
1 NOVEMBER 2015 | CONFIDENTIAL

GDC 2016

VULKAN FAST PATHS

2 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Binding Model

 Render Passes

 Barriers & Sync

CONTENTS

3 NOVEMBER 2015 | CONFIDENTIAL

TIMOTHY LOTTES (@TimothyLottes)

VULKAN FAST PATHS – BINDING MODEL

4 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Speaker’s background
‒ Involved in Vulkan binding model design as a Khronos Member when working at Epic Games

‒ Quite a challenge to design a model which works well on all GPU hardware from mobile to desktop

‒ Now an advocate of Vulkan working in AMD DevTech

 Goal of the Binding Model Part of this talk
‒ Help you get great performance in Vulkan on AMD hardware with a simple design

‒ Provide low-level background on the GCN hardware binding model
‒ Present how the Vulkan binding model maps to AMD hardware
‒ Kickstart thinking about the flexibility of Vulkan outside the confines of prior graphics APIs
‒ Ultimately to provide an intuition on how to design for performance

 Going quite low-level
‒ Feel free after the talk to contact and ask questions: Timothy.Lottes@amd.com

VULKAN FAST PATHS: BINDING MODEL
BY TIMOTHY LOTTES - AMD DEVTECH

mailto:Timothy.Lottes@amd.com

5 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 SGPR – 32-bit Scalar General Purpose Register

 VGPR – 32-bit Vector General Purpose Register

 K$ – Scalar Data Cache

 CU – Compute Unit
‒ Each CU as a throughput of 64 {d=a*b+c} operations per clock

 Wave – 64 shader invocations running in lock-step

 The following instructions can multi-issue at the same time on different waves in a CU,
‒ SMEM – Scalar Memory Instruction (access to the K$, buffer access via dynamically uniform addresses)
‒ SALU – Scalar Arithmetic Instruction
‒ VMEM – Vector Memory Instruction (image and buffer access)
‒ VALU – Vector Arithmetic Instruction

GCN TERMS
BACKGROUND ON THE HARDWARE

6 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Maps to GCN 16-byte Sampler Descriptor
‒ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER (just the Sampler part)
‒ VK_DESCRIPTOR_TYPE_SAMPLER

 Maps to GCN 16-byte Buffer Descriptors
‒ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER
‒ VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC
‒ VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER
‒ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
‒ VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC
‒ VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER

 Maps to GCN 32-byte Image Descriptors (later-gen GDC uses 32-bytes for all Image Descriptors)
‒ VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER (just the image part)
‒ VK_DESCRIPTOR_TYPE_IMAGE_ATTACHMENT
‒ VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE
‒ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE

DESCRIPTOR TYPES
HOW THEY MAP TO GCN HARDWARE

7 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Shaders have access to 2 register sets (GPR = General Purpose Register)
‒ Scalar or SGPRs which are dynamically uniform (ie the same) for all invocations in a wave

‒ These are used for example for Constants and Descriptors
‒ Vector or VGPRs which are unique for all invocations in a wave

 GCN has ability to pre-load up to 16 SGPRs prior to wave launch
‒ These are known as USER-DATA SGPRs
‒ There is some overhead in setting USER-DATA in both GPU command buffer, and right before wave

launch
‒ So don’t use more than required

‒ A few of these USER-DATA SGPRs are used internally by the driver
‒ Varies by shader stage and features used, and might change in future drivers and/or hardware

‒ The rest are used for the Vulkan binding model
‒ Push Constants
‒ 32-bit Descriptor Set pointers (Sets are kept in lower 32-bit address space)
‒ UNIFORM_BUFFER_DYNAMIC or STORAGE_BUFFER_DYNAMIC Descriptors (each take 4 USER_DATA

SGPRs)

USER-DATA SGPRS
GDC HARDWARE BACKGROUND FOR VULKAN DESCRIPTOR MODEL

8 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 After USER-DATA SGPRs fill up, the driver fills a driver managed buffer with the overflow
‒ Spilling does have an associated increase in cost (indirection in the shader, etc)

 USER-DATA SGPR fill priority is driver dependent (may change based on optimizations, driver revision)
‒ Current priorities are generally:

‒ {1st Push Constants, then Sets {Dynamic Descriptors, followed by Set pointer} from Set 0 to N}

