
%3 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 2, i32 undef)  

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
%4 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 3, i32 undef)  

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 0, float %1)

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 1, float %2)

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 2, float %3)  

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 3, float %4)  

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
ret void

}



D3D12 / Updated DXGI

● First-class support for variable refresh 
rate displays - *-Sync

● HDR support



D3D12 / UWP

● Lots of the initial UWP 
limitations have been lifted

● Capabilities now on par 
with normal Win32



D3D12 / Root Signature 1.1

● Allows you to tell the driver that 
descriptors won’t change

● Can allow some optimizations in the 
future

● Nice to have, but nothing critical



D3D12 / Shader cache

● The shader cache was not sufficient in 
D3D12 RTM

● Big improvements in the “Anniversary” 
edition – now usable

● Note: Drivers may have yet another 
shader cache!



D3D12 / GPU validation

● Checks descriptors at draw time

● Discovers various hard-to-find bugs 
(stale descriptors, etc.)

● Rather slow - run over night for 
regression testing



D3D12 / PIX



D3D12 / PIX

● Alternative to RenderDoc

● More than just a debugger

● Profiling

● Easy access to shader ISA



Vulkan – What’s new?

● KHR_maintenance1

● EXT_shader_subgroup

● KHR_get_physical_device_properties2

● KHR_shader_draw_parameters

● And many (>20) more …



Vulkan / Usability

● KHR_maintenance1

● Window origin fix 
(AMD_negative_viewport_height)

● Various other small fixes

Phew



Vulkan / Usability

● VK_EXT_debug_marker

● Markup scene just like 
in D3D with 
annotations

● Supported by tools!



Vulkan / Porting

● VK_AMD_draw_indirect_count

● Multi-draw-indirect with count from buffer

● Feature-parity with OpenGL

● KHR_shader_draw_parameters

● gl_drawID, gl_BaseVertex, gl_BaseInstance

● Again, feature parity



Vulkan / Porting

● glslang accepts HLSL now

● Already usable for many 
real-world shaders!



Vulkan extensions / Performance

● VK_AMD_rasterization_order

● Relaxed rasterization order

● A stepping stone towards more declarative 
rendering



What’s new – D3D12 & Vulkan

● Wave-wide

● FP16



Vulkan & D3D12 / Wave-wide

● Wave-wide instructions are now core in 
both APIs

● Shader Model 6.0 for HLSL

● SPV_KHR_shader_ballot, 
EXT_shader_subgroup_* for SPIR-V

● Console-like programing everywhere!



Vulkan & D3D12 / Wave-wide

Compact wave-wide using a wave-wide 
prefix sum: Now in SM6 and SPIR-V!



Vulkan & D3D12 / Wave-wide

● Use the right atomics at the right level

Wavefront - Intrinsic

Threadgroup - Local memory

Dispatch - Global memory



Vulkan & D3D12 / Wave-wide

● Your data is wave-uniform but your 
shader compiler doesn‘t know it

● Express it now in SM6 and SPIR-V!

● readFirstLane

● WaveReadFirstLane



Vulkan & D3D12 / Wave-wide

● Another typical use:

● Iterate over light sources

● Tell compiler light index is uniform wave-wide

● Data goes into SGPR instead of VGPR

● Profit!



Vulkan & D3D12 / FP16

● Same benefits on PC as on console

● Reduced register count (and LDS usage!)

● Better performance

● Simplifies porting between console & 
mobile



Dawn of a new era

● Peak performance requires new 
concepts!



Command lists

● Separate recording from submission

● Much higher throughput!

Draw Draw Draw

Draw Draw Draw Draw

Command list

Queue

Command list



Engine evolution / Multithreading

● It‘s not just Ashes any more ☺

● Engines are getting ready for massive
multithreading



Engine evolution / Multithreading

● Here‘s Unity firing up all cores!



Engine evolution / Multithreading

● Plan for >10 threads

● Increase draw call count – high/ultra settings 
on new APIs only

● Or: Cut latency! Twitchy 144 fps games, 
anyone?



Graphics, compute, copy queues

● Schedule independent work on 
independent queues

● Fill up the whole GPU

Draw Draw Draw

Dispatch

Copy Copy

Graphics

Compute

Copy



Lessons learned / Copy queue

● Copy queue is low-latency, low-speed, but it’s separate 
hardware

● Copy queue is optimized for transfer over PCIe®, not for GPU local copies

● For PCIe®, it is the fastest way to transfer data

● Avoid waiting on copy queue from graphics/compute

● Ideal use of copy queue is streaming data over a few frames

● Some games still don’t use it …
● Multi-millisecond-savings are common

● If you go from CPU to GPU or back, the copy queue is the queue of choice!



Copy queue

Shadow maps

Shadow 
map 
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Texture data

Present G-Buffer



Lessons learned / Copy queue

● Use to it upload all your buffers 
(constants, index buffers, etc.)

● Use it to defragment memory

Buffer Buffer Buffer



Lessons learned / Async compute

● Most games right now

G-Buffer + Z-
Buffer

Shadow maps

SSAO, light tile 
classification

Shading
Post-

Processing



Lessons learned / Async compute

● Best performance & production proven!

G-Buffer + Z-
Buffer
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Lessons learned / Barriers

● Barriers are hard

● Most issues come from retrofitting
engines

● New engine designs handle them much 
more robustly



Lessons Learned / Barriers

● Missing barriers

● Validation layer helps

● No longer a big issue

● Missing batching

● The „base state“ problem



The “base state” problem

Render 
target
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Engine evolution / Task graphs

G-Buffer fill

Shadow rendering

Shading Post 
process



Engine evolution / Task graphs

Shadow rendering

Shadow map

Shading

Shadow map
Read/Write transition



Engine evolution / Task graphs

Shading Post processShadow 
rendering

Shadow map Shadow map Tonemap targetPassthrough Alias



Engine evolution / Task graphs

Shadow rendering

Draw 0 Draw 1 Draw 2 Draw 3 Draw 4

Draw 0 Draw 3 Draw 1 Draw 4 Draw 2

Allow out-of-order 
execution



Engine evolution / Barriers

● Manual handling doesn‘t cut it any more

● Need higher level abstractions – render
graphs

● This is happening – check out the 
FrameGraph presentation from Frostbite!

● Native support in Vulkan since day 1



Engine evolution / Shaders

● Shader permutations are getting fewer

● Doom has only a couple hundred total

● More games are changing creation pipelines 
to prune variations earlier

● More high-level work (around compilers) 
is happening



Engine evolution / Shaders
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Engine evolution / Shaders

Shader Function library
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Skinning
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Engine design

● Engines moving towards more high-
level rendering

● APIs improve to make them easier to use

● Gamers benefit!



Open topics / Scalability

● Scalability is not solved at all yet

● Games support old and new APIs for all 
settings

● Mobile → desktop increasingly important

● New APIs only seems to be the path 
forward



A new approach to APIs

● Strong collaboration between ISVs, 
IHVs and standard bodies

● APIs evolved along with game engines

● Loads of changes since release to make 
your life easier!



Conclusion

● APIs continue to change

● What do you need?

● What would make your life simpler?

● Community collaboration is critical

● Especially for shader language changes

● It’s easy to contribute – give it a shot!
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