
LSNIF: Locally-Subdivided Neural Intersection Function
Shin Fujieda

Advanced Micro Devices, Inc.
Tokyo, Japan

Shin.Fujieda@amd.com

Chih-Chen Kao
Advanced Micro Devices, Inc.

Munich, Germany
ChihChen.Kao@amd.com

Takahiro Harada
Advanced Micro Devices, Inc.

Santa Clara, USA
Takahiro.Harada@amd.com

Botanic Cornell Box Statues Classroom

LSNIF Reference FLIP: 0.108 LSNIF Reference FLIP: 0.021 LSNIF Reference FLIP: 0.036

Figure 1: Locally-Subdivided Neural Intersection Function (LSNIF) represents objects for which a bounding volume hierarchy

(BVH) over triangles is usually used to reduce the algorithmic complexity of ray-geometry intersection. We show that LSNIF

can be used to render complex scenes, foliage (Botanic Cornell Box), highly tessellated meshes containing 18.2 million

polygons (Statues), and a scene designed for other path tracers with instancing and complex materials (Classroom). The

images in the first row are rendered using LSNIF. The second row shows rendered images without LSNIF and the FLIP error

between images rendered using LSNIF and the reference. The bottom two rows are close-up images.

ABSTRACT

Neural representations have shown the potential to accelerate ray
casting in a conventional ray-tracing-based rendering pipeline. We
introduce a novel approach called Locally-Subdivided Neural In-
tersection Function (LSNIF) that replaces bottom-level BVHs used
as traditional geometric representations with a neural network.
Our method introduces a sparse hash grid encoding scheme in-
corporating geometry voxelization, a scene-agnostic training data
collection, and a tailored loss function. It enables the network to
output not only visibility but also hit-point information and mate-
rial indices. LSNIF can be trained offline for a single object, allowing

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
(ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games), https://doi.org/
10.1145/3728295.

us to use LSNIF as a replacement for its corresponding BVH. With
these designs, the network can handle hit-point queries from any
arbitrary viewpoint, supporting all types of rays in the rendering
pipeline. We demonstrate that LSNIF can render a variety of scenes,
including real-world scenes designed for other path tracers, while
achieving a memory footprint reduction of up to 106.2× compared
to a compressed BVH.

CCS CONCEPTS

• Computingmethodologies→Ray tracing;Neural networks.

KEYWORDS

neural representations, multilayer perceptron, ray tracing

ACM Reference Format:

Shin Fujieda, Chih-Chen Kao, and Takahiro Harada. 2025. LSNIF: Locally-
Subdivided Neural Intersection Function. In Proceedings of (ACM SIGGRAPH

https://orcid.org/0000-0002-2472-7365
https://orcid.org/0000-0002-7631-2284
https://orcid.org/0000-0001-5158-8455
https://doi.org/10.1145/3728295
https://doi.org/10.1145/3728295


ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA Shin Fujieda, Chih-Chen Kao, and Takahiro Harada

Symposium on Interactive 3D Graphics and Games). ACM, New York, NY,
USA, Article 17, 13 pages. https://doi.org/10.1145/3728295

1 INTRODUCTION

With the growing demand for high-quality rendering and fidelity,
the importance of a physically based rendering pipeline continues
to increase. Physically based rendering relies on ray tracing to sim-
ulate light transport in 3D scenes [Pharr et al. 2023]. Ray queries,
fundamental operations in ray tracing, are typically accelerated us-
ing a bounding volume hierarchy (BVH) to search for ray-geometry
intersections. However, due to the irregular execution patterns dur-
ing BVH traversal, such as branch execution and memory access
divergence, it is difficult to achieve maximum efficiency on the
SIMD architecture of GPUs. Therefore, GPU vendors have added
dedicated hardware to accelerate ray tracing [AMD 2020; NVIDIA
2017], but the workload is still expensive.

Although ray tracing using a BVH as the spatial acceleration
structure is the de facto standard, researchers have been exploring
possibilities using neural networks (NNs). The two previously pub-
lished approaches using NNs have major restrictions. The Neural
Intersection Function (NIF) [Fujieda et al. 2023a] relies on overfit-
ting neural networks to the current viewpoint, requiring online
training that also depends on a BVH. From a memory usage per-
spective, while the neural networks are highly compressed, they
still introduce a significant overhead to the memory footprint. On
the other hand, N-BVH [Weier et al. 2024] eliminates the need for
online training by pre-training the neural network for each scene.
However, this approach cannot accommodate scene changes, which
is its primary limitation.

In this paper, we present a novel approach that addresses the
challenges of the previous works, extending its capability to cover
broader functionality in the rendering pipeline. We propose a new
encoding scheme based on a sparse grid encoder and voxelization,
which yields higher accuracy. This encoding allows us to reduce
the number of neural networks from two to one, decreasing the
complexity of the algorithm compared to NIF. Additionally, the
proposed encoding scheme enables us to gather training data inde-
pendent of the viewpoints and the lighting conditions in a scene,
thus supporting arbitrary viewpoints or ray queries when adopted.
Finally, we design the loss and activation functions to extend the
output of the neural network to report not only visibility but also
auxiliary information, such as shading normals and material indices.
Consequently, the models can now support not only shadow-ray
queries but also primary, secondary, or any other rays from deeper
stages. With these designs, we can pre-train the network models for
individual objects and load the models to replace the corresponding
parts of the BVH even in other applications. We demonstrate that
our method can handle practical situations by designing complex
scenes in a 3D content creation tool, exporting these scenes to be
trained using our approach, and loading the trained models into a
separate application for rendering. We also show that LSNIF can
be used as a building block for a path tracer that uses all four ma-
jor functionalities in modern GPUs, such as rasterization, general
computing, ray tracing hardware, and matrix cores.

In summary, this paper makes the following contributions:

• Novel Encoding Scheme: Introduces a new encoding scheme
using a sparse grid encoder and voxelization, enhancing the
accuracy of NN outputs.

• Scene-Independent Pre-trained Models: Enables training
data collection independent of scene conditions, allowing
support for arbitrary viewpoints, lighting conditions, and ge-
ometry transformations. The use of the model is not limited
to occlusion rays.

• Extended Output Capabilities: Designs loss and activation
functions to report visibility as well as additional informa-
tion, such as normals and material indices, improving the
versatility of the models and supporting various ray queries
including shadow, primary, and deeper rays.

• Hybrid Rendering Pipeline: Combines three different tech-
niques, such as rasterization, ray tracing, and machine learn-
ing, to construct a full path tracer.

2 RELATEDWORK

Ray tracing and path tracing are computationally intensive tasks
that primarily involve finding intersections between rays and ob-
jects. To expedite this process, a spatial acceleration data structure
like a BVH is typically used, reducing the time complexity from
linear to logarithmic. Given the embarrassingly parallel nature of
ray tracing, GPUs can be leveraged by assigning individual rays to
each GPU thread. However, branch execution and memory access
divergence can reduce performance, making it difficult to achieve
maximum efficiency [Kao and Hsu 2018]. Although specialized
hardware has been developed to accelerate execution, it still suf-
fers from memory access divergence or leads to higher memory
consumption, presenting ongoing challenges [Meister et al. 2021].
There have been studies that approximate geometries with simpler
representations such as geometric levels of details (LODs) [Chris-
tensen et al. 2003; Djeu et al. 2011; Yoon et al. 2006], voxels [Ikeda
et al. 2022; Zeng et al. 2023], and distance fields [Bartels and Harada
2022].