 Example of possible USER-DATA SGPR usage,
‒ 4 for internal driver usage
‒ 2 for two 32-bit Push Constants
‒ 4 for one Dynamic Descriptor for Set=0
‒ 1 for one 32-bit Set pointer for Set=0
‒ 1 for one 32-bit Set pointer for Set=1

 General takeaway,
‒ Try to keep the number of {Push Constants, bound Sets and Dynamic Descriptors} low enough to not spill

USER-DATA SGPRS: AND SPILLING
GDC HARDWARE BACKGROUND FOR VULKAN DESCRIPTOR MODEL

9 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Constants and Descriptors are block loaded by SMEM operations
‒ This also can apply to any Buffer loads which are known to be from dynamically uniform addresses
‒ Supported address modes: base from descriptor + either register or immediate offset

‒ S_BUFFER_LOAD_DWORD* destination, descriptor, SGPR_provided_offset
‒ S_BUFFER_LOAD_DWORD* destination, descriptor, immediate_20bit_offset

‒ 20-bits = 1 MB, so for large Buffers or Sets, keep immediate offset accessed data at the beginning and dynamic accessed data afterwards

 S_BUFFER_LOAD_DWORD* can block load {1,2,4,8 or 16} 32-bit values in one instruction
‒ Driver can coalesce multiple Constant loads into one larger block load
‒ Best to keep Constants grouped by locality of usage and block aligned to support this
‒ Blocks loads make dynamic base addresses low cost on GCN,

‒ // Example, uses one extra SALU operation for a dynamic base for 8 32-bit constants
‒ S_ADD_U32 offset, base + immediate_offset
‒ S_BUFFER_LOAD_DWORDX8 destination, descriptor, offset

 Descriptors are loaded via S_LOAD_DWORD* (uses pointer instead of Descriptor for base)
‒ Same address modes and block load support as S_BUFFER_LOAD_DWORD*

CONSTANT AND DESCRIPTOR LOADS ON GCN
HARDWARE BACKGROUND

10 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Place all Descriptors in one giant Descriptor Set
‒ layout (set=0, binding=N) uniform texture2D textures[hugeNumber]

 Leave the one giant Descriptor Set always bound
‒ No more vkCmdBindDescriptorSets() calls for each draw/dispatch
‒ Instead use Push Constant(s) via vkCmdPushConstants() for per-draw indexes into binding array

 Per-draw frequency base index via Push Constant: textures[pushConstant+1]
‒ S_ADD_U32 arrayBase, setBase, immediate_32bit_offset

‒ This instruction is effectively free, and also not required for the second texture from the array binding
‒ S_LOAD_DWORDX8 textureDescriptor, arrayBase, immediate_20bit_offset

 Per-frame frequency Textures can be immediate indexed: textures[2]
‒ S_LOAD_DWORDX8 textureDescriptor, setBase, immediate_20bit_offset
‒ Best to keep perf-frame frequency textures towards the base of the set (only 20-bit immediate)

ONE SET DESIGN
FAST PATH, “BINDLESS” OR RATHER “BIND-EVERYTHING” ON VULKAN

11 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Dynamic base address(es) provided in
‒ vkCmdBindDescriptorSets(… dynamicOffsetCount, pDynamicOffsets)

 Driver builds a unique GCN Buffer Descriptor based on the dynamic offset for the
bind call
‒ This 16-byte Buffer Descriptor is placed in USER-DATA SGPRs if possible

 Takeaway
‒ For per-draw frequency, this has a good amount of overhead (CPU work, plus space in USER-

DATA)
‒ Try Push Constants instead (next slide)

‒ However Dynamic Descriptors get USER-DATA placement
‒ So we can use this to remove an indirection in the shader
‒ And get to all Constants without having to load a Descriptor first

DYNAMIC DESCRIPTORS
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC & VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC

12 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Example case: draws which need to source {per-frame, per-pass, and per-draw} Constants

 Possible to optimize this to
‒ One VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC which stays the same each draw

‒ Extension of “One Set Design”, Dynamic Descriptor built when Set is bound (per-pass frequency instead of
per-draw)

‒ Removes the indirection, Dynamic Descriptor in USER-DATA
‒ One 32-bit Push Constant which changes per-draw and supplies the per-draw offset

 Each pass (few passes per frame) gets a separate UNIFORM_BUFFER_DYNAMIC Descriptor
‒ Buffer contents: [per-frame] [per-pass] [draw0] [draw1] [draw2] . . . [drawN]
‒ Per-frame data is duplicated for each pass and can be accessed with immediate offsets
‒ Per-pass data can be accessed with immediate offsets
‒ Per-draw uses the dynamic base offset supplied in the Push Constant

