
[AMD Public Use]

TRESSFX 5.0/
UNREAL ENGINE

INTEGRATION

DEVELOPER

GUIDE
For AMD TressFX/Epic Games Unreal
Engine Integration

THIS GUIDE:

• Describes new features of the TressFX
integration into Unreal Engine 4.27.2
(branch available to developers with an
Epic Games EULA/GitHub account).

• Documents shader parameters,
architecture, new features, Maya
Exporter, and more.

• Includes basic tutorials for creating hair,
using TressFX Exporter, and importing
into Unreal.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

1

Contents

TressFX 5.0 – Overview….………………………………….…………………………………………………..……………….………………..3

TressFX – from 4.1 to 5.0…….3

The TressFX 5.0 Unreal Engine Integration……………………………………………………………………………………………….4

Folder Structure………………………………………………………………………………………….……………………………….4

Integration steps…………………………………………………………………………………………………..…………………….5

UE4 TressFX 5.0 Architecture………...6

Collision Mesh….…………………………………………………………………………………………………..……………………..6
Signed Distance Field (SDF)…………………………………………………………………………….……………………………7

Velocity Shock Propagation (VSP)…………………………………………………………………………………………………8

Guide and Follow Hair System………………………………………………………………………………………………………9

Unreal Engine Integration Architecture………………………………………………………………………………………..9

TressFX Engine Hooks……………………….………………….……..…….……………………………….………………..9

TressFX Plugin Module………………………………………………………………………………………………………..10

TressFX Renderer Module…………………………………………………………………………………………………..11
UE4 TressFX 5.0 Material and Editors.………………………………………………………….…………………………………..…...13

TressFX Material………..13

TressFX AssetEditor……14

Material Panel…………………………………..………………………………………………………….……………………14

Strands Panel……..14

LODs Panel…………………….…………………………………………………………………………………………………..15

Simulation Panel………16
TressFXMesh AssetEditor…………………………..………………………………………………………………………………17

Collision Mesh…….17

SDF……..17

TressFX BlueprintEditor……………………………..…………………………………………………………………………..…18

TressFXComponent……….18

TressFXSDFComponent……………………………………………………………………………………………………….19

Lights………………………………….……………………………………………………………………………………………………..20

Point Lights…………………………………………………………………………………………………….…………………..20
Spot Lights……..20

Directional Lights………20

Sky Lights……….20

Lighting Channels……..20

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

2

Art Export: Exporting TFXxxx Files (TressFX Exporter Plugin for Autodesk Maya)…………………………………...22

Summary………………….……………………………………………….…………………………………….…………………………22

Installation of the Maya TressFX Plugin……………………………………………………………………………………..22

Exporter Settings.………24

Hair Settings….…………………………………..………………………………………………………….……………………24
Collision Settings………29

Tutorials……………………………………………………….………………………………………………………………………………………..31

A Quick Tutorial on Creating a Basic Skeletal Mesh in Maya………………………………………………………31

Introduction……..……..31

Guidance……….31

Creating and Exporting TressFX 5.0 Hair from Maya……………………………………………………………..…..37

Introduction…….…37
Requirements…….37

Guidance……...38

Using UE4 TressFX 5.0 Components and Materials…….…………………………………………………….……….50

Importing UE4 TressFX 5.0 Assets……………….…………………..…………………………….………..…………50

Creating UE4 TressFX 5.0 Material………………………………………….………………………………….………51

Creating UE4 TressFX 5.0 Blueprint Actor…………………………….……………………………………….……53

Using UE4 TressFX 5.0 Triangle based Skinning……………………..…..…………………………..….………56

Disclaimer……58

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

3

TressFX 5.0 – Overview
This version of TressFX has been developed on Unreal Engine 4.26 and UE4.27, but we will support UE5 in the
next revision.

In this version, we have improved the Maya exporter to handle more complicated animation assets, with
support for up to 16 binding bones. We have also improved the asset editors and visualization tools.

Lastly, we have also improved light handling for TressFX, including cast/receive shadow implementation
support for more rendering features in UE4 (TAA, SkyLight, Marschner Shading Model) which are more
compatible with the Unreal Engine rendering pipeline.

TressFX – from 4.1 to 5.0
This section briefly covers the changes in TressFX from 4.1 to 5.0.

Maya Python Exporter
• Both strand and collision mesh vertices now support up to 16 binding bones. The previous limit was 4.
• Caution: Strand/Collision Mesh needs to be exported in the right initial position and keyframe.

Asset Editor & Visualization Tools
• LevelMap/Asset/Blueprint editor support.
• Created a new visualization toolchain to verify assets correctness (tangents, collision mesh, etc.).

Simulation
• Resolved issue with animation data lagging a frame behind UE4 skinned mesh animation data.
• Improved simulation editor and implemented SDF editor.
• Moved SDF BoundingBox computation to GPU-side.
• Improved SDF feature.

Rendering
• TAA/SkyLight/StrandsUV support.
• Marschner Shading Model support.
• Cast/Receive Shadows support.
• Triangle based Skinning support.
• Improved resource management for editors.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

4

TressFX 5.0 Unreal Engine Integration
This section details how to integrate TressFX 5.0 into Unreal Engine.

Folder Structure
TressFX 5.0 package is broken down into several subfolders, as shown below.

Asset
Ratboy Assets have been imported into UE4. You can directly copy it into the Content folder of
your UE project.

Doc
Folder containing this document: TressFX5.0 DeveloperGuide.pdf

Engine
Folder containing all of the source code for this project divided into three subfolders.

Plugins
Folder containing the Editors/Importer/Simulation for UE4 TressFX 5.0.

5

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

Shaders
Folder containing the shaders for UE4 TressFX 5.0. There is only one modified Unreal Engine shader in this
folder, MaterialTemplate.ush.

Source
Folder containing the engine C++ files for UE4 TressFX 5.0. Modified engine C++ files are marked with an
AMD TressFX BEGIN/AMD TressFX END segment to mark where code has been changed.

Patch
Folder containing the git patch file of UE4.27.2.

Snapshots
Folder containing some screenshots of UE4 TressFX 5.0.

Tools
Folder containing the Maya2018 exporter which is used to export *.tfx, *.tfxbone, and *.tfxmesh files.

Integration steps (UE4.27.2)
In order to integrate TressFX 5.0 into UE4 follow these simple steps:

1. If you haven’t changed the UE4 engine files or shaders in your project, you can directly integrate the
patch highlighted in the previous section: Patch/UE4.27.2_TressFX5.0.patch:

git am < UE4.27.2_TressFX5.0.patch

Alternatively, copy and replace the Engine folder to your local Engine folder.