With recent advances in NN ormachine learning, usingNN in ray
tracing or rendering has been explored. These are classified into two
categories: one is to use NN as a post-process to upscale [Shi et al.
2016], denoise [Zhang et al. 2024], or generate frames [Briedis et al.
2021]. The other category is to embed NN in the rendering pipeline
itself to replace textures [Fujieda and Harada 2024; Kuznetsov et al.
2021; Vaidyanathan et al. 2023] or materials [Zeltner* et al. 2024],
or to use it as a cache [Müller et al. 2021] or for importance sam-
pling [Müller et al. 2019]. As multilayer perceptrons (MLPs) are
not well-suited for reconstructing high-frequency signals, various
input encoders are often used in conjunction, such as positional
encoding [Mildenhall et al. 2021], grid encoding [Kuznetsov et al.
2021; Müller et al. 2022], and hybrids of these methods [Fujieda et al.
2023b; Vaidyanathan et al. 2023]. Some approaches incorporate geo-
metric information [Takikawa et al. 2021], similar to the method
we use in our paper. Some researchers have also explored replacing
BVHs with NNs. For example, Fujieda et al. introduced the Neural
Intersection Function (NIF), the first work to use two NNs to replace
the bottom-level BVH traversal to query visibility status [Fujieda
et al. 2023a]. By utilizing grid encoding and MLPs, NIF replaces

https://doi.org/10.1145/3728295


LSNIF: Locally-Subdivided Neural Intersection Function ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA

the most divergent part of the computation with matrix multiplica-
tions, which are regular algorithms that can be accelerated using
hardware components such as AMD Matrix Cores, Tensor Cores,
and Wave Matrix Multiply Accumulate (WMMA) instructions [Cui
2024; Schieffer et al. 2024]. NIF uses online training for the current
viewpoint of the scene. Although it allows for applying it for dy-
namic scenes with re-training, it cannot completely remove BVHs
for the geometries as they are required to generate training data.
Also, they limit the use of NIF only for shadow rays. Weier et al.
proposed N-BVH with a neural ray-query pipeline that samples
uniformly along a given ray-box intersection interval to collect fea-
ture vectors similar to the sampling employed in NeRF [Mildenhall
et al. 2021]. These feature vectors are concatenated and fed to the
MLP to obtain reconstructed signals. Although N-BVH does not
require online training, the models can only be trained on a per-
scene basis. This restriction prevents further modifications such
as object transformation and any interaction such as dynamically
adding objects.

Unlike previous methods, the network models in LSNIF are de-
signed to be trained for each object. LSNIF employs a uniform
sampling strategy to cast rays for collecting training data, indepen-
dent of viewpoint position or scene lighting. As a result, each object
can be trained individually, and the grid encoding, MLP, and voxels
are stored in binary format after offline training. This allows the
LSNIF models to be trained offline, and then loaded into another
application. Moreover, the models in LSNIF can output properties
including visibility, hit points, normals, and material information,
supporting not only shadow rays, but also primary, secondary, and
all rays from deeper stages of path tracing, thus supporting a wide
range of applications.

3 LOCALLY-SUBDIVIDED NEURAL

INTERSECTION FUNCTION

Our method addresses the limitations of existing works discussed in
Sec. 2 by extending NIF. We propose a novel neural representation
optimized for a single object, called Locally-Subdivided Neural
Intersection Function (LSNIF). Fig. 2 illustrates the overview of the
LSNIF methodology.

3.1 Local Geometry Voxelization

The uniqueness of the input to the neural network is crucial for it to
effectively learn the underlying function, such as mapping 3D input
positions to the corresponding shape information. Our objective
is to infer the geometric properties of an object at the intersection
point between a ray and the geometry using NNs. To achieve this,
each input feature must uniquely represent a specific ray. Rays with
the same direction but originating from different points along that
direction are distinct yet converge at a single intersection point.
This can lead to confusion for the network, a phenomenon known
as ray aliasing.

NIF addresses the ray-aliasing by using the ray direction and
the intersection point between the ray and the AABB or the sur-
face of the geometry as the input instead of the ray origin. While
this approach is effective for online training, where the network
is trained with a limited set of rays generated from a single view-
point under fixed lighting conditions, it is not suitable for dynamic

content. In scenarios with moving viewpoints or changing lighting
conditions, the network must be pre-trained with arbitrary rays
cast from any position and in any direction, presenting significant
challenges. Furthermore, concatenating input features from mul-
tiple 2D grid encodings, as done in NIF for position and direction,
hinders small MLPs from accurately inferring specific geometric
properties. This is because different rays, such as those with the
same origin but different directions, share identical features ex-
tracted from the ray origin, leading to the aliasing problem. One
possible solution to make the input features unique is to use 4D
grid encoding to represent distinct features for each pair of position
and direction. However, this approach is computationally expen-
sive and memory-intensive, making it impractical for real-world
applications.

Another option to improve prediction accuracy is to provide
more data as input to the NN. In this work, we adopt this strategy
by voxelizing the geometry into a low-resolution grid in local space.
The intersection points between a ray and the voxels are then
used as input to the network. (Fig. 2). This approach enhances the
variation in the inputs, enabling the network to more effectively
distinguish between inputs with different features and reduce the
impact of aliasing. As a result, the network can more accurately
reconstruct the original geometry.

Since our focus is on the location of the geometry’s surface,
only the surface polygons are voxelized. Furthermore, because our
method makes no assumptions about the topology of the geometry,
it is fully compatible with any polygon soup. The additional size of
this voxel data is negligible compared to other stored model data,
as each voxel only contains binary occupancy information.

For a ray intersecting the AABB of geometry, rather than using
the hit point and direction as inputs to the neural network, we
examine the intersections with the voxels as follows: we first extract
the voxels hit by the ray using the digital differential analyzer
(DDA) algorithm [Amanatides and Woo 1987]. Then, we compute
the intersection points to the voxel boundaries in the local space of
the geometry with a simple ray-box intersection test as shown in
the middle of Fig. 2. The resulting list of intersection points is then
used as input to the neural network. Our approach considers the
underlying geometry by sampling positions closer to the surface,
unlike methods that sample at regular intervals. [Weier et al. 2024].

This enables the network to learn features from more correlated
input points, as demonstrated later. Furthermore, in contrast to
regular interval sampling, our approach ensures that each point
intersects an occupied voxel, eliminating the need for explicit voxel
occupancy checks and improving the distinguishability of features
from each ray direction.

3.2 Sparse Hash Grid Encoding

Our input to the NN is the intersection points for a given ray and
the voxels of the local geometry. We encode each intersection point
into a feature vector with a multi-resolution hash grid to represent
sparse and complex 3D signals compactly [Müller et al. 2022]. Then,
we concatenate the feature vectors into a single large vector to
reduce the number of inference queries and feed it into the NN.
Because concatenating the feature vectors on voxel boundaries
implicitly distinguishes whether a ray origin lies inside or outside



ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA Shin Fujieda, Chih-Chen Kao, and Takahiro Harada

Figure 2: The illustration of LSNIF methodology. First, the intersection points of a ray with the object’s AABB are computed.