‒ Fast, GCN block loads Constants

ONE DYNAMIC BUFFER DESCRIPTOR DESIGN
FAST PATH, “BIND-EVERYTHING” APPLIED TO CONSTANT DATA

13 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 The read-only SAMPLED_IMAGE can be faster than using STORAGE_IMAGE just for reading
‒ Even though these share the same descriptor type in GCN hardware
‒ Still important to use correct Vulkan descriptor type

‒ VK_DESCRIPTOR_TYPE_STORAGE_IMAGE needs to be in VK_IMAGE_LAYOUT_GENERAL
‒ Not compressed

‒ VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE can be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
‒ Can support compression
‒ GCN3 (Tonga/Antigua/Fiji) added Delta Color Compression (DCC) for render targets

‒ DCC can also be used for standard read-only non-block-compressed formatted textures (RGBA8,
RGBA16F, etc)

‒ Key is to adjust texture upload process
‒ Use vkCmdCopyBufferToImage() in a graphics queue with VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
‒ Uses pixel shader internally to copy from buffer to image, gets DCC compressed on output

IMAGE DESCRIPTORS: SAMPLED VS STORAGE
OPTIMAL DESCRIPTOR CHOICE

14 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Ability to specify immutable Samplers in Descriptor Set Layout
‒VkDescriptorSetLayoutBinding.pImmutableSamplers

 Provides Sampler data at PSO creation time
‒Sampler can be compiled into the Shader

 Immutable Samplers can be constructed by SALU instructions instead
of SMEM loads
‒Reduces the amount of latency in the shader

‒SALU pipe is mostly under-utilized

IMMUTABLE SAMPLERS
NO-LOAD SAMPLERS

15 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Descriptors are read through the scalar data cache (K$) which has 64-byte cache lines
‒ Can get 2 Image Descriptors per cache line, 4 Buffer Descriptors per cache line, or a mix
‒ For large Sets best to not do sparse random access of Descriptors, instead group to maintain locality of

usage
‒ For “One Set Design”, best to sub-allocate to keep cache line aligned locality of usage

 Descriptors are packed into GPU memory in order of how they appear in
VkDescriptorSetLayoutBinding
‒ Example layout to GPU memory mapping

DESCRIPTOR SET LAYOUT
HOW DESCRIPTORS ARE FILLED IN DESCRIPTOR POOL GPU MEMORY

Set Layout Descriptor(s)
Bytes

Memory Offset
In Set

K$ Cacheline

layout(set=0,binding=0) uniform sampler s0; 16 0 0

layout(set=0,binding=1) uniform samplerBuffer sb0; 16 16 0

layout(set=0,binding=2) uniform texture2D t0; 32 32 0

layout(set=0,binding=3) uniform samplerBuffer sb1[4]; 16*4=64 64 1

layout(set=0,binding=4) uniform texture2D t1[2]; 32*2=64 96 2

16 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 VkDescriptorPoolCreateInfo.flags = 0
‒ Not using VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT

‒ Pools which support vkFreeDescriptorSets() go down a driver managed path which can have
fragmentation

‒ Uses driver managed dynamic memory allocator
‒ Suggest using the path that only supports vkResetDescriptorPool()

‒ Descriptor Pool becomes a pre-allocated chunk of GPU and CPU memory
‒ Allocation is like increasing an offset

‒ Be mindful of setting reasonable limits
‒ VkDescriptorPoolCreateInfo.maxSets effects amount of CPU memory

‒ Descriptor Pools on Windows have variable mapping based on resource utilization
‒ Keeping reasonable limits enables the fastest path
‒ Fastest path shares the 256 MB maximum window of directly accessible GPU memory

‒ GCN descriptors are typically at most 32-bytes (ballpark 32K descriptors per MB of GPU memory)
‒ vkUpdateDescriptorSets() writes directly into the Descriptor Pool GPU memory
‒ Using VkCopyDescriptorSet* can result in the CPU reading GPU memory then writing GPU memory (not as fast as just writing)

DESCRIPTOR POOLS
USED TO ALLOCATE DESCRIPTOR SETS

17 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 vkUpdateDescriptorSets() effects can be immediate (by function return, GPU
memory writes in progress)
‒ So cannot write Descriptors which might be in use
‒ Challenge for texture streamers

