

April 2024 1

Micro Engine Scheduler Specification

Date: April 2024

April 2024 2

Specification Agreement

This Specification Agreement (this "Agreement") is a legal agreement between Advanced Micro
Devices, Inc. ("AMD") and "You" as the recipient of the attached AMD Specification (the
"Specification"). If you are accessing the Specification as part of your performance of work for
another party, you acknowledge that you have authority to bind such party to the terms and
conditions of this Agreement. If you accessed the Specification by any means or otherwise use
or provide Feedback (defined below) on the Specification, You agree to the terms and conditions
set forth in this Agreement. If You do not agree to the terms and conditions set forth in this
Agreement, you are not licensed to use the Specification; do not use, access or provide
Feedback about the Specification. In consideration of Your use or access of the Specification (in
whole or in part), the receipt and sufficiency of which are acknowledged, You agree as follows:

1. You may review the Specification only (a) as a reference to assist You in planning and
designing Your product, service or technology ("Product") to interface with an AMD
product in compliance with the requirements as set forth in the Specification and (b) to
provide Feedback about the information disclosed in the Specification to AMD.

2. Except as expressly set forth in Paragraph 1, all rights in and to the Specification are
retained by AMD. This Agreement does not give You any rights under any AMD patents,
copyrights, trademarks or other intellectual property rights. You may not (i) duplicate any
part of the Specification; (ii) remove this Agreement or any notices from the
Specification, or (iii) give any part of the Specification, or assign or otherwise provide
Your rights under this Agreement, to anyone else.

3. The Specification may contain preliminary information, errors, or inaccuracies, or may not
include certain necessary information. Additionally, AMD reserves the right to
discontinue or make changes to the Specification and its products at any time without
notice. The Specification is provided entirely "AS IS." AMD MAKES NO WARRANTY OF
ANY KIND AND DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, TITLE OR THOSE
WARRANTIES ARISING AS A COURSE OF DEALING OR CUSTOM OF TRADE. AMD
SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL,
INCIDENTAL, PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, LOST PROFITS, LOSS OF CAPITAL,
LOSS OF GOODWILL) REGARDLESS OF THE FORM OF ACTION WHETHER IN
CONTRACT, TORT (INCLUDING NEGLIGENCE) AND STRICT PRODUCT LIABILITY OR
OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4. Furthermore, AMD’s products are not designed, intended, authorized or warranted for
use as components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or severe
property or environmental damage may occur.

5. You have no obligation to give AMD any suggestions, comments or feedback
("Feedback") relating to the Specification. However, any Feedback You voluntarily

April 2024 3

provide may be used by AMD without restriction, fee or obligation of confidentiality.
Accordingly, if You do give AMD Feedback on any version of the Specification, You
agree AMD may freely use, reproduce, license, distribute, and otherwise commercialize
Your Feedback in any product, as well as has the right to sublicense third parties to do
the same. Further, You will not give AMD any Feedback that You may have reason to
believe is (i) subject to any patent, copyright or other intellectual property claim or right
of any third party; or (ii) subject to license terms which seek to require any product or
intellectual property incorporating or derived from Feedback or any Product or other
AMD intellectual property to be licensed to or otherwise provided to any third party.

6. You shall adhere to all applicable U.S., European, and other export laws, including but not
limited to the U.S. Export Administration Regulations ("EAR"), (15 C.F.R. Sections 730
through 774), and E.U. Council Regulation (EC) No 428/2009 of 5 May 2009. Further,
pursuant to Section 740.6 of the EAR, You hereby certifies that, except pursuant to a
license granted by the United States Department of Commerce Bureau of Industry and
Security or as otherwise permitted pursuant to a License Exception under the U.S. Export
Administration Regulations ("EAR"), You will not (1) export, re-export or release to a
national of a country in Country Groups D:1, E:1 or E:2 any restricted technology,
software, or source code You receive hereunder, or (2) export to Country Groups D:1,
E:1 or E:2 the direct product of such technology or software, if such foreign produced
direct product is subject to national security controls as identified on the Commerce
Control List (currently found in Supplement 1 to Part 774 of EAR). For the most current
Country Group listings, or for additional information about the EAR or Your obligations
under those regulations, please refer to the U.S. Bureau of Industry and Security’s
website at http://www.bis.doc.gov/.

7. If You are a part of the U.S. Government, then the Specification is provided with
"RESTRICTED RIGHTS" as set forth in subparagraphs (c) (1) and (2) of the Commercial
Computer Software-Restricted Rights clause at FAR 52.227-14 or subparagraph (c) (1)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7013,
as applicable.

