High-Performance Graphics (2025)
A. Knoll and C. Peters (Editors)

Real-Time GPU Tree Generation

Bastian Kuth! © Max Oberberger2® Carsten Faber! © Pirmin Pfeifer?® Seyedmasih Tabaei' © Dominik Baumeister>® Quirin Meyer1®

Coburg University of Applied Sciences and Arts, Germany ~ 2AMD, Germany

(b) Spring

(¢) Summer (d) Fall

Figure 1: From 51 KiB of data in our test scene, we generate and directly render the 1,200 individual trees and bushes of 20 different types
using work graphs in real-time. When represented as a conventional static triangle mesh with positions, normals, and texture coordinates, the
tree geometry would amount to 34.8 GiB. On our test path, we measure a median frame-to-frame time of 7.74 ms for generating and rendering
the trees, leaves, needles, fruits, and blossoms, as well as rendering the entire scene, grass, and visual effects. Our model supports procedural
displacement, seasonal changes, complex pruning, animation, culling, continuous LOD, and intuitive artistic control with real-time edits.

Abstract

Trees for real-time media are typically created using procedural algorithms and then baked to a polygon format, requiring
large amounts of memory. We propose a novel procedural system and model for generating and rendering realistic trees and
similar vegetation specifically tailored to run in real-time on GPUs. By using GPU work graphs with mesh nodes, we render
gigabytes-worth of tree geometry from kilobytes of generation code every frame exclusively on the GPU. Contrary to prior
work, our method combines instant in-engine artist authoring, continuous frame-specific level of detail and tessellation, highly
detailed animation, and seasonal details like blossoms, fruits, and snow. Generating the unique tree geometries of our teaser
test scene and rendering them to the G-buffer takes 3.13 ms on an AMD Radeon RX 7900 XTX.

CCS Concepts
* Computing methodologies — Rendering; Mesh geometry models; Parallel algorithms;

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-9473-8847
https://orcid.org/0000-0001-9648-3171
https://orcid.org/0009-0008-2879-3969
https://orcid.org/0009-0006-5247-5747
https://orcid.org/0009-0002-6304-8100
https://orcid.org/0009-0006-4346-8334
https://orcid.org/0000-0001-7073-442X

20of 11 Kuth et al. / Real-Time GPU Tree Generation

1. Introduction

3D geometry of highly detailed trees for interactive media are typ-
ically created with procedural tools [Uni24, Xfr22, Sid23, Ble25].
There, a procedural model uses few user parameters to generate
3D geometry of a complex tree. However, computing the 3D ge-
ometry may take up to several seconds. As a result, for fast ren-
dering, trees are exported multiple times at different levels of de-
tail (LODs) to a 3D geometry format, requiring large amounts of
memory. Graphics processing unit (GPU) performance has grown
exponentially over the years, but memory capacity and speed is in-
creasing much slower than compute capability. Thus, the degree
of detail is more and more limited by the memory capacity and
speed. Geometry compression [MKSS12, KOK*24, MSS24] may
increase the number of trees in GPU memory by about an order
of magnitude. But, the data that specifies a tree type in a proce-
dural model is surprisingly small and usually takes only hundreds
of bytes. This is several orders of magnitudes less than the gen-
erated 3D model. Thus, evolving a procedural model directly on
the GPU provides an extremely high compression. With the advent
of GPU work graphs [Mic24], a GPU can dynamically generate
work for itself. This greatly simplifies on-chip procedural genera-
tion [KOF*24]. We conclude that the next logical step for achieving
higher-detailed vegetation without a hefty memory footprint, is to
generate more geometry on the fly, in the LOD required for the
current frame. Therefore, we make the following contributions:

e We extend Weber’s and Penn’s procedural tree model [WP95]
incorporating smooth stem splines, procedural displacement,
leaves, needles, seasonal changes, complex pruning, and anima-
tion — all tailored to run in real-time with intuitive artistic control.

e We present a real-time GPU work graphs implementation of this
model. It directly forwards generated geometry to the rasterizer
keeping memory traffic low. Thus, we generate and render de-
tailed scenes with vegetation, as in Figure 1, in a few millisec-
onds. It supports culling, continuous LOD, and real-time edits.

e We are the first to utilize mesh nodes, a new work graphs exten-
sion, and provide a brief introduction.

e We propose several novel techniques applicable for GPU work
graphs, like specialized nodes, work coalescing, record compres-
sion, and pass fusion for deferred shadow mapping.

e We propose automated continuous LOD selection for maintain-
ing a constant target frame-rate.

2. Background

Plant generation uses rule-based algorithms [Hon71], gram-
mars [AKS84], particle systems [RB85], fractals [Opp86], L-
systems [Pru86], and biologic principles [dREF*88, PHL*09].
Other methods provide explicit artistic modelling control [WP95,
LD96, LD98, LRBP12] or create tree geometry from im-
ages [NFDO7,LWG*21]. Recently, Li et al. [LSP*24] propose to
use volumetric strands. Inverse modelling reconstitutes model pa-
rameters from a 3D tree model [SPK* 14]. Neural networks directly
learn branching rules [ZLB*24] or L-system grammars [LLB23].

To compute leaves, biologically motivated algorithms [RFL*05]
and methods that generate leaves inside a predefined out-
line [HSVGBO05, KK17] exist. Garg [Garl1] models leaves with
simple parameters to generate single- and multi-lobed leaves.