‒ Would like to update a Descriptor between frames

 Workaround for pipelined update, example for minimum latency VR
‒ Keep 2 copies of the Descriptor Set

‒ Switch between each every other frame
‒ Add necessary synchronization to avoid updating when in use

‒ Updates are done to the other copy, so next frame gets the new Descriptor(s)
‒ Next frame then does a second update to the other copy, so next-next frame also gets the new

Descriptor(s)
‒ Can call vkUpdatesDescriptorSets() from multiple threads as long as updates don’t alias same

Descriptors

UPDATING DESCRIPTOR SETS
GETTING PIPELINED UPDATE, KEY FOR TEXTURE STREAMING WITH “ONE SET DESIGN”

18 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Showed a fast path which also an simple path in Vulkan
‒Keeps on the no-spill USER-DATA fast path
‒No complex Set management, duplicated Set with simple pipelined update

model
‒One Set Layout, no complexities with Layout compatibility
‒Removal of the majority of Set binding calls
‒Avoids the overhead of rebuilding unique Sets each frame for each material
‒Etc

 For continued discussion, questions, comments, and feedback:
Timothy.Lottes@amd.com

SUMMARY
“BIND-EVERYTHING”

mailto:Timothy.Lottes@amd.com

19 NOVEMBER 2015 | CONFIDENTIAL

GRAHAM SELLERS (@grahamsellers)

VULKAN FAST PATHS – RENDER PASSES

20 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Renderpasses are chunks of back to back GPU work
‒Represented by a Vulkan object

‒Contain one or more sub-passes

‒All rendering happens inside a renderpass
‒Even if it has only a single subpass

‒Dependencies between subpasses are part of the renderpass
‒Driver can schedule work based on future knowledge

‒Driver generates a DAG from dependency information

 Renderpasses are a time machine for drivers!

RENDERPASSES
WHAT ON EARTH IS THAT?

21 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Consider the following:
‒Subpass 1 produces resource A…

‒Which is consumed by subpass 2, producing resource B

‒Subpass 3 produces resource C…

‒Which is consumed by subpass 4, producing resource D

‒Finally, subpass 5 consumes resources B and D, producing final output E

 Blah, blah, blah; loads of text
‒But this is what API order calls look like

RENDERPASS IN WORDS
A THOUSAND WORDS

22 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Here’s the DAG:

RENDERPASS IN PICTURES
SEEMS LIKE A FAIR TRADE Data Flow

Dependency

Resource

Task

23 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Simple API – vkCreateRenderpass

 Creates a renderpass object
‒Usable by device

‒Using information in pCreateInfo

CREATING RENDERPASSES
OK. HOW DO I MAKE ONE?

VkResult vkCreateRenderPass(
VkDevice device,
const VkRenderPassCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkRenderPass* pRenderPass);

24 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Magic is in the VkRenderPassCreateInfo structure:

 Arrays of attachments, subpasses and dependency information

RENDERPASS INFORMATION
SO, WHAT’S IN A RENDERPASS?

typedef struct VkRenderPassCreateInfo {
VkStructureType sType;
const void* pNext;
VkRenderPassCreateFlags flags;
uint32_t attachmentCount;
const VkAttachmentDescription* pAttachments;
uint32_t subpassCount;
const VkSubpassDescription* pSubpasses;
uint32_t dependencyCount;
const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

25 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 An array of VkAttachmentDescription structures:

 Any number of attachments can be used by a renderpass
‒They are referenced by subpasses

ATTACHMENTS
WHERE AM I DRAWING?

typedef struct VkAttachmentDescription {
VkAttachmentDescriptionFlags flags;
VkFormat format;
VkSampleCountFlagBits samples;
VkAttachmentLoadOp loadOp;
VkAttachmentStoreOp storeOp;
VkAttachmentLoadOp stencilLoadOp;
VkAttachmentStoreOp stencilStoreOp;
VkImageLayout initialLayout;
VkImageLayout finalLayout;

} VkAttachmentDescription;

26 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Each attachment contains the following:
‒Format and sample count

‒Load operation – where to get the data from (memory, clear, or don’t care)

‒Store operation – where to leave the data (memory, or don’t care)
‒There are separate load and store operations for stencil

‒Expected layout at the beginning and end of the renderpass
‒Driver will insert layout changes for you

ATTACHMENTS
WHERE’S THE DATA?