8. This Agreement is governed by the laws of the State of California without regard to its
choice of law principles. Any dispute involving it must be brought in a court having
jurisdiction of such dispute in Santa Clara County, California, and You waive any
defenses and rights allowing the dispute to be litigated elsewhere. If any part of this
agreement is unenforceable, it will be considered modified to the extent necessary to
make it enforceable, and the remainder shall continue in effect. The failure of AMD to
enforce any rights granted hereunder or to take action against You in the event of any
breach hereunder shall not be deemed a waiver by AMD as to subsequent enforcement
of rights or subsequent actions in the event of future breaches. This Agreement is the
entire agreement between You and AMD concerning the Specification; it may be
changed only by a written document signed by both You and an authorized
representative of AMD.

http://www.bis.doc.gov/

April 2024 4

Contents
MICRO ENGINE SCHEDULER SPECIFICATION .. 1

SPECIFICATION AGREEMENT ... 2
SCHEDULING REQUIREMENTS .. 5
HW ARCHITECTURE OVERVIEW .. 6
SCHEDULER FW ARCHITECTURE ... 8
SCHEDULING ALGORITHM ... 10

Queue state transitions .. 11
Round robin scheduling .. 12
Queue prioritization ... 13

MES API .. 16
MES API format .. 16
MES_SCH_API_SET_HW_RSRC ... 18
MES_SCH_API_ADD_QUEUE .. 22
MES_SCH_API_AMD_LOG .. 26
MES_SCH_API_REMOVE_QUEUE ... 26
MES_SCH_API_SET_SCHEDULING_CONFIG ... 27
MES_SCH_API_PERFORM_YIELD .. 28
MES_SCH_API_SET_GANG_PRIORITY_LEVEL ... 29
MES_SCH_API_SUSPEND .. 29
MES_SCH_API_RESUME ... 30
MES_SCH_API_RESET ... 31
MES_SCH_API_SET_LOG_BUFFER .. 34
MES_SCH_API_CHANGE_GANG_PRORITY ... 34
MES_SCH_API_QUERY_SCHEDULER_STATUS .. 36
MES_API_QUERY_MES__GET_CTX_ARRAY_SIZE ... 36
MES_API_QUERY_MES__HEALTHY_CHECK ... 37
MES_SCH_API_PROGRAM_GDS ... 37
MES_SCH_API_SET_DEBUG_VMID .. 38
MES_SCH_API_UPDATE_ROOT_PAGE_TABLE ... 40
MES_SCH_API_SET_SE_MODE ... 40
MES_SCH_API_SET_GANG_SUBMIT .. 41
MES_SCH_API_MISC .. 42
MESAPI_MISC__WRITE_REG .. 43
MESAPI_MISC__INV_GART .. 43
MESAPI_MISC__QUERY_STATUS ... 44
MESAPI_MISC__READ_REG ... 44
MESAPI_MISC__WAIT_REG_MEM ... 44
MESAPI_MISC__SET_SHADER_DEBUGGER .. 45
MESAPI_MISC__NOTIFY_WORK_ON_UNMAPPED_QUEUE... 46
MESAPI_MISC__NOTIFY_TO_UNMAP_PROCESSES ... 46

SCHEDULER LOG ... 47
API history .. 47
Event log history ... 48
Interrupt history ... 49
Example of log usage ... 50

DISCLAIMER ... 52
NOTICES.. 53
TRADEMARKS ... 54

April 2024 5

Scheduling requirements

At a high-level, the scheduling requirements can be summarized as:

• Fair and efficient scheduling of the application’s work on the GPU

• Implementation of multiple priority levels for a variety of user scenarios

These high-level requirements can also be described from a user scenario perspective:

• Applications with the same priority level should get the equal amount of the GPU
execution time

• Applications with the user focus (for e.g. compositor) should receive larger GPU time, but
not infinitely starve the Normal priority level

• Real time work such VR, Super-Wet ink or True audio should run immediately and can
infinitely starve work in the lower priority levels

• Low-priority work such as OneDrive, photo enhancement, compression or
Folding@home should only run when all higher priority levels are idle

Scheduler implements the above stated requirements via 4 levels of queue prioritization.

This scheduling behavior mirrors Microsoft specifications for GPU scheduling. The requirements
are captured in the Microsoft GPU scheduling specification and are not explained further.

Level Scheduling expectation What runs here

Real time Lowest possible launch latency. VR compositor, Super wet ink, True
audio next.