L-systems can be evaluated quickly on GPUs [LH04, LWW10].
Kohek and Strnad [KS14] propose a two-level geometry-shader-
based GPU implementation that significantly speeds tree genera-
tion over its serial implementation [PHL*09]. However, the method
suffers from high memory consumption, and generation runs in
the order of a second. Large-scale forest require a more complex
LOD, and generation takes multiple seconds [KSvK19]. Kohek
and Strnad [KS18] further provide a GPU implementation for a
particle-flow tree generation method [RCSLO3]. Their incremental
generation reverts to volumetric LOD for not-yet generated or dis-
tant trees. They limit generation-time budget per frame to 10 ms
and achieve 12 — 50 frames per second (fps) for 500,000 trees.
Fully generating 2,000 detailed trees takes about 0.8 s. Marvie et
al. [MBG"12] evaluate shape grammars with geometry and tes-
sellation shaders to create one tree in ca. 40ms. Steinberger et
al. [SKK™14a] evaluate the same tree with their system in 0.84 ms.
Kuth et al. [KOF*24] generate ivy in real-time with GPU work
graphs. For wind interaction, tree models simulate wind during
generation [WP95, PNH*14] or use a skeleton-like hierarchy on
an already generated tree [Zio07, HKW09, QYH* 18]. Steinberger
et al. [SKK* 14b] combine GPU shape-grammars with culling and
LOD to generate and render cities in real-time.

2.1. The Weber-Penn Model

We choose the Weber-Penn model [WP95] as our basis: It effi-
ciently maps to GPU work graphs and produces convincing 3D
models of arbitrary complexity. Further, we find it more accessi-
ble to artists than grammars for which GPU implementations ex-
ist [LWW10, MBG*12, SKK*14a]. It does not suffer from high
memory requirements [KS14, KSvK19] or from additionally gen-
erating a volume [KS18]. Finally, it natively supports animations.

Weber and Penn model their trees with up to four levels of stems:
One level 0 stem is the trunk of the tree. A level i stem has child
branches of level i + 1, which protrude from their parent. The last
level of stems has leaves as children. Each level is associated with
user configurable parameters regarding its curvature, length, radius
and taper, or number and placement of children. In addition to this
level hierarchy, the model also supports stems splifting into multi-
ple clones with the same set of parameters. Clones continue their
growth where their clone template left off, but with a different tra-
jectory each. The trajectory of a stem level is defined by generated
transformations, consisting of a position and an orientation each.
Each transformation forms a ring. In the original implementation,
for the stem geometry, two succeeding rings are then connected by
a truncated cone, called a segment. One of the user-configurable
parameters altering a stems trajectory is the upwards attraction. A
positive upward attraction causes branches to grow towards the sun.
A negative one models gravity pulling stems down. Leaf shapes are
selected from a predefined list and are not procedural. See Fig. 2 for
an example of a two-level Weber-Penn tree.

2.2. Mesh Nodes

We call a GPU program a shader, which is executed in thread
groups. A thread group consists of one or multiple single instruc-
tion, multiple data (SIMD) waves of usually 32 threads. A GPU

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

Kuth et al. / Real-Time GPU Tree Generation 3of 11

ring 3, clone 1 ring 3, clone 2

segment 2, clone |

segment 2, clone 2

ring 3, clone 0 child 6 _-child 7_sring 3, clone 3

child 5,

child 8§ —>

child 3,

segment 2, clone 0 segment 2, clone 3
ring 2, clone 0

child 4

ring 2, clone 1

S m—

segment 1, clone 0 segment 1, clone 1

child 2 —__

child 1 —

___—child0

segment 0

Level 1

———— Level 0 faeeremrreean, |

Figure 2: Weber-Penn Model. We mark the different elements of an
example tree with two levels. Level 0 splits into four clones.

work graph [Mic24] is a directed graph of shader nodes. Each node
can create work records for other nodes. Record execution schedul-
ing is handled by the hard-/firmware itself. While being previously
limited to compute shaders, new mesh nodes allow for direct out-
put of geometry to the rasterizer. Mesh nodes may not create work
records and are thus leaf nodes. A mesh node contains a mesh
shader, an optional pixel shader, and all other state associated with
a rendering pipeline, like viewport and culling settings. The mesh
launch mode spawns a grid of thread groups, similar to a mesh
shader draw call.

3. The Tree Generation Work Graph

The only input to our method is a scene with tree positions, and
parameter sets of tree fypes. In its simplest form, our work graph
looks like the following:

LevelORZSLevel 1} 128 1255 Level3

‘ 128
128 128 128 128 C256]
\ / H2) BundleLeaves
‘
o

where we mark each with the record struct it re-
ceives, and each edge with the maximum possible number of out-
put records. We deduced output counts from the modeled tree types
and the work graphs total limit of 256. The stem struct |S| contains
the first transformation of a stem level, consisting of a position and
rotation quaternion, together with other information for generating
a Weber-Penn stem level. The nodes perform cloning
when required, write stem segments to be drawn, and create records
for their children. For more detail see Sec. 3.1. To assure that there
is a leaf output in the end of the level hierarchy, trees with four stem

levels enter the graph at (Level0), trees with three levels at (LevelD),

etc. The draw stem struct [D] contains all information to draw one
stem segment using the node described in Sec. 3.2.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

thread [00 01 02 03 04 05 06 07

compute ring 1, clone... |[[0 0 0 O O 0 0 0
Iteration 0 wrile@forsegmemO,clone“. 0 - - - - - - -

write[S]forchild... [[0 1 - - - - - —

compute ring 2, clone... [0 0 0 O [1 1 1 1

Iteration 1 | write [D] for segment I, clone... [[0 - - —| [1 - - -
write[S]forchild... [|2 4 - | [3_ 5 - —

compute ring 3, clone... | [0 0| |1 (2 213 3

Iteration 2 | write @ for segment 2, clone... [|0 - 1 112 -113 -
write [S]forchild... [[8 | [6 | |7 -] |- -

Table 1: Stem Level Thread Allocation. We show our thread allo-
cation for computing the trunk in Fig. 2 for an eight-wide wave.
Inactive threads are marked with “-”. At each split, the threads get
divided up into colored blocks, one per clone.