27 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 An array of VkSubpassDescription structures:

 References color, depth-stencil, input, and resolve attachments

SUBPASSES
WHICH BIT AM I DRAWING?

typedef struct VkSubpassDescription {
VkSubpassDescriptionFlags flags;
VkPipelineBindPoint pipelineBindPoint;
uint32_t inputAttachmentCount;
const VkAttachmentReference* pInputAttachments;
uint32_t colorAttachmentCount;
const VkAttachmentReference* pColorAttachments;
const VkAttachmentReference* pResolveAttachments;
const VkAttachmentReference* pDepthStencilAttachment;
uint32_t preserveAttachmentCount;
const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

28 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Array of color attachments

 These are your normal color attachments
‒The total number of attachments in the renderpass is unlimited*

‒The number of color attachment references per-subpass is limited

COLOR ATTACHMENTS
THIS IS WHERE YOUR DATA GOES

typedef struct VkSubpassDescription {
...
uint32_t colorAttachmentCount;
const VkAttachmentReference* pColorAttachments;
...

} VkSubpassDescription;

*well, not actually unlimited, but you get the idea

29 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Array of input attachments

 Input attachments are the outputs of previous subpasses
‒Represents a data dependency between subpasses

INPUT ATTACHMENTS
READ FROM PREVIOUS SUBPASSES

typedef struct VkSubpassDescription {
...
uint32_t inputAttachmentCount;
const VkAttachmentReference* pInputAttachments;
...

} VkSubpassDescription;

30 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Resolve, preserve and depth-stencil attachments:

 Resolve attachments: Where MSAA attachments get resolved to

 DepthStencilAttachment: Depth and stencil

 Preserve attachments: List of attachments that must be preserved

OTHER ATTACHMENTS
MORE STUFF

typedef struct VkSubpassDescription {
...
const VkAttachmentReference* pResolveAttachments;
const VkAttachmentReference* pDepthStencilAttachment;
uint32_t preserveAttachmentCount;
const uint32_t* pPreserveAttachments;

} VkSubpassDescription;

31 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Array of additional dependency information

 Used for side effects
‒Stores to images or buffers consumed

by later subpasses, for example

ADDITIONAL DEPENDENCIES
EVEN MORE INFORMATION

typedef struct VkRenderPassCreateInfo {
...
uint32_t dependencyCount;
const VkSubpassDependency* pDependencies;

} VkRenderPassCreateInfo;

typedef struct VkSubpassDependency {
uint32_t srcSubpass;
uint32_t dstSubpass;
VkPipelineStageFlags

srcStageMask;
VkPipelineStageFlags

dstStageMask;
VkAccessFlags

srcAccessMask;
VkAccessFlags

dstAccessMask;
VkDependencyFlags

dependencyFlags;
} VkSubpassDependency;

32 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Driver uses renderpass structures to form a DAG
‒Subpasses produce and consume data

‒Resource barriers inserted automatically by driver

‒Scheduling information generated at renderpass creation time

 A DAG of one node isn’t helpful
‒Need renderpasses to include multiple subpasses to be useful

GRAPH BUILDING
CAN YOU DAG IT?

33 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Internal driver operations
‒Attachments have initial and final states

‒Clears are part of beginning a subpass, for example

‒Attachments go from being outputs to being inputs
‒Flush color caches, invalidate texture caches, change layouts, insert fences

‒Some surfaces require more attention
‒Compressed depth not directly readable by shaders, for example

‒Requires internal driver decompression

BUT WAIT, THERE’S MORE
ORDER IN THE NEXT 20 MINUTES

34 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Updated DAG, clears

LOAD OPS
LET’S MAKE THINGS CLEAR

Internal operation

35 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Updated DAG, flushes

FLUSH
MAKE SURE WE ALL AGREE

36 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Updated DAG, flushes, invalidation

INVALIDATE
MAKE SURE WE REALLY AGREE

37 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Renderpasses allow drivers to predict the future
‒Not really a prediction – you told it what you were going to do

‒Schedule clears, internal blits, cache operations, etc.
‒All done statically

‒When the renderpass is built

 “I can do that in the app, ‘cuase I’m a 1337 haxxorz”
‒Well, no, you can’t

‒Some of the internal driver operations aren’t exposed in the API

‒Some are only needed on some hardware

PREDICTING THE FUTURE
IT’S EASY WHEN YOU KNOW HOW

38 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 PSOs are built with respect to renderpasses
‒Each PSO knows which renderpass it will be used with, and in which subpass