These points are then used to perform DDA against the voxels, followed by the calculation of hit points on the surfaces of these

voxels. The hit points are processed using 3D sparse hash grid encoding, with interpolated feature vectors concatenated into a

large vector. This vector is then fed into the MLP which outputs the intersection information of the ray with the geometry.

the AABB, we do not need to handle the inside and outside cases
separately, as NIF requires. Most feature vectors on the grid vertices
are unnecessary and simply a waste of memory as all our input
points are located on the voxel boundaries. Therefore, we propose
to use a sparse hash grid tailored for the distribution of the input
points.

Sparse hash grid encoding is a specialized version of the multi-
resolution hash grid that stores the feature vectors only on the
voxel boundaries, as shown in the middle of Fig. 2, where this
encoding structure is described in 2D for simplicity. We ignore
grid vertices that do not lie on the voxel boundaries and store
only the feature vectors on the remaining vertices, which reduces
the memory consumption of the grid encoder. Additionally, this
encoding structure decreases the number of queries to the grid
vertices, which is beneficial for the inference speed. With the 2D
multi-resolution hash grid, we need to query at four grid vertices
bilinearly interpolated to get the feature vector for a given position.
However, with the 2D sparse hash grid, we only need to query at
most two grid vertices linearly interpolated because the feature
vectors are stored only on the voxel boundaries, which results in a
50% reduction of memory access. In the 3D case, we need to query
eight grid vertices with the dense hash grid, but only four with the
sparse hash grid. Therefore, this sparse structure is more efficient
in terms of memory footprint and inference speed than the dense
one. Since the sparse structure of the grid makes it challenging to
explicitly access feature vectors associated with the corresponding
hit points, we therefore rely on a hash table to map the index of
the grid vertex to the memory address where the feature vector is
stored.

3.3 Network Design

We use an MLP to infer the geometric properties of each object for
a ray. A single MLP is trained for each object with the 3D sparse
hash grid encoding described in Sec. 3.2 and takes the concatenated
feature vectors from the sparse hash grid as input. The MLP then
predicts multiple geometric properties simultaneously, including
occlusion, hit distance, normal, albedo, andmaterial index, as shown
in Fig. 3. This approach is more efficient than using separate MLPs
for each property in terms of memory usage and inference speed.
In addition, the prediction of a material index makes it possible to

assign multiple materials to a single object, which is required to
represent complex and realistic scenes.

The components on LSNIF include the voxel data, the sparse hash
grid, and the MLP for each object. All of them can be pre-computed
and pre-trained. The generated voxel data, optimized grid buffer,
and neural network weights are stored on disk. At runtime, they
are loaded as LSNIF objects, eliminating the need for bottom-level
BVH traversals.

4 PATH TRACING PIPELINE WITH LSNIF

We adopt and integrate LSNIF in a wavefront path tracer. The chal-
lenge of integrating LSNIF lies in the fact that intersecting with an
LSNIF object requires inference execution of the NN. Since the scene
typically contains many LSNIF objects, each with potentially dif-
ferent configurations and NN parameters, this introduces code and
data divergence. Minimizing this divergence is crucial for achieving
optimal performance, especially on GPUs.

The following outlines the techniques and strategies we adopted
to integrate LSNIF into a wavefront path tracer, aiming to optimize
performance: Path tracing starts by shooting primary rays from the
camera. Although LSNIF is designed to support all types of rays, its
application to primary rays results in lower accuracy compared to
traditional BVH traversal, as shown in Fig. 3 (b) - (e). Therefore, we
restrict the application of LSNIF to non-primary rays in this paper.
However, resolving the intersection of primary rays using ray trac-
ing requires a BVH, which defeats the purpose of LSNIF in terms of
memory savings. We propose to address this problem by leveraging
rasterization to create G-Buffers storing shape indices, primitive
indices, UV coordinates, and camera distances, replacing primary
ray hit information as shown in Fig. 4 (a). This approach requires
retaining vertex and face data for rasterization but eliminates the
need for BVH construction and storage for objects replaced with
LSNIF.

LSNIF can be used as a substitute for the bottom-level BVH
traversal for rays other than the primary rays used in path tracing.
Other components in the path tracer do not need to be modified
and remain the same. Similar to NIF, applying LSNIF to objects
with a small number of triangles is inefficient. Because of that,
we can set a condition measuring the complexity, e.g., setting a
threshold to the number of faces, to switch between LSNIF and



LSNIF: Locally-Subdivided Neural Intersection Function ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA

(a) Voxels (b) Occlusion (c) Hit distance (d) Normal (e) Albedo (f) Rendered

Figure 3: (a) Voxel representation of the geometry. (b, c, d, e) Outputs from LSNIF for primary rays. (f) Path-traced image with

LSNIF. Note that (f) utilizes rasterization for primary visibility instead of the LSNIF representation shown in (b, c, d, e).

BVH traversal. For non-LSNIF objects, we use a two-level BVH
where the top-level BVH organizes a set of bottom-level BVHs,
each of which contains the geometry of a single object. For non-
primary rays, we first check the intersections with triangles for non-
LSNIF objects using a two-level BVH and then find the intersection
points between rays and the voxels of LSNIF objects. To find the
intersection points against LSNIF objects efficiently, we construct
a dedicated top-level BVH for LSNIF objects (LSNIF BVH) and
use a two-phase approach: a broad phase followed by a narrow
phase. In the broad phase, we traverse the LSNIF BVH to achieve
the potentially intersecting list of sets of ray information and the
index of the LSNIF object. The simplest implementation would be
executing the intersection tests to LSNIF in the BVH traversal, but it
introduces data and code divergence which have a negative impact
on the performance. To improve efficiency, we store the ray-LSNIF
object index pairs in the list, which is sorted by the index of the
LSNIF object to maximize the coherence of the inference execution.
In the narrow phase, we use the DDA-based algorithm to extract
the voxels hit by the ray stored in the potentially intersecting list
and then compute hit points between the ray and the voxels. Finally,
we use the hit points as input to the LSNIF model, allowing the
model to infer the geometric properties instead of traversing the
bottom-level BVHs. If a hit is detected on the LSNIF object, the ray’s
hit information is updated with the model’s outputs, which are then
used in the subsequent steps of the rendering pipeline, as shown in
Fig. 4. Our current implementation splits the ray-triangle and ray-
LSNIF intersection tests into two phases and executes the inference
for all the collected ray-LSNIF object index pairs in a single GPU
dispatch. While this approach may not be the most optimal in terms
of computational complexity, it is well-aligned with the constraints
and capabilities of modern GPU architectures and programming
models. Future research will aim to enhance performance while
minimizing the impact on GPU execution, considering hardware
limitations such as branch or memory access divergence and the
inability to independently query results from the neural network
during ray processing.

