
Radeon ProRender and Radeon Rays

in a Gaming Rendering Workflow

Takahiro Harada, AMD

2017/3

Introduction

Radeon ProRender & Radeon Rays

Radeon Rays

Unity + Radeon Rays

Integration to real time applications

Radeon ProRender

Agenda

Introduction

Ray Tracing Solution from AMD

A GPU accelerated ray triangle intersection engine

For low level engine developers

OpenCL, Vulkan, C++ backends

Full open source

A GPU accelerated light transport simulator
Computes global illumination using Monte Carlo ray tracing

(path tracing)

Intersection, shading, lighting, sampling, all in

High level API

Set up a scene, call render()
Returns you a nice render

For high level engine developers

OpenCL, C++ backend

Open source planned

Not locking users to AMD platform

Trying to make it run as many platforms as possible

Using OpenCL 1.2, industry standard API

We implement at least

GPU optimized OpenCL code

CPU optimized C++ code

better control, optimization compared to relying on OpenCL to run on the CPU

Our solutions are competitive if compared on a CPU based solution

As OpenCL is dynamically loaded, OCL isn’t necessary

If it cannot find OCL, it’ll fall back to the CPU implementation

Most likely they run on your machine as they are

AMD’s Approach

Support multiple vendors, multiple OSes (Windows, Linux, MacOS)

No initial investment is necessary to use our solution

It does run on CPU too

If you have an AMD GPUs, it is better

Better performance

Better experience

We do full testing on AMD GPUs

Non AMD platforms, it depends on the vendor’s OpenCL implementation

We do crash test on some vendor’s GPUs

We disable some vendor’s GPUs unfortunately because of their OpenCL bug (compiler, runtime)

AMD’s Approach

How Radeon Rays, Radeon ProRender are used in game development process

This Talk

Radeon Rays

Can be used as a building block of a renderer

Global illumination renderer

Sound renderer (True Audio)

AI

Comes with a reference renderer

It could be used for lightmap baking and light probe calculation

Uses ray casting

There are a few game companies integrating Radeon Rays

We integrated Radeon Rays into Unity

Radeon Rays

https://github.com/GPUOpen-LibrariesAndSDKs/RadeonRays_SDK/

Simple C++ API

// Find closest intersection

void QueryIntersection(Buffer const* rays, int numrays, Buffer* hitinfos,

Event const* waitevent, Event** event) const;

// Find any intersection.

void QueryOcclusion(Buffer const* rays, int numrays, Buffer* hitresults,

Event const* waitevent, Event** event) const;

Passing an array of rays and number of rays

It fills hit results

Using Radeon Rays

Embree is popular, but using Radeon Rays gives you more

With Radeon Rays

It uses Embree for the CPU backend => Same performance is guaranteed

You can turn on the GPU backend => Performance improvements when you have a GPU

Using Radeon Rays

Unity + Radeon Rays

Lightmap is a solution for global illumination

Global Illumination is

Essential to get realism

Computationally expensive

Real time global illumination is still a research topic

No obvious solution using rasterization yet

Global Illumination

Monte Carlo ray tracing is a way to compute global illumination

Too computationally intensive for game runtime

GPU accelerated ray tracing is a hot topic these days

Still not ready for real time game

Potential in content creation (Radeon ProRender)

Lightmap is solution for real-time global illumination

Global Illumination

Lightmap

Many games today uses lightmaps

Lightmap

Texture storing global illumination

Although there are some limitations, it’s widely used

Precompute global illumination

Ray traced global illumination

Saved in texture “lightmap”

At runtime, simply put it as a texture, fetch it

The precomputation takes forever for a complex game scene

Hours to days

Radeon Rays can help you from this pain

A fast lightmap baking solution

Runs on GPU

10 – 20x performance improvement

Before 1 day baking => 1 hour with Radeon Rays

Faster solution => Faster iteration => Better content creation

Lightmap Baker using Radeon Rays

Collaboration of Unity & AMD

Implemented in a branch of Unity 5.X

Based on the existing CPU lightmap baker

Using infrastructure for lightmap baking in Unity

The logic needs to be changed to fill the GPU better

Before: for each lightmap, for each texel, execute

After: for each lightmap, execute all the texels in the lightmap in parallel

Implemented 2 modes

Ambient occlusion and Global illumination

Unity Lightmap Baker using Radeon Rays

Using Unity’s lightmap G buffer rendering functionality

World position

Surface normal

These are enough to do AO computation

Primary rays are generated by cosine weighted sampling

Makes the integration simple (simply count without any PDF

computation)