Focus Provides no forward progress
guarantee for the lower levels.

Desktop compositor, Video post
processing, foreground app’s work.

Normal Gets majority of GPU execution
time in the absence of Real time
work.

Typical work from the application
that does not have the user focus

Low Ensures forward progress for the
Normal level work.

All background work with no strict
deadline requirements for e.g. file
compression, encryption etc.

April 2024 6

HW architecture overview

The scheduler firmware’s main role is to map the scheduling requirement on to the HW
architecture. Therefore, it is required to understand the HW architecture to understand how
scheduling firmware achieves the scheduling requirements on the AMD GPUs.

The following diagram describes the high-level HW architecture and execution flow to
schedule/run an application queue.

Key highlights of HW architecture can be summarized as follows.

• The GPU frontend has three micro-processors meant to execute scheduling, compute
and gfx firmware

• There are multiple GFX and Compute pipes where each pipe contains a queue mgr that
arbitrates a certain number of HW queues attached to that pipe

• There are two levels of scheduling:

o First level of scheduling is at firmware, where firmware decides the applications
queues that should be mapped onto the available hardware queues on various
pipes

April 2024 7

o Second level of scheduling is in the Queue Manager HW where it selects one of
the ready hardware queue and runs it on the shader complex. Although the
second level of scheduling is done by Queue manager hardware, scheduler FW is
able to influence the Queue manager’s hardware queue selection and execution
via various knobs such as hardware queue priority, quantum etc.

• Queue manager’s arbitration logic selects a HW queue and runs it on the shader
complex. The mapped hardware queue selected for execution is called a “connected
queue”

• Each pipe provides an independent path to launch a queue’s work inside 3D/CS complex.
So potentially there could be #pipes worth of “connected queues” running in parallel

• There is a shared pool of ALUs for GFX and compute work

Refer to RDNA3 Instruction Set Architecture Reference Guide for additional information.

https://gpuopen.com/rdna3-isa-guide-now-available/

April 2024 8

Scheduler FW architecture

The scheduler firmware architecture can be decomposed into following key components:

1. Scheduler APIs
These are the commands sent by the driver to inform scheduler of the events such as queue
creation, destruction, suspension, or any changes to its priority. Each API is described later under
APIs section.

2. Scheduler context
Data structures where scheduler maintains application, queue state or any other scheduling state
or configuration.

Scheduler context is the state that API processor and Core scheduler thread works on. The
scheduler context consists of:

HW resource state

• HQD State – Current Queue mapped, queue type, scheduled time.

• VMID State - Current process mapped

• GDS State – Current process using the GDS partition.

Process scheduling state

• Scheduling level state - process list, grace period, normalband percentage,
has_ready_queues

• Process state – Gang list for each context priority(-7/+7), processquantum, running time
carryover

• Per Gang state – Queuelist, running time carryover, gang quantum.

3. API processor
Processes the APIs submitted by the driver and modifies the scheduler state if required.

4. Core Scheduler
Looks at the scheduler state, decide next set of scheduling actions and applies them.
For example, mapping a queue when it is created, or suspending as required. The scheduling
algorithm is described in a dedicated section later in this document.

5. Interrupt Handler
Handles interrupts from various internal HW blocks.
For example, interrupt handlers reads the API data from the fetcher or collects the busy, idle
state of various hardware queues.

April 2024 9

These are the main types of interrupts that RS64 processer will receive:

Interrupt
source

Description

ME0 Pipe0 Gfx pipe

ME1 Pipe0/1/2/3 First 4 compute pipes

ME2 Pipe0/1/2/3 Other 4 compute pipes

MES packet fifo Indicates new data in the MES queues

Hardware queue Message interrupt QueueManager interrupts

Software interrupt Caused by MES fw itself

Timer interrupt Used for Timer expiration

Unprivileged access Unprivileged access of MES registers

External interrupt From Non-gfx blocks

April 2024 10

Scheduling algorithm

Here are queue terminologies with descriptions to assist in understanding the queue state
transitions, before describing the scheduling algorithm.

• User queue
Represents a linear command stream of draws or dispatches from an application. It would
be analogous to a thread in the CPU world. There we few memory resources allocated for
user queue such as ring buffer where command packets are submitted by the application
and a memory to save the HW execution state of the queue when it is preempted. A user
queue does not execute on its own. It needs to be mapped onto a HW queue for it to
execute.