The leaf struct |L|contains all information to draw one leaf. As one
leaf does not have enough geometry to fill a mesh shader group, we
employ an extra node in coalescing launch mode,
that collects up to 256 [L]into one leafBundle struct before dis-
patching it to in Sec. 3.3. All the record structs also
contain the respective index referencing the tree type and a random
seed that is derived from the seed of the parent node.

3.1. Stem Level

The (Level0—3) nodes receive an initial stem transformation, com-
pute the stem trajectory, write segment records for drawing that
stem, and create records for children branching away from them.

Thread Allocation Implementing the stems splitting into clones
could be solved by outputting new work records at each split, but
early experiments showed that the work graph launch overhead is
too high. Instead, we propose to perform the splitting between the
threads of a wave, thus we launch one group of 32 threads per
using the broadcasting launch mode. Consider the wave in Tab. 1
simplified to eight threads instead of 32 for brevity. Initially, all
threads of our example wave belong to the only clone 0. On each
split into s clones, we separate the ¢ threads into blocks, where a
block receives LH threads each. In a block, the thread with the
lowest index is responsible for writing the record for drawing the
segments of that clone. Child record writing is distributed among
the threads of the respective block. This approach can be extended
to multiple waves to support more than 32 clones, but we did not
model a tree type where this is required.

Hierarchical Generation Culling Writing of a child record is
omitted, if a conservative bounding capsule lies outside the view
and shadow frustum. This way, generation only runs for children
that have the chance to generate visible geometry. Similar culling
applies to writing the [D] or [L] records.

4of 11 Kuth et al. / Real-Time GPU Tree Generation

(b) Worley (¢) fractal Perlin

(d) bark

(a) surface

Figure 3: Procedural Bark Displacement. For our bark (d), we off-
set the (a) original surface by a weighted sum of (b) clamped Wor-
ley [Wor96] and (c) multiple frequencies of Perlin [Per02] noise.

3.2. Stem Drawing
The node is a mesh node that receives one [D]as input,

containing two stem transformations Proy € R3, Riom € SO(3)
and P, € R?, Rio € SO(3). To smooth out the coarse cone geome-
try from the original Weber-Penn model, we interpret a stem as a
cubic Hermite spline tube, where a stem segment is also a spline
segment. The spline control points of the segment are the positions
Piroms Pro- For the Hermite spline tangents, we extract the forward
axis of the quaternions Rfyom,Rto and scale them by the distance
| Po — Pirom || When writing a [D] record, the nodes

compute the following quantities:

Pixel Space Dimensions Different tessellation factors between
segments would lead to cracks. To have the same vertices between
segments, we define the factor for each ring in-between. For this,
we project the radius of a ring into the pixel space. If both radii
T'from/to O @ segment are smaller than a user defined threshold, e.g.,
one pixel, we cull the segment. In addition, we project the two ring
centers of one segment into pixel space and compute their distance
in pixels / as a sufficient estimation of the spline arc length.

Opening Angle To mitigate the generation of back-facing trian-
gles, we approximate the required tessellation opening angle 6 for
each ring. See Fig. 4 for reference. Let r be the ring radius and z the
rate in growth direction in world units. Then, Z—; is the change of ra-
dius at the ring. Given the cosine x of the angle between the camera
direction and the growth direction, the required opening angle

9=cos! (max (ﬂ . L7—1>) .
dz /1—x

As we assume orthographic projection, 0 is slightly more conser-
vative than needed for perspective projection. We also neglect the
radius variations caused by procedural displacements, but did not
find a case where this is a problem.

Tessellation Factors For stem tessellation, we employ fractional
odd spacing as shown in Figs. 4c and d. In the simplest case, a stem
is represented by a quad of four vertices and two triangles, where
we force 6 = % Going finer, two more vertices get smoothly inter-
polated into the edge. A segment requires four tessellation factors:
For the axis around the stem radius, the two outer tessellation fac-
tors f(rom) and 7(0) at the rings, and the inner tessellation factor
for this axis u. For the other axis along the stem only the factor v is

required, as no neighboring patch exists. With a user-defined con-
stant pixels per triangle A, the opening angles Ofom/o in radians,
the radii at the rings rfomyto, the tessellation factors are:

:f+t v—l

fzz'efrom'rfrom :z'eto'rto u _
A ’ A ’ 2’ A’

Displacement At close viewing distance, we blend in a procedural
bark displacement map, see Fig. 3 for details. In the pixel shader we
also evaluate the displacement as a normal map, together with other
procedural physically based rendering (PBR) maps.

3.3. Leaves

Leaves grow from the last level of stems offset by a parameter-
ized leaf stem length. Our leaf model is inspired by Garg [Garl1],
who describes the shape of leaves with quadratic B-spline curves.
We prefer it over other models [RFL*05, HSVGBO035, KK17], be-
cause of its speed and artistic expressiveness. For fast and pixel-
perfect evaluation of smooth leaf edges, we use the pixel shader
inside/outside test for quadratic Bézier curves proposed by Loop
and Blinn [LBOS]. If a pixel falls outside the quadratic Bézier curve
defined by the triangle, we discard it, similar to opacity mapping.

Geometry A leaf consists of one or multiple lobes. The user de-
fines one half of the shape of a lobe per tree type with the param-
eters shown in Fig. 5a. From that we compute vertices V; € R2.
Vo, V4, Vg are set as in Fig. 5a. We compute in-between vertices v}
to V3 of Fig. 5b from a weighted sum:

. V((;“) v(()))
B[220 0N Gn(o)r cos(a)l
Bl=g2 12 1M |
7 00 4 2 v Vj

sin?ﬁ) [cos(B)!

where the tangent scale . V5 to V7 are computed anal-
ogously. Note that the number of inner triangles increases when a
Bézier segment is not convex. Multiple lobes are determined with
the parameters of Fig. Sc. As the vertices and triangles of one leaf
do not adequately fill the output of a mesh shader group, we need to
combine multiple. Similar to the work graph instancing [KOF*24],

we use (BundleLeaves) in coalescing launch mode to combine up
to 256 small draw records of leaves [L]into one big leaf bundle [LB].