• Engine/Plugins
• Engine/Shaders
• Engine/Source

2. If you have already made changes to the UE4 engine files that TressFX is going to replace, copy the
AMD TressFX BEGIN/END segments into the corresponding C++ files and shaders.

3. Run GenerateProjectFiles.bat
4. Recompile UE4.sln
5. Create a new Project with StarterContent
6. Enable the plugin TressFX 5.0 in PluginManager
7. Copy the Asset/Content folder to the new project’s Content folder
8. Startup the project and open the NewWorld LevelMap. Make sure to enable CastDeepShadow for

all Lights (except SkyLight) to ensure everything renders correctly

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

8

UE4 TressFX 5.0 Architecture
UE4 TressFX 5.0 is a bone-based skinning system for hair/fur simulation and rendering which uses SDF
for collision. The general process flow is:

1. Model hair as splines (NURBS curves).
2. Export the splines using the rigged (skinned) mesh as a reference into the required data files.
3. Import those files and turn them into data on the CPU side.
4. Simulate and render using its shaders. This includes getting the required information from the

engine/rendering pipeline in order to properly react and simulate (bone information, lighting,
etc.).

Collision Mesh
A collision mesh is a triangle mesh and input for the SDF. It does not need to be the same as the
rendering mesh but is recommended to be a closed mesh. It is also recommended to be non-
overlapping.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

9

Signed Distance Field (SDF)
An SDF is a grid-based representation for a polygonal mesh.

In TressFX, a dense grid is used and the memory gets allocated up front. Because of this, pre-allocation of
memory, the grid, and cell sizes should be chosen carefully so they are big enough to enclose all possible
animations. However, this should not be too excessive, as this might cause potential memory waste. It
would be wise therefore to break down mesh parts and use different grid and cell sizes. In the Ratboy
demo, for example, the character has three body parts (main body and two hands).

The Signed Distance Field is best defined using closed meshes. Although a water-tight mesh is not
required, it’s best to minimize any holes in the mesh that are larger than a grid cell unless this is a
portion that won’t interact with the hair.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

10

Velocity Shock Propagation (VSP)
The main purpose of VSP is to handle fast-moving animations. When a character changes its speed or
direction, it generates a high acceleration and consequently a big external force. Since TressFX hair
simulation uses an iteration-based constraint solver, when a high acceleration gets applied, hair can
easily lose its physically-correct shape and show unpleasant elongation.

VSP has a control value ranging from 0 to 1. If the value is 0, there will be no VSP. If VSP is 1, then full
velocity of root vertex will be propagated to the rest of vertices in the strand. VSP can handle both linear
and rotational velocities.

In addition to propagating velocity, there is a VSP acceleration threshold value which increases the VSP
value to 1 when the pseudo-acceleration passes it. It is designed to be particularly effective when the
character makes a sudden movement.

Guide and Follow Hair System
This system was introduced in TressFX 2.0 and is used the same way in TressFX 5.0. In terms of collision
with the SDF, both guide and follow hair will get a response from the system. However, it is still
possible to redesign such that only guide hair would be affected by the SDF, while the overhead is
small enough to use SDF collision for all hair.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

11

Unreal Engine Integration Architecture
The TressFX integration is primarily split into two modules, TressFX Plugin & TressFX Renderer. You can
find these in Plugins/Runtime/TressFX/Source/ and Engine/Source/Runtime/Renderer/Private/
TressFX/, respectively.

TressFX Engine Hooks
TressFX is implemented as an add-on to Unreal Engine. There are a few locations in Unreal Engine's
code base that hooks must be added in order to call into various parts of the TressFX implementation,
as well as for general scene and visibility tracking.

We've strived to keep these changes minimal, and have attempted to bookend all code changes in the
Unreal Engine code with:
// AMD TressFX BEGIN

// AMD TressFX END
Many files within Unreal Engine are modified to accommodate TressFX. The modified files are listed
below alongside how they support TressFX.

These files add TressFX-related material support:

- Material.h/Material.cpp
- MaterialInterface.h/MaterialInterface.cpp
- MaterialRelevance.h
- MaterialShared.h/MaterialShared.cpp
- MeshBatch.h

This file adds TressFX-related relevances:
- PrimitiveViewRelevance.h

This file calls into our simulation and rendering stages Unreal Engine’s main rendering loop:
- DeferredShadingRender.cpp

These files allow TressFX to render with Unreal Engine’s lights:

- LightRendering.cpp
- IndirectLightRendering.cpp
- LightGridInjection.cpp
- LightComponent.cpp

These files add arrays of primitive scene information for TressFX-related functionality:

- SceneRendering.h
- SceneRendering.cpp

This file sets up TressFX-related views:

- SceneVisiblity.cpp

This file adds DeepShadow-related support for TressFX:
- SceneManagement.h

This file allows TressFX to render part of Unreal Engine’s shadow map rendering:

- ShadowRendering.h

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

10

TressFX Plugin Module
As the name implies, this is a plugin module. It contains the Importer, Editors, and Simulation of TressFX.

TressFXImporter
TressFXImporter contains the code required to import TressFXAsset and the asset actions for them.

The TressFXFactory files contain the factories for the TressFXAsset as well as the TressFXMeshAsset.
Both factories use import data classes (UTressFXImportOptions and UTressFXMeshImportOptions) which
will contain the user adjustable data at runtime. Widgets are created based on these classes. Users
should make sure they set the proper skeleton they plan on using at runtime. The factory will go over
the Bone data stored in the TFX files and compare it to the skeleton you selected. If the bones have
improper indexes, it will try to find the correct bone by name and change the indexes for the Assets to
match the skeleton.

The TressFXAsset factory will first import the data into the FTressFXAsset class, then create a
UTressFXAsset from that data. The TressFXMeshFactory will put all the data into a string which will then
get parsed for the information.

TressFXEditors
TressFXAsset Editor contains 4 panels to edit the parameters of TressFX strands data which are Material,
Strands, LOD, and Simulation.

TressFXMeshAsset Editor is used to edit the Collision Mesh and signed distance field (SDF) resolution.

TressFXManager
TressFXManager contains the registered TressFXGroupInstances and TressFXMeshGroupInstances which
are used in Simulation passes.