5 IMPLEMENTATION DETAILS

We integrated LSNIF into a HIP-based [AMD 2023a] wavefront
path tracer with the support of the hardware ray tracing cores on
RDNA3 GPU [AMD 2023b]. Rasterization for primary rays was
implemented with OpenGL, and we utilize HIP-OpenGL interoper-
ability to enable our HIP kernels to directly read the necessary hit
information of primary rays from the OpenGL-generated textures.
For training and inference of the NN on GPUs, we implemented

using C++ and HIP. Our implementation is to fuse operations from
all layers into a single kernel to minimize the overhead of memory
access and kernel launch. All the computations in the training and
inference procedures, except for the gradient accumulation, are
executed with half-precision floating points. We used the Wave
Matrix Multiply Accumulate (WMMA) instructions [Schieffer et al.
2024] to accelerate them.

5.1 Architecture

We use a small MLP with two hidden layers, each with 128 neu-
rons and leaky ReLU activation functions, for all the experiments
we show in this paper. The output layer has different activation
functions depending on the output signals. We use the sigmoid ac-
tivation function for occlusion, hit distance, and albedo, the linear
activation function (identity function) for normal, and the softmax
activation function for material index. The dimension of the input
vector depends on the number of intersection points for a given
ray and the voxels. However, to fix the size of the input layer, we
impose an upper bound,𝐻 , on the number of intersection points. In
this work, we empirically set 𝐻 = 18 and fill the remaining vector
elements with zeros. We discuss this upper bound,𝐻 , in more detail
in Section. 6.1. Also, the number of neurons in the output layer is
determined by the number of materials attached to the object, i.e.
8+𝑁𝑚𝑎𝑡 . Note that we need to re-train the NN with the new output
layer size for the object if 𝑁𝑚𝑎𝑡 is changed. The NN weights are
initialized with the Kaiming initialization [He et al. 2015].

Sparse hash grid encoding comprises two levels of grids with
resolutions from 643 to 1283. The voxel resolution for each geometry
is 323. The feature vectors on the sparse grid are stored only on
the voxel boundaries, allowing us to use a relatively small hash-
map size of 217. Each entry in the hash map stores a 3D feature
vector initialized with the uniform distribution U(−10−4, 10−4). A
detailed analysis of hash-map sizes and voxel resolutions is provided
in Sec. 6.1. With these parameters, the memory footprint of a single
LSNIF is only about 1.56 MB, where 4 KB, 1, 536 KB, and about
62 KB are used for voxels, the input encoder, and the NN. This
memory footprint remains constant regardless of the complexity
of the object geometry. So, the efficiency of LSNIF increases as the
complexity of the object grows.

5.2 Training

We train LSNIF for a single object with the training data prepared
using balanced sampling with 50% of the rays originating from
outside the AABB and 50% from the object surface. This ensures
that LSNIF can learn the representation of both ray types equally.



ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA Shin Fujieda, Chih-Chen Kao, and Takahiro Harada

(a) (b) (c) (d)

Figure 4: Visual illustration of the proposed rendering pipeline. (a) the scene is rasterized from the camera. G-buffers are used

to generate rays from the primary vertices. (b) the rays are intersected with triangles of non-LSNIF objects using BVHs. Then

(c) the rays are tested against LSNIF objects which store a coarse voxel representation of the geometry. (d) the remaining part of

the rendering pipeline stays the same to render global illumination.

To generate rays originating outside the AABB, we first uniformly
sample points on a sphere that encloses the AABB. These points
serve as ray origins. Ray directions are then determined via cosine-
weighted hemispherical sampling oriented toward the center of the
sphere. On the other hand, rays originating on the object’s surface
are generated by first casting rays from outside the AABB, sampled
with the previously described process, to find intersection points on
the surface. From these hit points, ray directions are sampled using
cosine-weighted hemispherical sampling aligned with the surface
normals. The outputs are compared against the ground truth values
on the target object, obtained via ray casting using a BVH. With the
training data prepared, we jointly optimize the NN and the sparse
hash grid encoding in batches of 218 rays using the Adam optimizer
with a learning rate of 0.01 [Kingma and Ba 2015].

5.3 Activation and Loss Functions

The MLP in LSNIF infers multiple signals at once, including oc-
clusion, hit distance, shading normal, albedo, and material index.
We describe the activation and loss functions used for each signal
below.

Occlusion. The occlusion is a binary value that indicates whether
the ray is occluded or not. We can consider this as a binary clas-
sification problem, so we use the sigmoid activation function and
the binary cross-entropy loss for this signal. The output proba-
bility is then thresholded at 0.5 to determine the final occlusion
value. To avoid learning irrelevant features, we set the losses for
non-occlusion signals to zero when the reference occlusion is zero.

Local Hit Distance. Although the hit distance represents the dis-
tance from the ray origin to the intersection point, we learn the
local distance along the ray-AABB intersection interval, which sim-
plifies the signal representation to a 1D continuous value in the
range [0, 1]. We use the sigmoid activation function and the mean
absolute error (MAE) loss, which is more robust to outliers than
the mean squared error (MSE) loss.

Shading Normal. The normal is a 3D vector representing the
surface normal at the intersection point.We use the linear activation
function (identity function) and the cosine similarity loss for this

signal, which empirically shows better accuracy than other loss
functions, such as the MAE and the MSE losses.

Albedo. The albedo is a 3D vector representing the surface’s base
color at the intersection point. We use the sigmoid activation func-
tion and the relative L2 loss [Lehtinen et al. 2018], which shows
better results than the MSE loss for this signal. Other BSDF pa-
rameters are determined by looking up the attached material with
the predicted material index. We did not infer texture coordinates,
which we found difficult to predict because they are too sensitive to
a small error, so LSNIF only supports albedo textures on materials.

Material Index. The material index is an integer value indexing
one material attached to the object. This enables the object to have
multiple materials with different properties, which is necessary for
realistic rendering. We can consider this as a multi-class classifica-
tion problem, so we use the softmax activation function and the
categorical cross-entropy loss.

6 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of LSNIF by rendering various
scenes with 10k spps with 1920×1080 screen resolution on an AMD
Radeon™ RX 7900 XTX GPU. The rendered images are compared
with the reference images generated by the BVH-based path tracer
using the FLIP error metric, where a lower value indicates a better
reconstruction quality [Andersson et al. 2020].

6.1 Parameter Study

There are a few parameters that determine the accuracy of LSNIF.
In this section, we show how these parameters affect the rendering
results. The first parameter that has a substantial impact on the
reconstruction quality is the voxel resolution, 𝑉 . Higher 𝑉 makes
the voxel representation closer to the underlying geometry, as
shown in Fig. 5. On the other hand, when lower 𝑉 is used, LSNIF
gets closer to NIF [Fujieda et al. 2023a]. LSNIF can carve out the
teapot shape even when 23 resolution is used, but it results in
obvious errors in the geometric representation that is visible in
reflections. This is not exactly the same reproduction of NIF but
it is close enough to be compared. This shows the results that we



LSNIF: Locally-Subdivided Neural Intersection Function ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA

𝑉 = 23 𝑉 = 43 𝑉 = 83 𝑉 = 163 𝑉 = 323 𝑉 = 643

0.040 0.034 0.029 0.024 0.022 0.020

Figure 5: Comparison on different voxel resolutions, 𝑉 . The four images for each are reconstructed shading normals from

LSNIF, a visualization of voxelized geometry, a rendered image using LSNIF, and its FLIP error.

