
D3D12 & Vulkan:
Lessons learned

Dr. Matthäus G. Chajdas
Developer Technology Engineer, AMD

D3D12 – What‘s new?

● DXIL

● DXGI & UWP
updates

● Root Signature 1.1

● Shader cache

● GPU validation

● PIX

D3D12 / DXIL

● DXBC gets replaced by DXIL

● Language based on LLVM IR

● New open-source frontend based on
Clang (dxc)

D3D12 / DXIL

float4 PSMain(PSInput input) : SV_TARGET
{

return input.color;
}

define void @PSMain() {
%1 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 0, i32 undef)

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
%2 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 1, i32 undef)

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
%3 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 2, i32 undef)

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
%4 = call float @dx.op.loadInput.f32(i32 4, i32 1, i32 0, i8 3, i32 undef)

; LoadInput(inputSigId,rowIndex,colIndex,gsVertexAxis)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 0, float %1)

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 1, float %2)

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 2, float %3)

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
call void @dx.op.storeOutput.f32(i32 5, i32 0, i32 0, i8 3, float %4)

; StoreOutput(outputtSigId,rowIndex,colIndex,value)
ret void

}

D3D12 / Updated DXGI

● First-class support for variable refresh
rate displays - *-Sync

● HDR support

D3D12 / UWP

● Lots of the initial UWP
limitations have been lifted

● Capabilities now on par
with normal Win32

D3D12 / Root Signature 1.1

● Allows you to tell the driver that
descriptors won’t change

● Can allow some optimizations in the
future

● Nice to have, but nothing critical

D3D12 / Shader cache

● The shader cache was not sufficient in
D3D12 RTM

● Big improvements in the “Anniversary”
edition – now usable

● Note: Drivers may have yet another
shader cache!

D3D12 / GPU validation

● Checks descriptors at draw time

● Discovers various hard-to-find bugs
(stale descriptors, etc.)

● Rather slow - run over night for
regression testing

D3D12 / PIX

D3D12 / PIX

● Alternative to RenderDoc

● More than just a debugger

● Profiling

● Easy access to shader ISA

Vulkan – What’s new?

● KHR_maintenance1

● EXT_shader_subgroup

● KHR_get_physical_device_properties2

● KHR_shader_draw_parameters

● And many (>20) more …

Vulkan / Usability

● KHR_maintenance1

● Window origin fix
(AMD_negative_viewport_height)

● Various other small fixes

Phew

Vulkan / Usability

● VK_EXT_debug_marker

● Markup scene just like
in D3D with
annotations

● Supported by tools!

Vulkan / Porting

● VK_AMD_draw_indirect_count

● Multi-draw-indirect with count from buffer

● Feature-parity with OpenGL

● KHR_shader_draw_parameters

● gl_drawID, gl_BaseVertex, gl_BaseInstance

● Again, feature parity

Vulkan / Porting

● glslang accepts HLSL now

● Already usable for many
real-world shaders!

Vulkan extensions / Performance

● VK_AMD_rasterization_order

● Relaxed rasterization order

● A stepping stone towards more declarative
rendering

What’s new – D3D12 & Vulkan

● Wave-wide

● FP16

Vulkan & D3D12 / Wave-wide

● Wave-wide instructions are now core in
both APIs

● Shader Model 6.0 for HLSL

● SPV_KHR_shader_ballot,
EXT_shader_subgroup_* for SPIR-V

● Console-like programing everywhere!

Vulkan & D3D12 / Wave-wide

Compact wave-wide using a wave-wide
prefix sum: Now in SM6 and SPIR-V!

Vulkan & D3D12 / Wave-wide

● Use the right atomics at the right level

Wavefront - Intrinsic

Threadgroup - Local memory

Dispatch - Global memory

Vulkan & D3D12 / Wave-wide

● Your data is wave-uniform but your
shader compiler doesn‘t know it

● Express it now in SM6 and SPIR-V!

● readFirstLane

● WaveReadFirstLane

Vulkan & D3D12 / Wave-wide

● Another typical use:

● Iterate over light sources

● Tell compiler light index is uniform wave-wide

● Data goes into SGPR instead of VGPR

● Profit!

Vulkan & D3D12 / FP16

● Same benefits on PC as on console

● Reduced register count (and LDS usage!)

● Better performance

● Simplifies porting between console &
mobile

Dawn of a new era

● Peak performance requires new
concepts!

Command lists

● Separate recording from submission

● Much higher throughput!