TressFXComponent
TressFXComponent contains a TressFXAsset, generates and registers/unregisters a TressFXGroupInstance
in TressFXManager, InitResources() and ReleaseResources() to create and release related resources.

TressFXGroupInstance
TressFXGroupInstance contains both guides and follow strands resources information, contains the
variables which would be used in Simulation and Rendering passes.

TressFXSDFComponent
TressFXSDFComponent contains a TressFXMeshAsset, generates and registers/unregisters a
TressFXMeshGroupInstance in TressFXManager, InitResources() and ReleaseResources() to create and
release related resources, turn on/off SDF, set the local SDF Id.

TressFXMeshGroupInstance
TressFXMeshGroupInstance contains Collision Mesh rest resources and deformed resources
information. The BoundingBox would be computed on GPU-side based on deformed Collision Mesh,
and the BoundingBox then would be used to compute SDF.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

11

TressFXResources
TressFXComponent is the primary interface for the hair and the editor. This class needs to be attached
to the appropriate SkeletalMeshComponent that is associated with the hair asset you plan to use with
this component. This is the class where you can set individual settings for different hair assets.
TressFXResources contains all the resources of guides and follow strands, both rest and deformed
resources, deformed guides resources would be interpolated to deformed strands resources for
rendering. These resources would be create or init in TressFXComponent::InitResources() and delete or
destroy in TressFXComponent::ReleaseResources().

TressFXSceneProxy

The scene proxy is responsible for combining the TressFXGroupInstance and TressFXVertexFactory and
generating the MeshBatch.

TressFXAsset and TressFXMeshAsset
These are the two data classes which will be serialized and saved to disk. They contain the static data
for the hair assets and the Collision Mesh assets. The data will be read from disk during the serialize
function, then the related resources get initialized during the InitResources() function.

TressFX Renderer Module
The renderer is responsible for all rendering and GPU activity for TressFX. The proxies will get
collected by the engine, then placed inside their respective arrays inside SceneRendering.h. The
TressFX Renderer will then go through these lists and call the appropriate shaders to draw the hair.

TressFXPreBasePass
This generates DeepShadowMap and DeepOpacityMap for each TressFXComponent and each Light
which has enabled CastDeepShadow. The results are used in ShadowRendering and TressFX Shading.
We have implemented a DeepShadow approximation for AMD GPUs.

TressFXBasePass
This generates translucency results, using the simplified ShortCut algorithm from TressFX 4.1. Only the
1st layer will be shaded. Supports Unreal Engine’s deferred shading pipeline, updates the velocity
buffer to support TAA, and supports StrandsUV in TressFXVertexFactory.ush.

RenderLights
This generates TressFXShadowTexture in TressFXShadowMask pass which is called in
ShadowProjectionOnOpaque pass. It generates Transmittance result in TressFXTransmittanceMask pass
and applies the Marschner Shading Model in StandardDeferredLighting_TressFX pass.

TressFXEnvLighting
TressFX supports Environment Sky Lighting.

TressFXComposition
The results of lighting and shading will be composited into the SceneColorDeferred render target.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

12

Main flow of TressFX Simulation and Rendering

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

13

UE4 TressFX 5.0 and Material and Editors

TressFX Material

Shading Model
The shading model of the material. It should be set to Hair for TressFX.

Used with TressFX
Enable it to support TressFX material.

For a tutorial that walks you through creating UE4 TressFX 5.0 material, see the tutorial in this
document: Creating UE4 TressFX 5.0 Material.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

14

TressFX AssetEditor
Material Panel

Material
From the Materials tab, choose and set the TFX_Mat_Ratboy material.

Strands Panel

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

15

StrandsCount
The count of both guide and follow strands.
GuidesCount
The count of the strands which compute simulation.
StrandsVertexCount
Total vertex count of all strands.
GuidesVertexCount
Vertex count of all guide strands.
VertexCountPerStrand
Vertex count of one strand in this group.
MaterialSlotName
The material name for this group.
StrandsWidth
The width of strands in this group.
StrandsShadowDensity
Controls the shadow density.
EnableVisualizeTangents
Visualize the tangents of the strands.
NumFollowStrands
The number of follow strands for each guide strand.
TipSeparationFactorOfFollow
Adjusts the distribution of follow strands.
MaxRadiusAroundGuide
Controls the distribution radius of follow strands.

LODs Panel

StrandsDecimation
The strand simplification factor for the current LOD level.
ScreenSize
The screen size of the TressFXComponent bounding box.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

16

Simulation Panel

EnableSimulation
Enable or disable simulation of this TressFX group.
Damping
Damping of gravity.
GlobalShapeStiffness
The stiffness of global shape constraint.
GlobalShapeEffectiveRange
The range of global shape constraint from root.
VSPCoefficient
The coefficient of velocity shock propagation works when acceleration exceeds the two thresholds (Min and
Max).
VSPAccelThresholdMin
The Min threshold of VSP acceleration.
VSPAccelThresholdMax
The Max threshold of VSP acceleration.
LengthConstraintIterations
The iterations of length constraint.
WindDirection
The direction of wind.
WindMagnitude
The magnitude of wind.
LocalShapeStiffness
The stiffness of local shape constraint.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

17

TressFXMesh AssetEditor
Collision Mesh

EnableVisualizeMesh
Visualize the collision mesh.
EnableVisualizeMeshAABB
Visualize the bounding box of the collision mesh.

SDF

EnableVisualizeSDF
Visualize the SDF of the collision mesh.
NumSDFCells
Resolution of the SDF.
NumGridOffset
Controls the precision of SDF computation for triangles of the collision mesh.
SDFCollisionMargin
Controls the collision margin which starts to detect collision between SDF and guides vertex.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

18

TressFX BlueprintEditor
TressFXComponent

Materials
All the materials of this TressFXComponent.
TressFXAsset
Choose and set the TressFXAsset for this TressFXComponent.
LocalSDFIdRef
The local SDF Id reference of TressFXSDFComponent. It corresponds to the local SDF Id in
TressFXSDFComponent and turns on SDF for this TressFXComponent to avoid penetration.
TressFXBindingAsset
Choose and set the TressFXBindingAsset for this TressFXComponent, to enable Triangle based
Skinning for BlendShape animations support.

For a tutorial that walks you through creating a UE4 TressFX 5.0 component, see this tutorial in
this document: Creating UE4 TressFX 5.0 Blueprint Actor.