𝐻 = 4 𝐻 = 8 𝐻 = 12 𝐻 = 18 Ref. 𝐻 = 4 𝐻 = 8 𝐻 = 12 𝐻 = 18
0.061 0.039 0.035 0.034

𝑀 = 28 𝑀 = 211 𝑀 = 214 𝑀 = 217 Ref. 𝑀 = 28 𝑀 = 211 𝑀 = 214 𝑀 = 217
3 KB 24 KB 192 KB 1.5MB 0.085 0.061 0.047 0.034

Figure 6: Comparison of different upper bounds of the number of intersection points, 𝐻 , and different hash-map sizes,𝑀 . The

top-left image is rendered using LSNIF with 𝐻 = 18 and 𝑀 = 217 and the bottom-left image is its FLIP error. All images are

rendered with 10k spp after 2,000 training steps.

would get if we trained NIF offline and used it in the rendering. The
higher 𝑉 we use, the smaller the error becomes. In the example of
Fig. 5, artifacts are not visible at 323 resolution. Since the voxel data
contains only binary occupancies, its memory footprint is negligible.
It increases from 4KB to 32KBwhen the voxel resolution is changed
from 323 to 643.

Another parameter, 𝐻 , which controls the image quality is how
many points we collect for the NN inputs. Smaller 𝐻 works fine
for simple geometries. However, it fails when a ray passes through
several voxels, coming close to the underlying geometry but with-
out the actual hits, as illustrated with an orange ray in Fig. 2. These
errors appear as clear visual artifacts as shown in the top part of
Fig. 6. When 𝐻 is small, some parts of the geometry are missing
(top row), self-shadows are not cast (middle row), or shadows cast
to another geometry are not visible (bottom row). This is because
small 𝐻 does not have enough capacity to capture all the hits to

the voxels where the ray hits the underlying geometry, thus it fails
to reconstruct the geometry. Note that 𝐻 depends on 𝑉 . As we use
higher 𝑉 , we need to increase 𝐻 accordingly. We experimentally
choose 𝑉 = 323 and 𝐻 = 18, and use these values for all other
experiments in this paper.

The major parameter that significantly impacts the memory
footprint is the hash-map size, 𝑀 , in the sparse grid encoding,
which takes up a large part of LSNIF’s memory. The bottom part of
Fig. 6 also compares the memory footprint with various𝑀 and how
they affect the reconstruction quality. Lower𝑀 causes more hash
collisions, thus more points are mapped to the same memory. This
results in clear visual artifacts in reflections and shadows. We find
𝑀 = 217 is a good balance between quality and memory overhead.



ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA Shin Fujieda, Chih-Chen Kao, and Takahiro Harada

𝑇 = 100 𝑇 = 700 𝑇 = 2000

0.060 0.049 0.046

Figure 7: Comparison of reconstruction quality with different training steps, 𝑇 . Top-middle images are reconstructed first-hit

shading normals from LSNIF. Other close-up images show rendered images using LSNIF, and FLIP errors for different training

timings. The left image is rendered with 2,000 training steps, which shows enough quality and takes only about 16 seconds for

training.

Junkshop Hairballs Botanic Cornell Box Glossy

LSNIF Reference FLIP: 0.037 LSNIF Reference FLIP: 0.066 LSNIF Reference FLIP: 0.170

Figure 8: First row: rendered images using LSNIF. Second row: rendered image without LSNIF, and FLIP error. The rest are

close-ups of rendered images comparing LSNIF and reference.

6.2 Training Time

Although we did not fully optimize our training implementation
which transfers data between GPU and CPU, training LSNIF for a
single geometry takes only a few tens of seconds, including data
generation, i.e., ray casting using a BVH. Fig. 7 shows the quality of
the rendered images using LSNIF with different training steps,𝑇 . In
this experiment, to correctly observe the reconstruction errors for
different 𝑇 , we computed the FLIP errors for the images rendered
using LSNIF for all types of rays including primary rays with 1k
spp. The rightmost graph in Fig. 7 shows the moving averages of

FLIP errors over training time. With small𝑇 , reconstructed shading
normals are not accurate, resulting in visible errors in the rendered
images. We find that 𝑇 = 2, 000 is sufficient to achieve visually
good-quality results, so we use 2, 000 training steps for the rest of
the experiments in this paper. Training LSNIF with𝑇 = 2, 000 takes
about 15 seconds for a single geometry on a single GPU.

6.3 Quality Evaluation

Fig. 1 and Fig. 8 show various scenes rendered using LSNIF to evalu-
ate the reconstruction quality. In Statues, all the geometries except



LSNIF: Locally-Subdivided Neural Intersection Function ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA

Figure 9: Rendered images of LSNIF objects in Junkshop scene. All are rendered using LSNIF.

(a) LSNIF: 187.2 MB, FLIP: 0.028 (b) LSNIF: 46.8MB, FLIP: 0.029 (c) LSNIF: 12.5MB, FLIP: 0.044

Figure 10: Comparison of different LSNIF granularity. An LSNIF is created for each bunny (a), 4 bunnies (b), and 15 bunnies (c),

respectively. Each image’s upper and lower half show the rendered image and FLIP errors.

for the boxes are represented by LSNIF. Thus, the BVH used for
ray tracing against triangles only contains 36 triangle primitives
when LSNIF is used. This is a huge complexity reduction to pure
ray tracing as there are 18.2 million triangles in the scene. Because
a single LSNIF object is 1.56MB with the parameter discussed in
Sec. 6.1, LSNIF only consumes 6.24 MB, while uncompressed BVH
for 18.2 million triangles takes 2.5 GB for this scene. Therefore,
LSNIF compresses the geometry to only 0.24% with small visual ar-
tifacts. We also tested LSNIF with some highly-detailed geometries,
with which BVH ray tracing is computationally expensive, such
as foliage and thin geometries in Botanic Cornell Box, Botanic
Cornell Box Glossy and Hairballs. The errors in the rendered
images with LSNIF are relatively higher compared to those with
simple geometries, mostly due to missing intersections. However,
these results are still visually plausible. Improving these cases is
one of the future works.

To set up a scene with LSNIF, we developed a pipeline that takes
a scene description for our reference path tracer, goes through it,
performs LSNIF training or conversion for tagged objects, and then
writes another scene description for the LSNIF integrator (shown
in the supplemental video). When the converted scene is rendered,
we can do some scene editing, such as changing lighting conditions,
moving geometries (Fig. 13), and camera change (Fig. 14). Users can
also add a pre-trained LSNIF object to a scene as well because LSNIF
is optimized for a single geometry and supports its transformation.
Previous methods had restrictions on scene editing, making them a
no-go for practical use [Fujieda et al. 2023a; Weier et al. 2024]. To
test the robustness of LSNIF and the conversion pipeline, we took
scenes designed for other path tracers, such as Classroom and
Junkshop, and evaluated the rendered images. The only change we
made for these scenes was small modifications to the materials so
that we could load them in our renderer. Classroom uses geometry
instancingwhichworkswell with LSNIF as its neural representation
is per object, not for the entire scene. That is, we do not need to

train LSNIF for instanced geometries, and the same LSNIF can be
used for all instances which reduces the number of LSNIF to be
trained from 50 to 15. Junkshop contains various objects that are
grouped and converted to LSNIF as shown in Fig. 9.