_ el
l="=5=

Level of Detail For a continuous leaf LOD, we reduce the amount
of geometry per leaf at increasing distance as shown in Fig. 5d to
f. As soon as the lower LOD is reached, we use a different mesh
node (DrawLeavesLow). This is implemented with a work graph
node array for (BundleLeaves). For multi-lobe leaves, we shrink

the rotation angle ¢ to merge all lobes into one at higher distances.
In addition, we employ the common trick to remove leaves at large
distances and compensate by increasing the scale of the remaining
ones. To make this continuous, disappearing leaves slowly shrink.

Material and Needles For more leaf detail, our pixel shader adds
a line strand in the center and parabolic strands to either side of the
leaf, affecting the base color, normal, and roughness of the surface.
The strand count, spacing, curvature, and thickness are further leaf
parameters shown in Fig. 6a. At very close distances as in Fig. 6b,

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

Kuth et al. / Real-Time GPU Tree Generation

(b) low angle, small ©

(a) high angle, large ©

Sof 11

V=140

S [=675@8) 7f!0mrfng S [=800) 7f10'"rfng

(¢) lower tessellation (d) higher tesselation

Figure 4: Segment Tessellation. We highlight the forward-facing part of a stem ring for a high (a) and low (b) camera angle. In (c, d), we
provide examples with 6 = % of different fractional tessellation factors and indicate the actual, ceiled tessellation factors in parentheses.

(a) parameters (b) triangulation (¢) lobes

(d) high LOD (e) low LOD (f) LOD interpolation

Figure 5: Leaf Geometry. (a) The user defines the lobe shape by the angles (0., B,7), an offset o, or a scale (sx,sy). (b) This results in Bézier
curves, shown in different colors, with their corresponding tessellation for later filling the leaf interior. (c) For multilobe leafs, the user
defines the lobe count n, the angle between lobes A, and a lobe scale-falloff k. (f) For continuous LOD, we interpolate the (d) high-LOD

positions to the edges of the (e) low-LOD.

(a) strand parameters

(b) final leaf (¢) final needles

Figure 6: Leaf Strand Parameters. Parameters for the curvature
exponent p, the rotation angle o, the strand spacing n, and the side
offset m define the strands in (a). We show the strands in our final
renderer for (b) a leaf, and (c) a needle leaf.

we add cellular detail with Worley noise [Wor96]. In case of a nee-
dle leaf in Fig. 6¢c, we use the same strands for opacity mapping.

3.4. Seasons

We specify a season parameter S € [0,4), where 0 corresponds to
full winter, 1 to spring, etc. We also support in-between values,
resulting in the continuous changes of Fig. 7. Tree species do not
necessarily respond to seasonal changes simultaneously. To model
this, we introduce a seasonal offset parameter per tree type. We
consider summer as the default season. Next, we describe what we
change to obtain other seasons:

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

September October November December

July August

Figure 7: Seasons. We show how the generation of an apple tree
changes over the course of a year.

Snow For winter of Fig. 1a, we omit rendering of leaves. Needles
receive a white frosty outline. To model snow on stems, we increase
the displacement from Fig. 3 for stem portions pointing upwards.
These extruded regions receive snow material properties. We also
decrease the vertical stem attraction to make stems bend down with
increasing snow load.

Blossoms In spring, the leaves in Fig. 1b grow back. We add blos-
soms rendering them like leaves with lobes arranged in a circle.

Fruits In summer, a random fraction of blossoms grows into fruits
of Fig. 1c. We use a cubic Bézier curve to model one side of a
fruit profile. This profile is then rotated around the fruit’s vertical

60f 11 Kuth et al. / Real-Time GPU Tree Generation

@0™ b)sm

(c)]0% (d)]5% (e) 20%

Figure 8: Wind Speed Comparison. We accumulate the motion of
a black tupelo tree in fall under varying wind speeds over a 10
second period. Wind blows from the right and pulls the branches

and leaves to the left. Also see supplemental video.

axis and tessellated in a mesh shader. Fruits decrease the vertical
attraction of their father stem.

Shedding In fall, leaf colors of Fig. 1d change from yellow to red
to brown. Later, leaves shed and disappear. Each leaf has a seasonal
offset, making leaves vanish gradually.

3.5. Animation

The Weber-Penn model describes basic wind animation but ignores
wind direction. We incorporate wind direction during stem gener-
ation, by rotating each segment away from the wind source. The
amount of rotation chaotically oscillates with the current timestamp
using Perlin noise: We scale the amplitude by the segment radius
and the frequency by the inverse square-root of the stem length.
The succeeding segments and children are generated with the ani-
mated transformation of the current segment. This implicitly gives
us a highly detailed skeleton with one bone per segment without
the need for explicitly storing it. For the Sassafras tree of Tab. 2
this would amount for 16.5 k bones. Thus, we obtain the highly de-
tailed animations shown in Fig. 8 and the supplemental video. If
more control over the animation is required, we suggest adding an
additional density parameter to adjust the elasticity of a stem.

3.6. Advanced Editing

To add better real-time editing capabilities, we extend the stem tra-

jectory computation of (Level0-3).

Custom Spline Editing We can bias the stem transformations of
a tree trunk towards b user-defined transformations. Let ¢ be the
number of stem segments. The i-th segment transformation with
0 <i < c is biased towards the relative next user transformation
j= {%J ,0 < j < b. We use this feature in Sec. 4 with two custom
transformations to model hedge arches of our park test scene.