For a tutorial that walks you through using UE4 TressFX 5.0 Triangle based Skinning, see this
tutorial in this document: Using UE4 TressFX 5.0 Triangle based Skinning.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

19

TressFXSDFComponent

EnableSDF
Turn on/off SDF.
LocalSDFId
The local SDF Id of this TressFXSDFComponent, it corresponds to the local SDF Id reference in
TressFXComponent.
TressFXMeshAsset
Choose and set the TressFX collision mesh asset.

For a tutorial that walks you through creating a UE4 TressFX 5.0 SDF component, see this
tutorial in this document: Creating UE4 TressFX 5.0 Blueprint Actor.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

20

Lights
UE4 TressFX 5.0 supports 4 Unreal Engine light types:

• Point Light
• Directional Light
• Spot Light
• Sky Light.

The light (except Sky Light) should enable CastDeepShadow before it can render correctly with TressFX.

There is an upper limit of 32 lights supported across all applicable actors. As the DeepShadow pass is
costly, we suggest reducing the number of lights for each TressFX actor.

Lastly, TressFX shadow casting lights must be Movable.

Note: Lights are added to the list of lights applying to TressFX as they are added to the scene (level). To
remove a light, disable CastDeepShadow, or delete it (as opposed to hiding it).

Point Lights
The performance cost of these lights is close to Spot Lights because we implement the DeepShadow.

Spotlights
The performance cost of these lights is close to Point Lights because we implement the DeepShadow.

Directional Lights
We suggest using 1 Directional Light in your level

Sky Lights
Sky Light doesn't need to set cast shadow and TressFX supports this type of light.

Lighting Channels
TressFX supports lighting channels. To enable light channels, set the Lighting Channels information
under Lighting section of the selected light. Do the same on the TressFX Component (Lighting section,
Lighting Channels).

Hint: click the Advanced Arrow (and the Up arrow at the base of the section, if not all of the items are
showing).

It is generally recommended that you put TressFX-based lighting on a different channel than general
lighting when adding an Environment or Sky Light.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

21

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

22

Art Export: Exporting TFXxxx files (TressFX Exporter plugin for
Autodesk Maya)
Summary
TressFX is designed to be compatible with hair modeling DCCs. All modeling can be done within a
modeling system of your choice, provided you can turn them into splines (NURBS curves) at the end. For
demos using TressFX 5.0, we have used Shave and a Haircut for Maya (5.0/Ratboy), Autodesk Maya XGen
(5.0 demos), and the Autodesk 3ds Max native hair modeler - although the 3ds Max plugin is no longer
being developed and has not been included.

The Maya-based TressFX Exporter was tested on Maya 2015, Maya 2017, and Maya 2018. Maya 2019
was not tested, as at that time of writing, it had a critical bug with the XGen Guides menu which is a
required element during XGen-based hair creation. Maya 2018 is recommended and was the version
used to create TressFX 5.0 art assets.

For a tutorial that walks you through creating and exporting hair using the Maya TressFX Exporter,
see this tutorial: Creating and Exporting TressFX 5.0 Hair from Maya.

Installation of the Maya TressFX Plugin
The Maya-based TressFX exporter is a single python file residing in the following location:

• TressFX/Unreal: Tools\Maya2018\TressFX_Exporter.py

To enable this plugin, follow these steps:

1. Copy TressFX_Exporter.py into Maya’s plug-ins folder such as C:\Users\USER_NAME\
Documents\maya\plug-ins or the main plug-in folder, such as C:\Program
Files\Autodesk\Maya2018\bin\plug-ins.

2. Launch Maya.
3. Open the Plug-in Manager and enable the Loaded and Auto load options for TressFX_Exporter.py.

4. Now, a TressFX menu should appear on the main menu bar. Underneath it, there should two sub
menu items: Export Hair/Fur and Export Collision Mesh.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

23

5. The Export Hair/Fur menu item will bring up the TressFX Hair/Fur window.

6. Export Collision Mesh will open the TressFX Collision window.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

24

Exporter Settings
The UI for hair/fur export is in a tabbed format. Also, the exporter includes error checking and control
features.

Warnings are displayed in the status bar as well as the script window. Print messages (informational) are
also displayed in the script window.

Many settings will not work unless a base mesh is selected. Export will also not work unless a set of
splines is selected for export. You typically do not need to select all the splines individually (i.e. Select
Hierarchy in Maya) – the exporter will do a recursive search during export, so selecting a grouped set of
splines (a group) is simply a matter of selecting the containing group. Tools like XGen, when converting
XGen groomable hairs into splines, will automatically ‘group’ the selection.

See the tutorial for a walkthrough of this process. A basic knowledge of Maya is assumed, including
how to use the Outliner window and find the Plug-in Manager menu item.

The following section will go through all of the options in each of the tabs of the hair/fur export UI.

Hair Settings
(SELECT HAIR/MESH/RIG) TAB GROUP 1:

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

25

Set the base mesh (button)
Select a mesh, then click the button to set the reference mesh (shape) that will be used for .tfx and
.tfxbone (hair data) export. The selected mesh name will appear in the text box below the button.

Use Custom Joint Root (checkbox)
If selected, you can choose a different joint in the base mesh’s skeleton to use as the default root joint.
You can also set the value for this weight. This joint and its weight will only be used if there is no other
joint found for a given point, filling out the 4 joint influencer list for each position. This is useful in the
case where a hair strand is not tracking, typically because the joints nearest the root position of the
strand are zero (or because of barycentric calculations sending the weight to zero).
Often many joints in a complex skeleton are not used for the body animation (such as facial bones).

Note: This custom root joint also needs to be added to the Joint Subset if the Joint Subset is being used.
It is not added automatically at this time.

Set Joint (button)
Select a joint in the Outliner, then click this button to set that joint as the default root.

Clear Joint (button)
Clear the default root back to the default (joint 0 in the hierarchy).

Weight (0-1) (float)
Set the default weight for the chosen root. If you also check Re-Normalize Final Weights,

then all four weights will be normalized so that they sum to one (1).

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

26

Re-Normalize Final Weights (sumMaxInfluences = 1) (checkbox)
Forces the four bone weights per strand vertex to sum to one. Divides each weight by the sum of the
four weights. Often, this is not needed, but can be used to ensure normalization.

Use Joints Subset Only (checkbox)
Use only a selected subset of the joints attached to the base mesh. This is useful for hair tracking issues
where a nearby joint is influencing the overall weighting but shouldn’t. For example, you might want to
include only the arms and legs for a particular hair asset group (arm and leg hair as one hair asset) and
exclude other nearby bones (like facial bones or the chest or even a belt/clothing items) or bones that
should only be used for non-skin movement (like a weapon).