When we compute LSNIF, the user can choose the granularity of
LSNIF, i.e., how many objects a single LSNIF contains. The errors
are increased as we make it bigger, i.e., creating one LSNIF for more
objects. Fig. 10 is a visual comparison of this parameter where an
LSNIF is created for one object or multiple objects. There are 120
LSNIF objects in Fig. 10 (a) while there are only eight LSNIF objects
in Fig. 10 (c). The granularity of LSNIF shows a trade-off between
memory consumption and quality. The memory footprint in Fig. 10
(c) is 15× smaller than in Fig. 10 (a) as instancing is turned off for
this example. However, its FLIP error is 1.57× higher.

6.4 Performance Evaluation

Table 1 shows the memory footprint and the performances of LSNIF
for various scenes.We compare thememory footprint of LSNIF with
the standard uncompressed BVH (BVH A) and the compressed BVH
(BVH B) with a BVH compression method [Ylitie et al. 2017]. Note
that BVH A is a 4-wide BVH used in our performance evaluation,
where the size of each internal node is 128 bytes and the leaf node
stores up to two triangles, and the memory footprint for BVH B is
an estimate using the parameters in the paper. LSNIF demonstrates
a substantially smaller memory footprint compared to both BVHs,
achieving a reduction in size up to 525.1× and 106.2× for BVH A
and BVH B, respectively, particularly in complex scenes with a high
number of triangles.

In our performance comparison against classical path tracing
using BVHs, we tested two configurations of LSNIF: one with a
high-quality configuration and the other with a low-quality configu-
ration. Rays are traced up to four bounces in all configurations. The
high-quality one is our default configuration described in Sec. 5.1,



ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA Shin Fujieda, Chih-Chen Kao, and Takahiro Harada

Table 1: Memory footprint and performance comparison sorted by the number of LSNIF objects. LSNIF count shows the total

number of LSNIF objects while values in parentheses exclude instanced geometries. LSNIF, BVH A, and BVH B are the memory

footprint of LSNIF, the standard uncompressed BVH, and the estimate of the compressed BVH, respectively. The second row in

these columns indicates the ratio to LSNIF in orange. They do not include triangles. 𝑇𝐿
𝐿𝑆𝑁𝐼𝐹

and 𝑇𝐻
𝐿𝑆𝑁𝐼𝐹

show rendering times

per frame using low and high-quality LSNIF, and their ratios to rendering times with path tracing, 𝑇𝑃𝑇 (written in blue in the

second row). FLIP
𝐿
and FLIP

𝐻
are the errors for low and high-quality LSNIF compared to path-traced reference images.

Scene LSNIF count LSNIF BVH A BVH B 𝑇𝐿
𝐿𝑆𝑁𝐼𝐹

𝑇𝐻
𝐿𝑆𝑁𝐼𝐹

𝑇𝑃𝑇 FLIP𝐿 ↓ FLIP𝐻 ↓
Hairballs
5.7M (Tris) 2 (1) 1.56 MB

1.00
0.8 GB
525.13

0.16 GB
106.20

45.56 ms
0.54

65.62 ms
0.78

84.20 ms
1.00 0.115 0.066

Dragons
2.6M (Tris) 3 (1) 1.56 MB

1.00
0.4 GB
262.56

0.07 GB
48.44

39.12 ms
1.06

59.61 ms
1.61

36.95 ms
1.00 0.049 0.034

Statues
18.2M (Tris) 4 (4) 6.24 MB

1.00
2.5 GB
410.26

0.52 GB
84.77

37.95 ms
1.73

45.15 ms
2.06

21.96 ms
1.00 0.020 0.021

Junkshop
20.5M (Tris) 9 (9) 14.04 MB

1.00
2.9 GB
211.51

0.58 GB
42.44

42.27 ms
1.07

49.61 ms
1.25

39.54 ms
1.00 0.035 0.037

Botanic Cornell Box
27.0M (Tris) 26 (15) 23.40 MB

1.00
3.8 GB
166.29

0.77 GB
33.54

150.31 ms
0.93

173.97 ms
1.07

162.40 ms
1.00 0.142 0.108

Botanic Cornell Box
Glossy 27.0M (Tris) 26 (15) 23.40 MB

1.00
3.8 GB
166.29

0.77 GB
33.54

147.35 ms
0.93

176.47 ms
1.11

158.76 ms
1.00 0.198 0.170

Classroom
2.6M (Tris) 50 (15) 23.40 MB

1.00
0.4 GB
17.50

0.07 GB
3.23

53.86 ms
0.94

62.01 ms
1.08

57.36 ms
1.00 0.051 0.036

and the low-quality one is the same as the high-quality one ex-
cept for the network width and 𝐻 , which are reduced to 64 and 10,
respectively. BVH-based path tracing is implemented in a single
kernel in our experiments while LSNIF utilizes a wavefront path
tracer involving multiple kernel execution. This leads to higher
memory read/write overhead in the LSNIF implementation, which
negatively impacts performance compared to single-kernel path
tracing. However, with the high-quality configuration, LSNIF per-
forms better than path tracing in Hairballs though it incurs a
rendering overhead of 1.07–2.06× in other scenes. The low-quality
configuration can reduce the performance gap between LSNIF and
path tracing. It achieves better performances than path tracing in
Botanic Cornell Box, Classroom, Hairballs, and Botanic Cor-
nell Box Glossy. We attribute this to LSNIF’s efficiency in dealing
with instanced geometries and highly-detailed geometries, such
as foliage and thin geometry that are computationally expensive
for BVH ray tracing. Although the low-quality LSNIF exhibits in-
creased errors in most scenes, the rendered images are still visually
plausible, as shown in the supplemental document. It also shows
equivalent quality with a larger performance overhead in Statues
and Junkshop, where all the objects are relatively simple without
glossy reflections. This demonstrates the flexibility of LSNIF, allow-
ing users to balance quality and performance according to their
requirements.

6.5 Comparison with Related Approaches

NIF [Fujieda et al. 2023a]. Since the authors did not release the
scenes used in the paper, we created some similar test scenes to
compare LSNIF with NIF, as shown in Fig. 11. We selected two tests
with low and high-frequency lighting conditions. The results show
that LSNIF produced lower errors for both test cases, outperforming
NIF, even when NIF overfits the current scene settings. The FLIP
errors with LSNIF are 0.008 and 0.018 while the ones with NIF are
0.024 and 0.031, respectively.

N-BVH [Weier et al. 2024]. As the renderers are different, we could
not reproduce the same images to be compared to N-BVH. How-
ever, we loaded one of the scenes from the N-BVH paper (Chess),
adjusted the scene, and evaluated the error of our method with the

scene in similar settings. Here, LSNIF also shows lower errors for
this comparison, where the FLIP error with LSNIF is 0.007, while
the error reported in the N-BVH paper is 0.019. Out of the 32 chess
pieces, there are some objects for which we can use the instancing
technique. The number of LSNIF that we trained for this scene was
12, thus LSNIF consumes only 18.7MB, while N-BVH requires 37
MB.