AO is calculated as

1 – [# of occluded rays] / [# of casted rays]

1 – sum(weight(hit distance)) / [# of casted rays]

Ambient Occlusion Mode

AO ray doesn’t bounce, but it does in GI

Maximum bounces is a user defined parameter

Ray termination

Supported light types

Point light

Spot light

Directional light

Area light

Emissive shader

IBL

Global Illumination Mode

Surface properties are filled at lightmap G buffer rendering stages

World position

Surface normal (with normal maps)

Diffuse albedo

Necessary for color bleeding

Emission

View dependent effect are ignored

glossy, specular reflections

Global Illumination Mode

for lightmap in lightmaps

ray = generatePrimaryRay(lightmap)

for bounce < maxBounce

hit = RR::intersect(ray)

// emissive

texel += evaluateEmissive(hit)

// ibl

shadowRay = generateRayIBL(hit)

shadowHit = RR:intersect(shadowRay)

texel += evaluateIBL(hit, shadowHit)

for light in lights // point, spot, directional

shadowRay = generateRayLight(hit, light)

shadowHit = RR:intersect(shadowRay)

texel += directIllumination(shadowHit, light)

ray = generateNextRay(ray, hit)

Global Illumination Mode

288k Tris

497k verts

Directional lights

Point lights

Radeon Rays

160-170MRays/s

(a few sec for IBL + emissive)

Existing CPU code

<10MRays/s

Lightmap Visualization

GI + Texture

Final Render

This project is still in progress

We are going to improve to make it

Robust

Better convergence

Progressive rendering, so that it can run async with other work

A big advantage over CPU

Finally

Other Radeon Rays Adaptions

Real-time rendering plugin for Autodesk Revit

Exploring the model with high quality rendering

Use of custom fork of Radeon Rays

Real-time rendering plugin for Autodesk Revit

Exploring the model with high quality rendering

Use of custom fork of Radeon Rays

Radeon Rays is used to compute illumination caches

Hybrid global illumination solution

Hierarchy of illumination caches

Screen space ray tracing

World space ray tracing as a last resort

BVH streaming

Radeon Rays integration

Some game studios

Radeon Rays integration is not for everybody

If you don’t need the fine control in baking, Radeon ProRender might be the solution for you

Radeon ProRender has not only ray intersection, but all the logic necessary for GI (shading, sampling etc) are

there

You only need to set up the scene and call rprContextRender()

Lightmap render

Light probe render

Interactive preview

Others and More

Radeon ProRender

A workflow where we bake, apply, then you can see global illumination

Could be wasteful

Texture resolution is too high

Could be insufficient

Texture resolution is too low

Optimal sampling rate is difficult with lightmap solution

Interactive global illumination solution with Radeon ProRender is alternative

Single click “Render”

Simpler workflow

Progressive global illumination refinement

What I have talked about are

MARCH 2016 | FIRERENDER, FIRERAYS

Render Examples

VRay Material Converter

VRay Material Converter

https://www.youtube.com/watch?v=z9wArygtwlI

Radeon ProRender Demo

A fast GPU accelerated global illumination renderer

Not fast enough for game runtime

There is a potential in game content creation acceleration

Provided as

SDK for developers (C API)

Plugins for creators

Radeon ProRender is

MARCH 2016 | FIRERENDER, FIRERAYS

Features

 Camera

360Perspective VR

 Geometry

InstancingMesh Subdivision

 Lights

AreaIESSpotPoint

MARCH 2016 | FIRERENDER, FIRERAYS

Features
MATERIALS

 BSDFs

 Basic components

Diffuse reflection

 Shader graph

 Arbitrary connection of shader nodes for flexible shading system

Diffuse refraction Glossy reflection Glossy refraction Spec. reflection Spec. refraction SSS

Input Lookup Arithmetic Procedural Example Example ExampleBlend BSDFs

Radeon ProRender Plugins

From AMD From third party

3DS Max

Maya

Solidworks

Blender

Coming soon!!

Portal

Displacement mapping

CPU + GPU

VRay Material Converter

3DS Max Plugin New Features

Portal

Displacement mapping

CPU + GPU

VRay Material Converter

3DS Max Plugin New Features

Portal

Displacement mapping

CPU + GPU

VRay Material Converter

3DS Max Plugin New Features

Thanks to Nicholas Timmons, Dmitry Kozlov for Unity integration

Acknowledgement