Add joints (button)
Select a joint in the Outliner, then click this button to add that joint to the subset to be used.

Note: If you are also using a custom root, be sure to add that joint to the subset as well. Currently, it
does not happen automatically.

Delete joints (button)
Select a joint (or joints) from the joint list, then click this button to remove them from the list.

Clear All joints (button)
Click this button to clear all the joints from the joint list.

Joint list area (multi-selection listbox)
This is a multi-selection listbox (single column currently) that shows the current joints in the joint subset
to be used.

(CHOOSE OPTIONS) TAB GROUP 2

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

27

Number of vertices per strand (dropdown)

The number of vertices to use to define the curve shape of a strand, the larger the value, the more
definition the strand would have but at a greater hair asset size and processing (performance) cost.
Generally, shorter hair looks better at 8 vertices per strand and long hair at 32, to keep a smoother
curly look may need 64 vertices per strand.

Minimum curve length (float)
The exporter uses this value to filter out hair that is shorter than this length. In some situations, it may be
difficult to get rid of short hair within the modeling tool. If the value is set to 0.0 (default), no filtering will
take place.

Sample every N curves (dropdown)
The exporter will only export every Nth strand. This can be useful when you have a lot of hair (splines)
modeled, often more than really needed or wanted for good performance, and just needs a quick way
to reduce the number of strands exported.

Note: all hair exported using the Exporter will be guide hair on import to TressFX/Unreal and (currently)
to TressFX/Cauldron. Follow hairs are generated on import into those engines, but not during export.

Sample start offset[0-32] (integer)
Used in conjunction with subsampling (Sample every N curves). This lets you specify where to start the
subsampling process. The default is zero (0), i.e. the first strand.

Scale Scene (dropdown)
Scales the points by multiplying the scale value against each .x, .y, .z position value. A value of 1.0 is fine
for Unreal Engine (cm), but Cauldron uses meters, so you need to add a scaling value of .01 to scale the
data from cm->m.

Both ends immovable (checkbox)

Sets both ends of the strand (the endpoint vertices) to use zero inverse mass, which is kept in the w
position coordinate (.w). This forces both ends, not just the ‘root’, to be immobile, although both will still
track with the mesh skin itself. One example would be a loop on a mesh, where the middle of the loop
can move freely but both ends are firmly fixed to the mesh itself.

Invert Z-axis of Hairs (checkbox)

Inverts the Z component of the hair vertices. This may be useful if dealing with an engine that uses a
left-handed coordinate system.

Randomize strands for LOD (checkbox)

Randomizes hair strand indices so that any LOD done on strands in-engine would uniformly reduce hair.
Not generally needed if using a hair creation tool like XGen, since it can randomize as it distributes
groomable hair.

Make Z-Up Direction (checkbox)

Commonly used/needed when exporting for Unreal Engine use. Maya typically uses Y for the up
direction, while Unreal Engine uses Z for the up direction. If Maya is not set to use Z as the up
direction, this will swap the Y and Z values for you before export. It will not alter Maya settings or the
Maya scene/DAG.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

28

Invert Y-axis of UV coordinates (checkbox)

Inverts the Y (i.e. v) component of UV coordinates. DirectX® 11/12 needs the Y-axis inverted for proper
UV alignment. This is a required option when exporting for use in the TressFX/Cauldron implementation.

Using Non-Uniform UV Range (checkbox)

If inverting the Y-axis component of UV coordinates is selected, but the UV mapping is non-uniform (u:0-
1, v:0-1 is uniform), this control lets you specify the UV mapping that your mesh is using. The v min and
max values from this will be used during the Y-axis invert for v, instead of the default values of (0,1).

Note: This user-defined V min/max range is only used if Invert Y-axis of UV coordinates is selected.

Note: The U values are also taken but not used at this time. However, an informational print statement
to the Maya Script window will reflect these changes, as well as a cmds warning that tells developers
that they are choosing to use a non-uniform UV range.

(EXPORT FILES) TAB GROUP 3

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

29

Export hair data (*.tfx) (checkbox)

Export a binary TFX file that contains hair strand and vertices data. Usually paired with a TFXBONE file,
since both are needed for import and should match, with matching names but different extensions.

Export bone data (*.tfxbone) (checkbox)

Export a TFXBONE file that contains bone animation data (see .tfx above).

ignore TFX UVcoord Errors (checkbox)

Do not warn or fail if there are any issues with the UV coordinate look up during export (see the Exporter
code for more information). This helps when trying to determine any issues with a skinned mesh model.

remove Namespace from bones (checkbox)

If there is a namespace on joint names, such as myImportedBones:joint0, this will remove the namespace
from the string, leaving simply, the joint name, i.e. joint0. This is important if the skinned mesh being
used in the engine does not have any namespace on the joints. This situation can happen when importing
an FBX or another Maya file into an open Maya file.

If the joint names do not match between the skinned mesh and the exported TFX files, then the
simulation will not be able to find a joint name or might find the wrong one if there is a match. Joint
names should be unique within a skeleton.

Collision Settings

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

30

Set the collision mesh (button)
Select a mesh, then click the button to set the reference mesh (shape) that will be used for .tfxmesh
(collision mesh data) export. The selected mesh name will appear in the text box below the button.

Scale Scene (dropdown)
Same as for hair settings, will scale the points by multiplying the scale value against each .x, .y, .z position
value. A value of 1.0 is fine for Unreal Engine (cm), but Cauldron uses meters, so needs a scaling value of
.01 to scale the data from cm->m.

Remove Namespace from bones (checkbox)
Same as for hair settings, if there is a namespace on joint names, such as myImportedBones:joint0, this
will remove the namespace from the string, leaving simply, the joint name, i.e. joint0. Important if the
skinned mesh being used in the engine does not have any namespace on the joints. This situation can
happen when importing an FBX or another Maya file into an open Maya file.

If the joint names do not match between the skinned mesh and the exported TFX files, then the
simulation will not be able to find a joint name or might find the wrong one if there is a match. (Joint
names should be unique within a skeleton.)