Geometric LODs. These techniques are commonly used to sim-
plify scene geometry and enhance runtime performance. However,
simply replacing high-polygon models with lower-polygon models
for secondary rays in ray tracing can introduce visual artifacts.
Achieving artifact-free rendering requires an advanced traversal al-
gorithm or a mechanism to smoothly transition from fine to coarse
LOD, which is not well-supported by current ray tracing APIs. To
facilitate a fair comparison between LSNIF and geometric LODs,
we substituted the scene’s original geometries with coarser LODs,
ensuring their BVH sizes matched those of LSNIF. While the coarser
LODs work adequately for geometries with simple topologies, they
fail to represent the complex topological features of highly detailed
geometries accurately, as demonstrated in the supplemental docu-
ment.

6.6 Implementation in DirectX Ray Tracing

The results presented previously were rendered using customized
software utilizing the GPU. However, LSNIF can also be used in
a conventional graphics rendering pipeline. To demonstrate this,
we implemented a renderer that features the DirectX ray tracing
API, the industry-standard ray tracing API [Microsoft 2018]. An
LSNIF object can be implemented as an intersection shader in which
the inference is executed to check the intersection of a ray to the
object. Fig. 14 shows the rendered images with the DXR renderer
where LSNIF is used for both primary visibility and other visibilities,
thus rasterization is not used for this example. The renderer only
has the bunny in LSNIF, and there are no BVH, vertex, and index
buffers. As of today, the performance is not great as we need to
execute inference in the intersection shader which causes data and
code divergence. A possible way, also one of the future works, is



LSNIF: Locally-Subdivided Neural Intersection Function ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA

(a) LSNIF (b) Reference (c) FLIP: 0.008 (d) LSNIF (e) Reference (f) FLIP: 0.018

Figure 11: LSNIF produces lower errors than NIF for both cases (0.008 vs. 0.024 and 0.018 vs. 0.031).

LSNIF Reference FLIP: 0.007

Figure 12: LSNIF shows a lower error than N-BVH in similar scene settings (0.007 vs. 0.019). Chess contains 12 LSNIF objects

consuming smaller memory (19 MB vs. 37 MB).

to improve this using the work graph API which helps to gather
coherency and batch the execution [Microsoft 2024].

7 CONCLUSIONS AND FUTUREWORK

In this paper, we introduced LSNIF, which compresses the geome-
try into neural representation, serving as a substitute for the cor-
responding part of BVHs in a path tracer. Trained offline and in-
dependently of viewpoints and lighting conditions, LSNIF allows
for scene editing, such as changes to lighting, camera positions,
and geometry transformations, while maintaining plausible visual
quality. Pre-trained models of LSNIF can be seamlessly integrated
and rendered in the scene like standard geometries without addi-
tional training. Although our current implementation does not yet
match the speed of hardware-accelerated BVH-based ray tracing,
we anticipate narrowing this gap with further optimization and
advancements in hardware for matrix operations. By employing
NNs for efficient ray queries at runtime, we have essentially shifted
the use of BVH-based ray tracing from runtime to training time.

To minimize rendering error, LSNIF relies on rasterization for
primary visibility, which requires retraining vertex and face infor-
mation of geometries. However, LSNIF can also be used for primary
visibility calculations for applications where primary visibility accu-
racy is less critical, as shown in the DXR implementation (Sec. 6.6).

There are several limitations to the proposed method. Firstly,
although LSNIF can support some scene modifications, it cannot
handle topological changes or deformations of geometry without
additional training. Additionally, LSNIF does not predict texture
coordinates, restricting the use of textures in materials, such as nor-
mal mapping. Finding a stable training method for error-sensitive
texture coordinates remains challenging and should be a focus for
future extensions. Another area for improvement is the accuracy of

predicted geometric properties, which is necessary to completely
eliminate mesh representation or rasterization. The requirement
for large input vectors, derived from concatenated feature vectors
at multiple intersection points, leads to the use of a large network,
which negatively impacts inference speed. Future research should
explore more efficient input vector representations to accelerate
inference. Moreover, the proposed rendering pipeline inherits the
limitations of rasterization, such as restrictions on camera types. Ex-
tending the method to support other camera types than perspective
cameras, such as spherical or fisheye cameras, would be another
future direction. Currently, all objects represented by LSNIF are
assumed to be opaque, and we aim to extend our work to support
transmissive materials and sub-surface scattering. Also, to avoid
the self-intersection, we offset the ray origin inferred by LSNIF with
the small fixed epsilon value. Although the artifacts are not shown
up in the scene we tested, exploring an efficient way to choose a
robust epsilon value adaptively is one of our future works. Finally,
our method does not support levels of detail (LOD) for geometries.
Using different voxel resolutions and storing multiple LSNIF mod-
els for different LODs is a simple solution but inefficient in terms
of memory usage. Further analysis is required to develop a more
efficient LOD representation for LSNIF.

ACKNOWLEDGMENTS

We are grateful to Piotr Maciejewski and Shikhali Shikhaliev for
their help with the implementations. We thank Nikolai Nikiforov
for his help in designing the scenes we rendered in the project. We
also thank Alex Treviño for the Junkshop scene and the Stanford
Computer Graphics Laboratory for Stanford Bunny, Dragon,
Asian Dragon, and Thai Statue models.



ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA Shin Fujieda, Chih-Chen Kao, and Takahiro Harada
Li
gh

tin
g
Ch

an
ge

Tr
an
sf
or
m

Ch
an
ge

Figure 13: Frames from an animation sequence where light and transformation of objects are changing. All objects except for

the Cornell box itself and the spherical light are represented as LSNIF.

Figure 14: LSNIF objects rendered using the DirectX Ray Tracing API and Image-Based Lighting (IBL). The shader invokes

inference whenever there is a hit between a ray and the AABB of an LSNIF object. It supports both transformations of the

objects as well as camera movements.

REFERENCES

John Amanatides and Andrew Woo. 1987. A Fast Voxel Traversal Algorithm for Ray
Tracing. Proceedings of EuroGraphics 87 (08 1987).

AMD. 2020. AMD CDNA ARCHITECTURE. https://www.amd.com/content/dam/amd/
en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf.

AMD. 2023a. HIP Documentation. https://rocm.docs.amd.com/projects/HIP/en/latest/
index.html.

AMD. 2023b. RDNA 3 Instruction Set Architecture. https://www.amd.com/system/
files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle
Åström, and Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proceedings of the ACM on Computer Graphics and Interactive Techniques 3,
2 (2020), 15:1–15:23. https://doi.org/10.1145/3406183

Pieterjan Bartels and Takahiro Harada. 2022. Combining GPU Tracing Methods within
a Single Ray Query. In SIGGRAPH Asia 2022 Technical Communications (Daegu,
Republic of Korea) (SA ’22). Association for Computing Machinery, New York, NY,
USA, Article 17, 4 pages. https://doi.org/10.1145/3550340.3564231

Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross,
and Christopher Schroers. 2021. Neural frame interpolation for rendered content.
ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–13.