Object Pruning Vegetation growing through solid walls is a com-
mon immersion-breaker. We can decide to shorten stems if they col-
lide with certain objects. We use hardware ray-tracing to shoot rays
into the growth direction [KOF*24]. If there is a hit, we shorten the
length of the stem accordingly.

3.7. Advanced Optimizations

Mesh Group Coalescing In early experiments, we noticed a dras-
tic performance improvement by combining multiple dispatches to
mesh nodes into a single one. Thus, similar to the
node, we also employ a bundler node in coalescing launch mode
before launching any mesh node. Note that this optimization might
not apply to other architectures or driver versions.

Quad Stem Dispatching a full mesh shader group for small stems
only consisting of two triangles and four vertices is wasteful. To
optimize this, we employ a special bundler and mesh node that ren-
ders a bundle of several of these quads per group, similar to the
leaves bundling. This is again implemented as a node array. In the
future, it could be feasible to employ even more specialized mesh
shaders for different tessellation scenarios.

Stem Leaves Mesh Node As described in Sec. 3.2, we omit thin
stems for rendering. We extend this idea by creating a special mesh
node that creates and samples a stem spline to
only output the geometry for the leaves. The actual stem geometry
is not drawn. With this node, we can skip the generation of the last
stem level at far camera distances.

Record Compression To save on memory bandwidth and capacity
during work graph execution, we propose to compress work records
when submitting them and to decompress again on node launch.
Besides using trivial bitfield compression of limited range integers
like the tree level or type, we extend the octahedron mapping for
unit vectors [MSS™10] to compress the rotational component of the
stem transformations, thus a unit quaternion. For compression, we
quantize the imaginary parts of the quaternion in L1 norm into 10
bits each and store them, along with the sign bit of the original real
component, in 32 bits. This enables storing an entire stem trans-
formation in 4 hardware dwords. While it is often feasible to omit
the sign bit of the real component by negating the whole quater-
nion when r < 0, we include it for correct interpolation of the stem
tessellation frames.

3.8. Pass Fusion for Deferred Shadow Mapping

We use deferred rendering [DWS*88] with shadow map-
ping [WSPO04]. That would typically require a geometry pass to fill
the G-buffers, a shadow pass to create a shadow map, and a com-
position pass to compute lighting. This, however, would force us to
store the full generation result, or to generate geometry twice, i.e.,
once for the geometry and once for the shadow pass. Instead, we
propose to fuse geometry and shadow pass and run the inner work
graph nodes of our generation only once. For this, we submit to an
extra mesh node that creates our shadow map in our graph of (1):

(o DrawStemShadow

DrawLeavesShadow)

and are the nodes that fill the
G-buffers. We duplicate them to (DrawStemShadow) and

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

Kuth et al. / Real-Time GPU Tree Generation Tof 11

f/k‘ 2
\\

(&) Avenuc

Figure 9: Park Test Scene. Our scene is based on the @rstedsparken
public park in Copenhagen, Denmark. In pink, we visualize our test
camera path going through different (a—e) regions encircled in red.

(DrawLeavesShadow) to create our shadow map. For those nodes,
we can apply several shadow-map generation optimizations: we
create geometry at a lower level-of-detail, evict the pixel shader,
and tune pipeline-state and mesh shader. Note that must
execute on the union of the light and the camera frustum.

Shadow nodes and non-shadow nodes must operate on distinct
depth buffers. However, we cannot switch depth buffers during a
work graph launch. Instead, we create a single depth buffer large
enough for both tasks. Then, we partition it into two texture array
slices, and set the corresponding slice index in the mesh shaders.

3.9. Automatic Level of Detail

Dynamic resolution scaling (DRS) [Bin11] is a common optimiza-
tion for video games. Here, the rendering resolution is dynamically
reduced for demanding scenes to meet a target frame time. How-
ever, sudden resolution changes are conspicuous and can break ef-
fects based on temporal accumulation. As our generation runs every
frame and changing quality is continuous, we can dynamically ad-
just the geometric detail of our trees. For each quality parameter,
like the pixels per triangle from Sec. 3.2 or the leaf density from
Sec. 3.3, the user configures an acceptable range. The parameter
ranges are then ordered by priority: the least noticeable parameter
gets degraded first if the performance goal was not met in the last
frame. If the performance is better than the goal, the parameters are
reverted again. Constraining the maximum rate of change of the
parameters assures that no sudden quality change occurs.

4. Results and Discussion

We evaluate the Direct3D12 implementation of our method. All
measurements were taken on an AMD RX 7900 XTX GPU, driver
version 24.30.31.03, at a 1920x 1080 resolution. We use the scene
of Fig. 9. It spans 6.6 hectares and is filled with 1,200 trees and
bushes of 20 different types, including 17 with custom splines.

Memory Requirements Tab. 2 shows the theoretical memory
needed to render our test scene without our method. We assume the
highest static discrete tree LOD has all leaves at maximum quality,
and stems tessellated with one triangle per centimeter. For refer-
ence, the highest quality tree of the PBRT landscape scene [PJH23]

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

One Sassafras Tree Trees of Entire Scene
Stem Vertices 1,479,896 452MiB 493,756,958 14.7GiB
Stem Triangles 2,038,580 23.3MiB 684,357,207 7.6 GiB
Leaf Vertices 1,974,720 60.3MiB 302,936,912 9.0GiB
Leaf Triangles 1,974,720 22.6MiB 302,936,912 3.4GiB
Total 151.4MiB 34.8GiB

Table 2: Theoretical Memory. We list vertex and triangle count and
theoretical memory requirements for the stem and the leaves of one
Sassafras tree and tree geometry of the entire scene. As we create
the required geometry on the fly, the actual permanent memory re-
quirements for the geometry is only ca. 51 KiB.