Re-Normalize Final Weights (sumMaxInfluences = 1) (checkbox)
Same as for hair settings. Forces the four bone weights per strand vertex to sum to one. Divides each
weight by the sum of the four weights. Often, this is not needed, but can be used to ensure
normalization

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

31

Tutorials
A Quick Tutorial on Creating a Basic Skeletal Mesh in Maya
Introduction
TressFX 5.0 hair is bound to a skeletal mesh, meaning a mesh that is bound to a skeletal rig (bones). Most
users of TressFX will hire experienced modelers and animators to create their rigs, and ultimately create
guide hairs attached to that skeletal mesh. However, for testing purposes it is useful to be able to create
the minimum required skeletal mesh.

This tutorial will walk you through the basics of creating a sphere mesh bound (skinned) to a simple joint
chain (a hierarchy of five joints...aka bones). This is the exact same skeletal mesh that is used in the Maya
tutorial on creating and exporting TressFX hair.

Related Links:
Creating and Exporting TressFX 5.0 Hair from Maya
Creating UE4 TressFX 5.0 Blueprint Actor

Requirements
• Autodesk Maya 2015 or higher. This tutorial uses Maya 2018, but 2015 is the minimum based on

TressFX/XGen usage)
• A basic understanding of how to launch and navigate in Maya (using the move/rotate/scale tools,

zooming and panning in the main perspective view)

Step 1
Open a new scene in Maya and make sure you are in the Modeling mode. When opening Maya, a new
scene is automatically generated for you.

Open the Polygons tab and click Sphere.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

32

You should see in the main perspective view that a sphere is created.

You can either make the sphere larger using the Scaling tool, or you can zoom in so you can see the
sphere more easily.

If it is not already open, open the Outliner Window by selecting Windows > Outliner from the
top-level menu. You will need this window to move the joint chain, select the joint hierarchy
and mesh for binding, etc.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

33

Step 2
Change to the Rigging mode.

In the main Perspective view, tap the view to make sure it has the focus, then tap the Spacebar. This
should send you into a four-way view: Perspective, top, side, front.

Click anywhere in the front view. This will activate the tool in that view.

On the Shading tab of the view, choose X-Ray Joints.

You may need to do this for each view you want in order to see the joints through a solid mesh. You can
try to set the perspective view to X-Ray Joints, when it is the only view — not four way — and see if this
setting propagates to all the views. If it doesn't, set each one individually.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

34

Click the Joint tool.

Each click will create a bone. The first click will be the first bone, the next click will be the second that is
automatically parented (a child of) the first bone, and down the chain.

In the view, along the sphere, make five bones in roughly a long line, keeping them within the bounds of
the sphere.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

35

Click Return to stop the chain creation.

Look at the side and top views. If the bones are not aligned inside the sphere, click the top of the joint
chain in the Outliner, then click the Move tool and then click in the appropriate view window (top, side,
front) to move the joints to where you want them.

Generally, it's better to have joints within a mesh. However, experienced riggers will often do different
configurations. This is just a simple skeletal mesh, so we will stay with the basics and let Maya do the rest
by using its defaults.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

36

Step 3

When you are ready, click the sphere mesh in the Outliner, then press and hold Shift and click the top
joint in the joint hierarchy. You are now in Rigging mode.

Go to the menu item Skin and select Bind Skin.

The joint chain should be bound to the mesh now.

To test this, in the Outliner, select one of the joints, and use the Move tool to move the joint. Not only
should the children of that joint in the chain move (if any children), but also the skin should warp and
move as well.

In the picture below, joint 5 is being moved. The skin stretches and deforms. Try other joints and other
ways to manipulate it (move or rotate, for the most part).

Note: If you scaled the sphere larger, you may notice the bones appear smaller than in these pictures.
That is normal.

You are now ready to use this simple skeletal mesh — to animate it, add hair, and so on.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

37

Creating and Exporting TressFX 5.0 Hair from Maya
Introduction

The following is a quick walkthrough on how to use Maya's XGen to create 'guide hairs' and also how to
export those ‘guide hairs’ using the TressFX for Maya Exporter. The files produced (.tfx, .tfxbone and
.tfxmesh) can then be used, along with the skeletal mesh, in the TressFX Unreal Engine 4 build to create a
skeletal mesh asset with hair.

TressFX shader parameters have been set in that Unreal Engine skeletal mesh to be wide strands, few
strands, and globally stiff so the original shape in Maya is easy to discern.

Related Links
Creating UE4 TressFX 5.0 Blueprint Actor

 A Quick Tutorial on Creating a Basic Skeletal Mesh in Maya

Requirements
• Maya 2017 (you can also use Maya 2015 or Maya 2018 or later as well). This tutorial uses Maya

2018.
• The TressFX Exporter for Maya (TressFX_Exporter.py).

Note: The Exporter was updated. Be sure to use the most recent Exporter (TressFX 5.0).

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

38

Step 1

Install the TressFX Exporter as a plugin.

An easy way to do this is to take the Exporter, which is a Python script, and copy it to the bin\plugins
directory of Maya. For example, if you installed Maya in C:\Program Files\Autodesk\Maya 2018, the
Exporter should be copied to C:\Program Files\Autodesk\Maya 2018\bin\plugins.

Once the Exporter has been copied, launch Maya and open the Plugin Manager. The Plugin
Manager can be found in Windows > Settings/Preferences > Plug-in Manager.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

39

Scroll down until you find the TressFX plugin. Select both the Load and Autoload options and then
close the window.

You should now see the TressFX menu on the top-level menu bar.

Step 2

Load or create a skeletal mesh model into Maya.

You will need a well-behaved, well-formed mesh (quad modeled has proved to be the best so far)
that has been skinned to a rig with at least four joints.

You might be able to get away with fewer joints, but for testing purposes, having five joints has
proven easiest. TressFX 5.0 binds the hair to the bones (influences) and uses a maximum of 16
bones per vertex.

For this tutorial, we are using a basic sphere (with a ‘not artistic but useful’ texture) that is rigged
(and animated).

The mesh will be used as the reference mesh that the exporter requires. The rig needs to be skinned to
the mesh before exporting.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

40

The following steps will show you how to create hair in Maya and then export the three files that can be
used by Unreal Engine:

• A TFX file, which contains the guide hairs (as spline curves).
• A TFXBONE file, which contains the required bone (influencer) information.
• A TFXMESH file, which contains the collision mesh to use for this TFX/TFXBONE file set. Typically,

developers will use a simplified but fairly form hugging mesh that mimics your skeletal mesh. You
can use multiple collision meshes (and TFX/TFXBONE sets) for a single model. The Ratboy
example uses three collision meshes.