Per H. Christensen, David M. Laur, Julian Fong, Wayne L. Wooten, and Dana Batali.
2003. Ray Differentials and Multiresolution Geometry Caching for Distribution
Ray Tracing in Complex Scenes. Computer Graphics Forum (2003). https://doi.org/
10.1111/1467-8659.t01-1-00702

Cu Cui. 2024. Acceleration of tensor-product operations with tensor cores. ACM
Transactions on Parallel Computing 11, 4 (2024), 1–24.

Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and William R.
Mark. 2011. Razor: An architecture for dynamic multiresolution ray tracing. ACM
Trans. Graph. 30, 5, Article 115 (Oct. 2011), 26 pages. https://doi.org/10.1145/
2019627.2019634

Shin Fujieda and Takahiro Harada. 2024. Neural Texture Block Compression. In Work-
shop onMaterial Appearance ModelingJoint MAM -MANER Conference - Material Ap-
pearance Network for Education and Research, Jon Yngve Hardeberg and Holly Rush-
meier (Eds.). The Eurographics Association. https://doi.org/10.2312/mam.20241178

Shin Fujieda, Chih ChenKao, and TakahiroHarada. 2023a. Neural Intersection Function.
In High-Performance Graphics - Symposium Papers, Jacco Bikker and Christiaan
Gribble (Eds.). The Eurographics Association. https://doi.org/10.2312/hpg.20231135

Shin Fujieda, Atsushi Yoshimura, and Takahiro Harada. 2023b. Local Positional En-
coding for Multi-Layer Perceptrons. In Pacific Graphics Short Papers and Posters,

Raphaëlle Chaine, Zhigang Deng, and Min H. Kim (Eds.). The Eurographics Associ-
ation. https://doi.org/10.2312/pg.20231273

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Sho Ikeda, Paritosh Kulkarni, and Takahiro Harada. 2022. Multi-Resolution Geomet-
ric Representation using Bounding Volume Hierarchy for Ray Tracing. In AMD
Technical Report, No. 22-02-f322.

Chih-Chen Kao and Wei-Chung Hsu. 2018. Exploring hidden coherency of Ray-
Tracing for heterogeneous systems using online feedback methodology. The Visual
Computer 34, 5 (2018), 633–643.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: multi-resolution neural materials. ACM Trans. Graph. 40, 4, Article
175 (July 2021), 13 pages. https://doi.org/10.1145/3450626.3459795

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. In Proceedings of the 35th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause
(Eds.). PMLR, 2965–2974. https://proceedings.mlr.press/v80/lehtinen18a.html

Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J Doyle, Michael Guthe, and
Jiří Bittner. 2021. A survey on bounding volume hierarchies for ray tracing. In
Computer Graphics Forum, Vol. 40. Wiley Online Library, 683–712.

Microsoft. 2018. DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.
io/DirectX-Specs/d3d/Raytracing.html

Microsoft. 2024. D3D12 Work Graphs. https://microsoft.github.io/DirectX-Specs/d3d/
Raytracing.html

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. NeRF: representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (Dec. 2021), 99–106. https:
//doi.org/10.1145/3503250

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages.

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (Oct.
2019), 19 pages. https://doi.org/10.1145/3341156

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3550340.3564231
https://doi.org/10.1111/1467-8659.t01-1-00702
https://doi.org/10.1111/1467-8659.t01-1-00702
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.1145/2019627.2019634
https://doi.org/10.2312/mam.20241178
https://doi.org/10.2312/hpg.20231135
https://doi.org/10.2312/pg.20231273
https://doi.org/10.1145/3450626.3459795
https://proceedings.mlr.press/v80/lehtinen18a.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3341156


LSNIF: Locally-Subdivided Neural Intersection Function ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2025, NJ,USA

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. ACM Trans. Graph. 40, 4, Article 36 (July
2021), 16 pages. https://doi.org/10.1145/3450626.3459812

NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.nvidia.
com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering:
From Theory to Implementation (4th ed.). Morgan Kaufmann, Cambridge, MA, USA.

Gabin Schieffer, Daniel Araújo De Medeiros, Jennifer Faj, Aniruddha Marathe, and Ivy
Peng. 2024. On the rise of amd matrix cores: Performance, power efficiency, and
programmability. In 2024 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 132–143.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob
Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proc.
of the IEEE conference on computer vision and pattern recognition. 1874–1883.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. In Proc. of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Karthik Vaidyanathan, Marco Salvi, Bartlomiej Wronski, Tomas Akenine-Moller, Pon-
tus Ebelin, and Aaron Lefohn. 2023. Random-Access Neural Compression of
Material Textures. ACM Trans. Graph. 42, 4, Article 88 (July 2023), 25 pages.

https://doi.org/10.1145/3592407
Philippe Weier, Alexander Rath, Élie Michel, Iliyan Georgiev, Philipp Slusallek, and

Tamy Boubekeur. 2024. N-BVH: Neural ray queries with bounding volume hierar-
chies. In ACM SIGGRAPH 2024 Conference Proceedings.

Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient incoherent ray traversal on
GPUs through compressed wide BVHs. In Proceedings of High Performance Graphics
(Los Angeles, California) (HPG ’17). Association for Computing Machinery, New
York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3105762.3105773

Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. 2006. R-LODs: fast LOD-
based ray tracing of massive models. The Visual Computer 22, 9 (01 Sep 2006),
772–784. https://doi.org/10.1007/s00371-006-0062-y

Tizian Zeltner*, Fabrice Rousselle*, Andrea Weidlich*, Petrik Clarberg*, Jan Novák*,
Benedikt Bitterli*, Alex Evans, Tomáš Davidovič, Simon Kallweit, and Aaron Lefohn.
2024. Real-time Neural Appearance Models. ACM Trans. Graph. 43, 3, Article 33
(June 2024), 17 pages. https://doi.org/10.1145/3659577

Zheng Zeng, Zilin Xu, Lu Wang, Lifan Wu, and Ling-Qi Yan. 2023. Ray-aligned Occu-
pancy Map Array for Fast Approximate Ray Tracing. In Eurographics Symposium
on Rendering. https://doi.org/10.1111/cgf.14882

Xianyao Zhang, Gerhard Röthlin, Shilin Zhu, Tunç OzanAydın, Farnood Salehi, Markus
Gross, and Marios Papas. 2024. Neural Denoising for Deep-Z Monte Carlo Render-
ings. In Computer Graphics Forum. Wiley Online Library, e15050.

https://doi.org/10.1145/3450626.3459812
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1145/3592407
https://doi.org/10.1145/3105762.3105773
https://doi.org/10.1007/s00371-006-0062-y
https://doi.org/10.1145/3659577
https://doi.org/10.1111/cgf.14882

	Abstract
	1 Introduction
	2 Related Work
	3 Locally-Subdivided Neural Intersection Function
	3.1 Local Geometry Voxelization
	3.2 Sparse Hash Grid Encoding
	3.3 Network Design

	4 Path Tracing Pipeline with LSNIF
	5 Implementation Details
	5.1 Architecture
	5.2 Training
	5.3 Activation and Loss Functions

	6 Experimental Results
	6.1 Parameter Study
	6.2 Training Time
	6.3 Quality Evaluation
	6.4 Performance Evaluation
	6.5 Comparison with Related Approaches
	6.6 Implementation in DirectX Ray Tracing

	7 Conclusions and Future Work
	Acknowledgments
	References