amounts to about 4 million triangles, similar to our Sassafras tree.
We assume one vertex to consist of a position, a normal, and a
texture coordinate, amounting to 32 bytes. The memory required
for just the trees of the scene would exceed the 24 GiB memory
capacity of our high-end GPU. Note that recreating features of
our method such as LODs, animation, seasonal changes, or nor-
mal mapping would require significantly more memory. In com-
parison, our method only requires 704 bytes of parameters per tree
type. With 20 tree types, 1,200 initial transformations with a type
index, and 17 custom spline positions, this amounts to 51 KiB for
the trees in the scene. A work graph requires temporary backing
memory to store records, with the size range determined by the
driver. Users must select a size within this range. Our work graph,
including nodes for grass and asset rendering, as well as debug-
ging, requires 1.5 GiB of backing memory. However, testing across
different GPU architectures and driver versions shows significant
variation in this requirement. Note that this memory can be reused,
freed or re-allocated outside the work graph execution.

Performance Fig. 10 plots the time required to generate and ren-
der different fractions of the frames from the camera path of
Fig. 9. The median tree generation and rendering time to the G-
buffer is 3.13 ms. As generation does not have to run twice for the
shadow map, measuring it together with the G-buffer amounts to
4.72 ms. Frame-to-frame timings of 7.74 ms additionally contains
rendering all other scene geometry including grass, the compositing
pass, screen space ambient occlusion and reflections, temporal anti-
aliasing, tone mapping, and present. Furthermore, the performance
plots follow the total number of rasterized triangles of a frame, ex-
cept for the orchard region, where we generate many extra triangles
for blossoms. In addition, our automatic LOD succeeds in keeping
the times under the set target of 8.3 ms.

Continuous LOD In Fig. 11, we demonstrate how the tree gener-
ation changes at different distances to the camera, and measure the
number of triangles. Our method succeeds in preserving the overall
appearance of the full detailed 3.6 M triangle tree, while drastically
reducing the amount of geometry to 8.7 k when far away. To evalu-
ate how seamless this LOD change is, we take the interval of Fig. 11
from a to b, and demonstrate how our smooth LOD distributes the
resulting ALIP [ANA*20] error to several frames compared to a
conventional LOD switch. As can be seen, in-between frames fur-

8of 11 Kuth et al. / Real-Time GPU Tree Generation

T T
15

—
(=]

Time (ms)

T T :
———— G-Buffer Time

——— G-Buffer & Shadows Time

Frame-to-Frame Time

N
(e}

— — — - Frame-to-Frame Auto-LOD Time
120 Hz Target Time

Frame-to-Frame Triangles

(O8]
o

[\
o

(suor[rur) so[3ueLL],

—_
(=]

Figure 10: Performance along a Camera Path. We fly through our scene from Fig. 9, measure frame times, and (a—e) mark the corresponding
regions from the camera path. In green, we plot the time to generate and render the tree geometry of the current frame to the G-buffer. In
blue, we additionally enable creation of the shadow map. Red shows the total frame-to-frame time, including all other graphical effects, with
the secondary axis dashed showing the total number of triages for this. The violet plot shows this number with our auto-LOD enabled.

ther away from the camera have a higher error to their predecessor.
This is desirable, because changes at greater distance are less visi-
ble. The greatest visual error happens between image (10) and (14),
where leaf lobes start to merge as described in Sec. 3.3. This pro-
cess finishes between image (13) to (14), which explains the sudden
decline in number of triangles at 50 m. Note that, for a reasonable
camera speed, many more intermediate frames would be generated,
as shown in the supplemental video.

Editing A user interface allows changing tree parameters. As the
parameters fit in ca. 1 KiB, GPU upload times after edits are neg-
ligible. Thus, we get real-time feedback making modelling intu-
itive and efficient. Fig. 13 and the supplemental video show tree
edits. Same as the original model, we do not automatically handle
tree-self or tree-tree intersection, but can manually prevent them by
placing pruning meshes.

5. Conclusion and Future Work

We presented a system and model for real-time tree generation on
GPUs. By generating tree geometries for the current frame on the
fly, our method dramatically reduces memory requirements for de-
tailed vegetation. In future work, we want to explore how real-time
ray-tracing can profit from fast vegetation generation.

Acknowledgments

We thank Niels Frohling and Gustaf Waldemarson.

References

[AK84] AoNO M., KUNII T. L.: Botanical tree image generation. /[EEE
Computer Graphics and Applications 4, 5 (1984), 10-34. 2

[ANA*20] ANDERSSON P., NILSSON J., AKENINE-MOLLER T., Os-
KARSSON M., ASTROM K., FAIRCHILD M. D.: ALIP: A Difference
Evaluator for Alternating Images. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 3,2 (2020), 15:1-15:23. 7

[Binl1] BINKS D.: Dynamic resolution rendering. In Game Developers
Conference (GDC) (2011). 7

[Ble25] BLENDER ONLINE COMMUNITY: Blender 4.3, 2025. URL:
www.blender.org. 2

[dREF*88] DE REFFYE P., EDELIN C., FRANCON J., JAEGER M.,
PUECH C.: Plant models faithful to botanical structure and development.
SIGGRAPH Comput. Graph. 22,4 (June 1988), 151-158. 2

[DWS*88] DEERING M., WINNER S., SCHEDIWY B., DUFFY C.,
HUNT N.: The triangle processor and normal vector shader: a visi system
for high performance graphics. In Proceedings of the 15th Annual Con-
ference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1988), SIGGRAPH 88, Association for Computing Machin-
ery, p. 21-30. 6

[Garll] GARG S.: Procedural Modeling and Constrained Morphing of
Leaves. PhD thesis, National University of Singapore, 2011. 2, 4