Draw Draw Draw

Draw Draw Draw Draw

Command list

Queue

Command list

Engine evolution / Multithreading

● It‘s not just Ashes any more ☺

● Engines are getting ready for massive
multithreading

Engine evolution / Multithreading

● Here‘s Unity firing up all cores!

Engine evolution / Multithreading

● Plan for >10 threads

● Increase draw call count – high/ultra settings
on new APIs only

● Or: Cut latency! Twitchy 144 fps games,
anyone?

Graphics, compute, copy queues

● Schedule independent work on
independent queues

● Fill up the whole GPU

Draw Draw Draw

Dispatch

Copy Copy

Graphics

Compute

Copy

Lessons learned / Copy queue

● Copy queue is low-latency, low-speed, but it’s separate
hardware

● Copy queue is optimized for transfer over PCIe®, not for GPU local copies

● For PCIe®, it is the fastest way to transfer data

● Avoid waiting on copy queue from graphics/compute

● Ideal use of copy queue is streaming data over a few frames

● Some games still don’t use it …
● Multi-millisecond-savings are common

● If you go from CPU to GPU or back, the copy queue is the queue of choice!

Copy queue

Shadow maps

Shadow
map

constants
Texture data

Present G-Buffer

Lessons learned / Copy queue

● Use to it upload all your buffers
(constants, index buffers, etc.)

● Use it to defragment memory

Buffer Buffer Buffer

Lessons learned / Async compute

● Most games right now

G-Buffer + Z-
Buffer

Shadow maps

SSAO, light tile
classification

Shading
Post-

Processing

Lessons learned / Async compute

● Best performance & production proven!

G-Buffer + Z-
Buffer

Shadow maps

SSAO, light tile
classification

Shading

Post-Processing

Lessons learned / Barriers

● Barriers are hard

● Most issues come from retrofitting
engines

● New engine designs handle them much
more robustly

Lessons Learned / Barriers

● Missing barriers

● Validation layer helps

● No longer a big issue

● Missing batching

● The „base state“ problem

The “base state” problem

Render
target

Render
target

Copy
Source

Shader
resource

Target
state

Base
state

Base
state

Copy

Target
state

Engine evolution / Task graphs

G-Buffer fill

Shadow rendering

Shading Post
process

Engine evolution / Task graphs

Shadow rendering

Shadow map

Shading

Shadow map
Read/Write transition

Engine evolution / Task graphs

Shading Post processShadow
rendering

Shadow map Shadow map Tonemap targetPassthrough Alias

Engine evolution / Task graphs

Shadow rendering

Draw 0 Draw 1 Draw 2 Draw 3 Draw 4

Draw 0 Draw 3 Draw 1 Draw 4 Draw 2

Allow out-of-order
execution

Engine evolution / Barriers

● Manual handling doesn‘t cut it any more

● Need higher level abstractions – render
graphs

● This is happening – check out the
FrameGraph presentation from Frostbite!

● Native support in Vulkan since day 1

Engine evolution / Shaders

● Shader permutations are getting fewer

● Doom has only a couple hundred total

● More games are changing creation pipelines
to prune variations earlier

● More high-level work (around compilers)
is happening

Engine evolution / Shaders

Shader

IBL

Skinning

Layers

FX

Shader

IBL

Skinning

Layers

FX

Shader

IBL

Skinning

Layers

FX

Shader

IBL

Skinning

Layers

FX

Specialize

Engine evolution / Shaders

Shader Function library

IBL

Skinning

Layers

FX

Shadows

BRDFs

Terrain

Fog

IBL

Terrain

Fog

Link

Engine design

● Engines moving towards more high-
level rendering

● APIs improve to make them easier to use

● Gamers benefit!

Open topics / Scalability

● Scalability is not solved at all yet

● Games support old and new APIs for all
settings

● Mobile → desktop increasingly important

● New APIs only seems to be the path
forward

A new approach to APIs

● Strong collaboration between ISVs,
IHVs and standard bodies

● APIs evolved along with game engines

● Loads of changes since release to make
your life easier!

Conclusion

● APIs continue to change

● What do you need?

● What would make your life simpler?

● Community collaboration is critical

● Especially for shader language changes

● It’s easy to contribute – give it a shot!

Disclaimer & Attribution

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and
typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product
and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between
differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise
correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the
content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR
ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE
OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced
Micro Devices, Inc. in the United States and/or other jurisdictions. PCIe is a registered trademark of PCI-SIG. Other names are for
informational purposes only and may be trademarks of their respective owners. Vulkan and the Vulkan logo are registered trademarks of
Khronos Group Inc.