The collision mesh is used to prevent the hairs from penetrating a surface, such as the head or body
mesh. Having a basic collision mesh with detailed collision meshes for smaller parts of the model, such
as the hands, is a normal use of collision meshes.

Note: See the tutorial on hooking up collision meshes and SDF fields to hair assets for more information
on collision/SDF/hair asset interactions.

Step 3
Under XGen settings tab on the main display (typically on the far right), click and bring up the XGen
settings window

If you haven’t got the ChannelBox/Attribute/... Panel open, you will need to open the panel to see XGen.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

41

Step 4
Put the Mesh in the Bind Pose.

TIP: Try to make the Bind Pose as close to location 0,0,0 as possible. This is to avoid any possible
conversion errors that may result in animation offset errors.

Select the entire mesh or a subset of faces of the mesh then create a new description. This can
either be done using the button in the Panel or the button in the row of buttons under the XGen
tab.

Next, name the description and the collection which holds multiple descriptions. For example,
sphereSection and sphereHair respectively.

You can choose either Splines or Groomable Splines. Splines need to be placed individually, so for this
tutorial, we are doing the quicker (and slightly more complicated) groomable splines. Choose Groomable
Splines.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

42

You can see tiny guide hairs randomly distributed across the selected faces.

You can change the Length setting in the Settings area of the Grooming Tab to something more
dramatic, like 10 or 20. You will need to type it in as the slider has a limited range based on the
current value.

You can use the grooming tools to shape the hair. We do not do this here, but feel free to play
before continuing.

Note: You cannot edit the grooming splines directly via control vertices. See the next step.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

43

Step 5
Now we are going to convert those groomable splines to actual curves.

If you look in the Outliner tab under the collection you created, you will notice that you only have
descriptive information, but not any actual splines. That is why you cannot edit these groomable splines
any direct way but must use the grooming tools.

Since we require actual splines in order to export, we will convert these groomable splines into individual
splines:

1. Go to the Preview/Output tab in the XGen Panel.
2. Go down to the Output Settings section.
3. Click the dropdown for Operation.
4. Change it from the default Render to Create Guides.
5. Click the Create Guides button that appears.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

44

Guides that you can directly manipulate are now created. These guides can be seen in the Outliner.

You can manipulate these guides by right-clicking on them, holding for the markup menu, and then
selecting Guide ControlPoints.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

45

You can then select and move the control points with the standard transformation tools.

Step 6
Now we need to convert these guides into curves so we can export them with the TressFX Exporter.

Go to the Utilities tab in the XGen Panel.

Click the Guides to Curves tool. This makes it available for use in the area below the tools list. You should
the section called Guides To Curves appear. Make sure it is open, so you can see the options and button.

In the Outliner, press and hold Shift and select all the individual guides. You should select all the guides
you want to convert.

Click the Create Curves button in the Guides To Curves subsection of the XGen Panel.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

46

The guides should be converted to curves now.

The curves will be in their own group in the Outliner, under the default name of xgGroom.

Step 7

Now it is time to start exporting using the TressFX Exporter. We’ll start with the collision mesh.

Open the menu item: TressFX →Export Collision Mesh

In the Outliner, click on the sphere mesh (not the joint hierarchy).

Note: Make sure the joint hierarchy is skinned to the mesh, though!

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

47

In the TressFX Collision dialog, click the Set the collision mesh button. You should see the shape of the
mesh now set.

Go ahead and Export. You will be asked for a name and a file location. It is best to keep all these files
together, so we recommend having a folder that contains the Maya file.

The TFXMESH file will now have been exported, so you can close the TressFX Collision dialog.

Step 8

Next, we want to export the hair and bone data.

Open the menu item: TressFX→Export Hair/Fur

Again in the Outliner, click the sphere mesh. With the mesh selected click Set the base mesh in the
TressFX Hair/Fur dialog.

In the TressFX Hair/Fur dialog keep most of the defaults in all the three tabs. For this example, set the
Number of vertices per strand to 32 (in the Options tab) and leave the Minimum curve length at 0.0000.

For Unreal Engine, make sure the option to have Z as the UP axis is selected, as Unreal Engine requires
this. This should be the default setting, so for other engines that use Y as the UP axis, uncheck this box.

If exporting to Windows® (Cauldron and Unreal Engine on Windows), make sure the DirectX® options are
selected as well.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

48

Click the checkbox Export bone data (*.tfxbone). This is the third tab in the dialog.

Both Export hair data (*.tfx) and Export bone data (*.tfxbone) should be selected, as we are
exporting both.

Note: If you need/want to export more hair groupings on the same mesh (with the same bound
rig), for now, you will need to re-export the bone data. This is because the current Unreal
Engine TressFX build looks for a TFXBONE file that has the same name as the specified TFX file.
You can just copy the TFXBONE file and rename it, but just keep in mind the current naming
requirements for a TFX/TFXBONE set.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

49

Important: You need to select the curves that you want to export. You are selecting the
curves that have been converted from grooming splines into NURBS curves (splines). In other
words, the curves that are under xgGroom.

Note: You should be able to just select the hair group (or groups). If that does not seem to get all
the hair (when importing and inspecting), then try shift-selecting all the individual splines. The
exporter is designed to do a recursive search for splines (nurb curves), but it relies on the
OpenMaya API.

After you’ve selected the curves, and set these options in the dialog, go ahead and click
Export! Again, you will be asked for a filename and location for both the TFX and the
TFXBONE files.

At this point you should have exported the TFX (.tfx), TFXBONE (.tfxbone) and TFXMESH
Collision (.tfxmesh) files.

Step 9

Finally, you need to export the mesh and rig as an FBX file.
This should be straightforward, but if you’re using Unreal Engine make sure that you’ve set the units value
to 1 unit = 1 centimeter and make sure that the Bind Pose is in the frame 0 slot of your animation.

Once the FBX file has been exported, you are now ready to import your FBX and TressFX files into
either Cauldron or Unreal Engine, and to create a TressFX aware skeletal mesh.
See the quick tutorial on how to create a TressFX aware skeletal mesh in related links.

Note: Tutorial results may vary and there may be other, easier ways to make sure the Bind Pose is
exported out of Maya and into Unreal Engine. The exporter wants you to model the hair in Bind
Pose. If this is not done and the Bind Pose is not imported as the skeletal mesh in Unreal Engine,
then this will lead to problems with hair offsetting. This can be very dramatic errors in some cases.
The current rule is to use the Bind Pose, make the Bind Pose as close to 0,0,0 as you can in Maya, and
then export the Bind Pose to Unreal Engine. If you make it frame 0, you can easily set an option
during import to take T0 as the Bind Pose in Unreal Engine.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

50

Using UE4 TressFX 5.0 Components and Materials
Importing UE4 TressFX 5.0 Assets
Importing the FBX Asset
As an example, here we import our Ratboy Asset: RatboyFBX.fbx.