[HKWO09] HABEL R., KUSTERNIG A., WIMMER M.: Physically guided
animation of trees. Computer Graphics Forum (Proceedings EURO-
GRAPHICS 2009) 28, 2 (Mar. 2009), 523-532. 2

[Hon71] HONDA H.: Description of the form of trees by the parameters
of the tree-like body: Effects of the branching angle and the branch length
on the shape of the tree-like body. Journal of Theoretical Biology 31, 2
(1971), 331-338. 2

[HSVGBO05] HONG S. M., SIMPSON B., V. G. BARANOSKI G.: Inter-
active venation-based leaf shape modeling. Computer Animation and
Virtual Worlds 16, 3-4 (2005), 415-427. 2, 4

[KK17] Kim D., Kim J.: Procedural modeling and visualization of mul-
tiple leaves. Multimedia Syst. 23, 4 (July 2017), 435-449. 2, 4

[KOF*24] KUTH B., OBERBERGER M., FABER C., BAUMEISTER D.,
CHAJDAS M., MEYER Q.: Real-time procedural generation with gpu
work graphs. Proceedings of the ACM on Computer Graphics and Inter-
active Techniques 7, 3 (2024), 1-16. 2,4, 6

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

www.blender.org

Kuth et al. / Real-Time GPU Tree Generation 9of 11

/

(@) 10m, 3.5 M triangles (b) 50m, 78.9 k triangles (c) 100m, 44.7 k triangles (d) 150m, 9.8 ktriangles (e) 200m, 5.8 k triangles

Figure 11: Continuous LOD. We demonstrate continuous LODs at different camera distances. Top row shows the geometry from the camera
the LOD is meant for. Mid and bottom rows show the resulting geometry from fixed perspectives to visualize the geometry simplification.

(a) Discrete LOD

SO[SUBLLL Y 6'8L

3.5M Triangles

14)

3.0M 29M 2.8M 27M 868.8k 3414k 319.7k 303.8k 292.8k 282.6k

(b) Continuous LOD (Ours)

Figure 12: Discrete versus Continuous LOD. (a) shows a conventional, sudden LOD switch from frame (1) to (14) with a high \LIP error.
In (b), our method can distribute the change over additional frames (2 — 13), also distributing the visible \LIP error.

(a) Baseline (b) More Branches (c) More Apples (d) Vertical Attraction (e) Custom Spline Bias (f) Pruning

Figure 13: Apple tree editing. All edits are visible for the user instantly in the next rendered frame. From a given baseline, we can (b) alter
number of branches and (c) apples, (d) push the stems upwards, (e) bend the trunk spline, or (f) prune with an object.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

10of 11

[KOK*24] KUTH B., OBERBERGER M., KAWALA F., REITTER S.,
MICHEL S., CHAJDAS M., MEYER Q.: Towards Practical Meshlet
Compression. In Vision, Modeling, and Visualization (2024), Linsen L.,
Thies J., (Eds.), The Eurographics Association. 2

[KS14] KOHEK V., STRNAD D.: Interactive synthesis of self-organizing
tree models on the GPU. Computing 97 (02 2014), 145-169. 2

[KS18] KOHEK V., STRNAD D.: Interactive large-scale procedural forest
construction and visualization based on particle flow simulation. Com-
puter Graphics Forum 37, 1 (2018), 389—402. 2

[KSvK19] KOHEK V., STRNAD D., ZALIK B., KOLMANIC S.: Inter-
active synthesis and visualization of self-organizing trees for large-scale
forest succession simulation. Multimedia Systems 25, 3 (2019). 2

[LBO5] Loop C., BLINN J.: Resolution independent curve rendering us-
ing programmable graphics hardware. In ACM SIGGRAPH 2005 Papers.
2005, pp. 1000-1009. 4

[LD96] LINTERMANN B., DEUSSEN O.: Interactive modelling and an-
imation of branching botanical structures. In Proceedings of the Euro-
graphics Workshop on Computer Animation and Simulation "96 (Berlin,
Heidelberg, 1996), Springer-Verlag, p. 139-151. 2

[LD98] LINTERMANN B., DEUSSEN O.: A modelling method and user
interface for creating plants. Computer Graphics Forum 17, 1 (1998),
73-82. 2

[LHO4] LAcz P., HART J.: Procedural geometry synthesis on the GPU.
In Workshop on General Purpose Computing on Graphics Processors
(2004). 2

[LLB23] LEEJ. J., L1 B., BENES B.: Latent L-systems: Transformer-
based Tree Generator. ACM Trans. Graph. 43, 1 (Nov. 2023). 2

[LRBP12] LONGAY S., RUNIONS A., BOUDON F., PRUSINKIEWICZ P.:
TreeSketch: Interactive Procedural Modeling of Trees on a Tablet. In Eu-
rographics Workshop on Sketch-Based Interfaces and Modeling (2012),
Singh K., Kara L. B., (Eds.), The Eurographics Association. 2

[LSP*24] LiB., SCHWARZ N. A., PALUBICKI W., PIRK S., BENES B.:
Interactive invigoration: Volumetric modeling of trees with strands. ACM
Trans. Graph. 43,4 (July 2024). 2

[LWG*21] Liu Z., WU K., Guo J., WANG Y., DEUSSEN O., CHENG
Z.: Single image tree reconstruction via adversarial network. Graph.
Models 117, C (Sept. 2021). 2

[LWW10] Lipp M., WONKA P., WIMMER M.: Parallel genera-
tion of multiple L-systems. Computers & Graphics 34, 5 (2010).
CAD/GRAPHICS 2009 Extended papers from the 2009 Sketch-Based
Interfaces and Modeling Conference Vision, Modeling & Visualization.
2