‒Renderpass knows where subpass outputs go

‒Renderpass knows the format of all attachments

 If an output is not used, eliminate it
‒Reduce precision on outputs

‒Delete unused channels

 If an output is consumed directly
‒Fuse PSOs, specializing for the renderpass

LET’S GET CRAZY
DOUBLING DOWN ON THE NUTTY STUFF

39 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Renderpasses encapsulate data and execution flow
‒Driver can schedule internal work

‒Remove surprises at render time

‒Determine the fate of data early

 Many opportunities for GPU performance
‒Eliminate stalls and pipeline bubbles

‒Interleave internal operations with rendering

‒Optimize cache utilization

‒Choose formats and allocation strategies based on data flow

SUMMARY
RECAP

40 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Even a small renderpass of a couple of subpasses are good
‒Depth pre-pass, G-buffer render, lighting, post-process

 Dependencies aren’t necessarily necessary
‒Multiple shadow map passes producing multiple outputs

 Fold stuff you’re going to do anyway into the renderpass
‒Prefer load op clear over vkCmdClearAttachment

‒Prefer final layout on renderpass attachments over explicit barriers

‒Make liberal use of “don’t care”

‒Perform MSAA resolves using resolve attachments

BEST PRACTICE
DO THIS

41 NOVEMBER 2015 | CONFIDENTIAL

DR. MATTHÄUS G. CHAJDAS (@NIV_Anteru)

VULKAN FAST PATHS – BARRIERS & SYNC

42 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Synchronization
‒Make sure writes have finished before reads start

‒Timing issues if missed

 Visibility
‒Caches are visible to other units

‒Partial results, flickering, etc.

 Decompression
‒Make sure formats match

‒Corruption if missed

BARRIERS
WHY DO WE NEED THEM

43 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 vkCmdPipelineBarrier

 Points of interest:
‒Stage flags

‒The individual barriers

 Stage flags
‒Try to get the closest matching range

‒Compute while combining barriers

‒The smaller the range, the less units will idle - avoid TOP_OF_PIPE to
BOTTOM_OF_PIPE

BARRIERS
GET CODING NOW!

44 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 For any of the barriers
‒Make sure to transition into the union of the read states

‒Or them together – avoid VK_ACCESS_MEMORY_READ_BIT

 Batch as many barriers as you can into one call

 Need to specify source/destination queue

 Place transition close to semaphore

BARRIERS
DON’T LET THEM STOP YOU

45 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 If you can’t use render-passes yet, batch them at task boundaries

 Render passes are the superior solution for most barrier problems!

BARRIER BATCHING
ALL FOR ONE

G-Buffer Shadow maps Shading Post

Batch transitions Batch transitions Batch transitions

46 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Avoid tracking per-resource state
‒You don’t have that many resources that transition!

‒State tracking makes batching hard

‒Fragile

 Avoid transitioning everything – barriers have a cost!
‒Cost often scales with resolution

‒Cost changes between GPU generations

BARRIERS
ROAD TO 100% CORRECTNESS

47 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 As few barriers as possible – don’t track per resource state

 Use render passes when possible

 Think about the required state

BARRIERS
TL;DR

48 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 We have three synchronization primitives
‒Fences

‒Semaphores

‒Wait events

 Fences allow to synchronize GPU and CPU work
‒Frame sync

‒Protect frame resources with a fence

 Semaphore is a heavy-weight, cross queue sync

 Wait events are light-weight, in queue sync

SYNCHRONIZATION
HOLD ON A MOMENT

49 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Wait events allow you to go wide

SYNCHRONIZATON
HOLD ON A SEC

1 2 3 4 5

Signal

Wait

50 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Dispatch will continue while work executes

 Very cheap on GCN!

SYNCHRONIZATON
HOLD ON A SEC

1

2

3

4

5

51 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Semaphores are for cross-queue sync

 A couple per frame should suffice

SYNCHRONIZATION
HOLD ON A MINUTE

G-Buffer + Z-Buffer Shadow maps

SSAO, light tile classification

Shading Post-Processing

Semaphore sync hereSemaphore sync here

52 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

 Fence once per frame to protect per-frame resources

 Semaphores when you go multi-queue

 Wait events if you want to go wide – especially on compute

SYNCHRONIZATION
TL;DR

53 NOVEMBER 2015 | CONFIDENTIAL

54 NOVEMBER 2015 | CONFIDENTIAL

VULKAN FAST PATHS – GDC 2016

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for
informational purposes only and may be trademarks of their respective owners.