Importing the tfx/tfxbone Assets
You only need to import the tfx file which contains the data of strands. tfxbone file will be imported
automatically and should have the same name as tfx file.
To import the tfx file, select the corresponding Skeleton in TressFX Import Options window.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

51

Importing the tfxmesh Asset
The tfxmesh file contains the collision mesh of Ratboy. To import this asset, select the corresponding
Skeleton in the TressFX Import Options window.

Creating UE4 TressFX 5.0 Material
1. Create and open the material.
2. Name the TressFX material with the prefix: TFX_Mat_* (recommended).

3. Select Result node of material.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

52

4. Set Shading Model to Hair.

5. Enable Used with TressFX.

6. Use these UVs(TexCoord[0] - RootUV, TexCoord[1] - StrandUV) to generate a more
interesting basecolor.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

53

Creating UE4 TressFX 5.0 Blueprint Actor
1. Attach the TressFXComponent to the SkeletalMesh.

2. Set TressFXAsset.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

54

3. Set LocalSDFldRef to enable SDF collision feature.

4. Attach the TressFXSDFComponent to the SkeletalMesh.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

55

5. Set TressFXMeshAsset.

6. Set EnableSDF and LocalSDFld.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

56

Using UE4 TressFX 5.0 Triangle based Skinning
1. Select TressFXAsset and right-click to create a TressFXBindingAsset.

2. Select the right SkeletalMesh.

3. Generate the *_Binding Asset.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

57

4. Set the *_Binding Asset to the corresponding TressFXComponent.

[AMD Public Use]

AMD TressFX 5.0 Developer's Guide

58

©2022 Advanced Micro Devices, Inc. All rights reserved.

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to
the operation or use of AMD hardware, software or other products described herein. No license, including
implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and
limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between
the parties or in AMD's Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, AMD Radeon, and combinations thereof are trademarks of Advanced Micro Devices,
Inc.

Microsoft, Windows, DirectX, and combinations thereof are either trademarks or registered trademarks of
Microsoft Corporation in the US and/or other countries. Vulkan and the Vulkan logo are registered trademarks
of the Khronos Group Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

	Contents
	TressFX 5.0 – Overview
	TressFX – from 4.1 to 5.0
	Maya Python Exporter

	TressFX 5.0 Unreal Engine Integration
	Folder Structure
	Asset
	Doc
	Engine
	Plugins
	Shaders
	Source
	Patch
	Snapshots
	Tools

	Integration steps (UE4.27.2)
	UE4 TressFX 5.0 Architecture
	Collision Mesh
	Signed Distance Field (SDF)
	Velocity Shock Propagation (VSP)
	Guide and Follow Hair System
	Unreal Engine Integration Architecture
	TressFX Engine Hooks
	- Material.h/Material.cpp
	- PrimitiveViewRelevance.h
	- DeferredShadingRender.cpp
	- LightRendering.cpp
	- SceneRendering.h
	- SceneVisiblity.cpp
	- SceneManagement.h
	- ShadowRendering.h

	TressFX Plugin Module
	TressFXImporter
	TressFXEditors
	TressFXManager
	TressFXComponent
	TressFXGroupInstance
	TressFXSDFComponent
	TressFXMeshGroupInstance
	TressFXResources
	TressFXSceneProxy
	TressFXAsset and TressFXMeshAsset

	TressFX Renderer Module
	TressFXPreBasePass
	TressFXBasePass
	RenderLights
	TressFXEnvLighting
	TressFXComposition

	UE4 TressFX 5.0 and Material and Editors
	TressFX Material
	TressFX AssetEditor
	Material Panel
	Strands Panel
	LODs Panel
	Simulation Panel

	TressFXMesh AssetEditor
	Collision Mesh
	SDF

	TressFX BlueprintEditor
	TressFXComponent
	TressFXSDFComponent

	Lights
	Point Lights
	Spotlights
	Directional Lights
	Sky Lights
	Lighting Channels

	Art Export: Exporting TFXxxx files (TressFX Exporter plugin for Autodesk Maya)
	Summary
	Installation of the Maya TressFX Plugin
	Exporter Settings
	Hair Settings
	Set the base mesh (button)
	Use Custom Joint Root (checkbox)
	Set Joint (button)
	Clear Joint (button)
	Weight (0-1) (float)
	Re-Normalize Final Weights (sumMaxInfluences = 1) (checkbox)
	Use Joints Subset Only (checkbox)
	Add joints (button)
	Delete joints (button)
	Clear All joints (button)
	Joint list area (multi-selection listbox)
	Number of vertices per strand (dropdown)
	Minimum curve length (float)
	Sample every N curves (dropdown)
	Sample start offset[0-32] (integer)
	Scale Scene (dropdown)
	Both ends immovable (checkbox)
	Invert Z-axis of Hairs (checkbox)
	Randomize strands for LOD (checkbox)
	Make Z-Up Direction (checkbox)
	Invert Y-axis of UV coordinates (checkbox)
	Using Non-Uniform UV Range (checkbox)
	Export hair data (*.tfx) (checkbox)
	Export bone data (*.tfxbone) (checkbox)
	ignore TFX UVcoord Errors (checkbox)
	remove Namespace from bones (checkbox)

	Collision Settings
	Set the collision mesh (button)
	Scale Scene (dropdown)
	Remove Namespace from bones (checkbox)
	Re-Normalize Final Weights (sumMaxInfluences = 1) (checkbox)

	Tutorials
	A Quick Tutorial on Creating a Basic Skeletal Mesh in Maya
	Introduction
	Related Links:

	Requirements
	Step 1
	Step 2
	Step 3

	Creating and Exporting TressFX 5.0 Hair from Maya
	Introduction
	Requirements
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9

	Using UE4 TressFX 5.0 Components and Materials
	Importing UE4 TressFX 5.0 Assets
	Importing the FBX Asset
	Importing the tfx/tfxbone Assets
	Importing the tfxmesh Asset

	Creating UE4 TressFX 5.0 Material
	Creating UE4 TressFX 5.0 Blueprint Actor
	Using UE4 TressFX 5.0 Triangle based Skinning