[MBG*12] MARVIE J.-E., BURON C., GAUTRON P., HIRTZLIN P.,
SOURIMANT G.: GPU Shape Grammars. Computer Graphics Forum
(2012). 2

[Mic24] MICROSOFT COOPERATION: DirectX-Specs, 2024. URL:
https://github.com/microsoft/DirectX-Specs. 2

[MKSS12] MEYER Q., KEINERT B., SUSSNER G., STAMMINGER M.:
Data-parallel decompression of triangle mesh topology. Computer
Graphics Forum 31, 8 (2012), 2541-2553. 2

[MSS*10] MEYER Q., SUSSMUTH J., SUSSNER G., STAMMINGER M.,
GREINER G.: On floating-point normal vectors. In Computer Graphics
Forum (2010), vol. 29, Wiley Online Library, pp. 1405-1409. 6

[MSS24] MLAKAR D., STEINBERGER M., SCHMALSTIEG D.: End-to-
end compressed meshlet rendering. Computer Graphics Forum 43, 1
(2024). 2

[NFDO7] NEUBERT B., FRANKEN T., DEUSSEN O.: Approximate
image-based tree-modeling using particle flows. ACM Trans. Graph. 26,
3 (July 2007), 88—es. 2

[Opp86] OPPENHEIMER P. E.: Real time design and animation of fractal
plants and trees. In Proceedings of the 13th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA, 1986),
SIGGRAPH ’86, Association for Computing Machinery, p. 55-64. 2

Kuth et al. / Real-Time GPU Tree Generation

[Per02] PERLIN K.: Improving noise. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques (2002),
pp. 681-682. 4

[PHL*09] PArUBICKI W., HOREL K., LONGAY S., RUNIONS A.,
LANE B., MECH R., PRUSINKIEWICZ P.: Self-organizing tree models
for image synthesis. ACM Trans. Graph. 28, 3 (July 2009). 2

[PJH23] PHARR M., JAKOB W., HUMPHREYS G.: Physically based ren-
dering: From theory to implementation. MIT Press, 2023. 7

[PNH*14] PIRK S., NIESE T., HADRICH T., BENES B., DEUSSEN O.:
Windy trees: computing stress response for developmental tree models.
ACM Trans. Graph. 33, 6 (Nov. 2014). 2

[Pru86] PRUSINKIEWICZ P.: Graphical applications of L-systems. In
Proceedings on Graphics Interface ’86/Vision Interface '86 (CAN,
1986), Canadian Information Processing Society, p. 247-253. 2

[QYH*18] QUIGLEY E., YU Y., HUANG J., LIN W., FEDKIW R.: Real-
time interactive tree animation. /EEE Transactions on Visualization and
Computer Graphics 24, 5 (2018), 1717-1727. 2

[RB85] REEVES W. T., BLAU R.: Approximate and probabilistic algo-
rithms for shading and rendering structured particle systems. In Proceed-
ings of the 12th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1985), SIGGRAPH ’85, Associ-
ation for Computing Machinery, p. 313-322. 2

[RCSLO3] RODKAEW Y., CHONGSTITVATANA P., SIRIPANT S.,
LURSINSAP C.: Particle systems for plant modeling. Plant growth
modeling and applications. Proceedings of PMAO3, Hu B.-G., Jaeger
M.,(Eds.). Tsinghua University Press and Springer, Beijing (2003). 2

[RFL*05] RUNIONS A., FUHRER M., LANE B., FEDERL P,
ROLLAND-LAGAN A.-G., PRUSINKIEWICZ P.: Modeling and visual-
ization of leaf venation patterns. ACM Trans. Graph. 24, 3 (July 2005),
702-711. 2,4

[Sid23] SIDE EFFECTS SOFTWARE INC.: Houdini 20,2023. URL: www .
sidefx.com/products/houdini. 2

[SKK*14a] STEINBERGER M., KENZEL M., KAINZ B., MULLER J.,
WONKA P., SCHMALSTIEG D.: Parallel generation of architecture on
the GPU. Computer Graphics Forum (2014). 2

[SKK*14b] STEINBERGER M., KENZEL M., KAINZ B., WONKA P,,
SCHMALSTIEG D.: On-the-fly generation and rendering of infinite cities
on the gpu. In Computer graphics forum (2014), vol. 33, Wiley Online
Library, pp. 105-114. 2

[SPK*14] StAvA O., PIRK S., KRATT J., CHEN B., MZCH R.,
DEUSSEN O., BENES B.: Inverse procedural modelling of trees. Com-
put. Graph. Forum 33, 6 (Sept. 2014), 118-131. 2

[Uni24] UNITY TECHNOLOGIES: SpeedTree - 3D Vegetation Modeling
and Middleware, 2024. URL: https://speedtree.com. 2

[Wor96] WORLEY S.: A cellular texture basis function. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, Association
for Computing Machinery, p. 291-294. 4

[WP95] WEBER J., PENN J.: Creation and rendering of realistic trees. In
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques (1995), pp. 119-128. 2

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.: Light space
perspective shadow maps. In Proceedings of the Fifteenth Eurographics
Conference on Rendering Techniques (2004), EGSR’04, Eurographics
Association, p. 143-151. 6

[Xfr22] XFROG INC.: Xfrog, 2022. URL: www.xfrog.com. 2

[Zio07] Z1oMA R.: GPU-generated procedural wind animations for trees.
In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley Professional, 2007,
ch. 6.2

[ZLB*24] ZHou X.,L1B., BENES B., FEI S., PIRK S.: Deeptree: Mod-
eling trees with situated latents. IEEE Transactions on Visualization and
Computer Graphics 30, 8 (Aug. 2024), 5795-5809. 2

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/microsoft/DirectX-Specs
www.sidefx.com/products/houdini
www.sidefx.com/products/houdini
https://speedtree.com
www.xfrog.com