• Hardware queue
A hardware descriptor that holds the user queue state (for e.g. ring buffer address, read,
write pointers etc). A hardware queue could be in a mapped or unmapped state. And a
mapped queue could be in a connected or a disconnected state.

• Queue mapping/un-mapping
Mapping is an act of loading a user queue state onto a hardware queue. And un mapping
is an act of moving the queue state from a hardware queue descriptor to memory. A
hardware queue can only be unmapped after preemption.

• Connected queue
Hardware queue that is selected by queue manager to run on the 3d/CS complex.

April 2024 11

Queue state transitions

This diagram describes the possible queue states and triggers for the transitions.

Based on this illustration, a queue could be in one of the following states:

• Unmapped
The user queue has not been initialized into a hardware queue and it solely exists in
memory.

• Mapped & disconnected
The user queue has been initialized into a hardware queue but is currently not connected
to the shader subsystem so is not able to execute.

• Mapped and connected
The user queue has been initialized into a hardware queue and is connected to the
shader subsystem. Only connected queues are able to request and launch their work on
the shader resources. Only queues with pending work are allowed to connect.

The GPUSCH implementation can be explained in two steps where first we go into the round
robin scheduling and secondly we look at how different levels of queue priority are
implemented.

April 2024 12

Round robin scheduling

Round robin scheduling refers to the vanilla round robin scheduling where queues from all
applications have the same priority, and the scheduler is expected to provide an equal amount of
gpu time to each application.

Schedules achieves this by:

• maintaining a database of queues from all applications

• mapping them on to available hardware queues based on their scheduling turn. The
database referred above is the scheduling context that contains queue list for each
unique pair of queue type(GFX, Compute, DMA) and priority level.

There are 12 queue lists in total maintained inside the scheduler context.

Scheduler context also contains queue or process specific information such as MQD pointers,
VMIDs or any special resources allocated to the queue or the process. Various APIs from the
driver result in queue and process information to be updated inside the scheduler context.

Any updates to the scheduler context are then acted upon by the scheduler by performing
certain scheduling actions such as queue map or unmap.

AMD GPU has certain number of pipes, and each pipe has a fixed set of hardware queues. The
user queues must be mapped onto the hardware queues to execute their work. Since there are
limited number of hardware queues, the scheduler will attempt to map as many user queues on
the hardware queues as possible.

When a user queue is mapped on the hardware queue, the scheduler configures a quantum that
the queue must run. Once the quantum has expired, the queue manager will connect the next
hardware queue on the same pipe.

When the hardware queues are not over-subscribed (#user queues <= #hardware queues), the
scheduler will map all user queues on the hardware queues and configure equal quantum for all
queues.

This allows the queue manager to “connect” each hardware queue for an equal amount of
configure time. It is possible that a “connected queue” may go idle before its quantum has
expired, in which case the queue manager will connect the next hardware queue that has ready
work to execute.

When the hardware queues are over-subscribed (#user queues > #hardware queues), the
scheduler will map as many queues possible on the available HW queues and will unmap them
gradually upon quantum expiry or when they go idle to map the queues from the next process.

To ensure that the limited number of hardware queues are used in best way possible, the
scheduler only maps user queues with outstanding work to execute. This requires the scheduler

April 2024 13

to be informed when an unmapped queue has new work.

This is achieved using aggregated doorbells. Aggregated doorbells are special doorbells that are
written by SW when it submits work to an unmapped queue. Write to an aggregated doorbell
informs the scheduler of new work to an unmapped queue. The scheduler then uses this
notification to map the queue as soon as possible, based on the queue’s priority relative to the
other work. When aggregated doorbells are not available or used by the SW, scheduler start to
periodically polls the write pointer memory of the unmapped queues to discover if they have
new work. This is only done when there is a queue-over subscription as all user queues could
not be mapped on to the limited hardware queues.

This flowchart shows the event driven scheduling design and how scheduler handles these
events to implement a basic round robin scheduling of the user queues.

Queue prioritization

The scheduler maps as many user queues as possible to the available HW queues. Once the HW
queues are over-subscribed, the scheduler starts to round robin the user queues onto the
available HW queues.

This basic round robin scheme falls short when it comes to executing work of varying priority

April 2024 14

levels. The scheduler uses a combination of various hardware prioritization features to
implement the desired scheduling behavior for each priority level.

Before discussing the scheduler’s usage of these prioritization features, it’s useful to discuss the
various hardware prioritization features available for scheduler’s use:

• Mid command buffer preemption
Queue preemption is the most fundamental feature that is employed in various
prioritization scenarios to achieve the desired quality of service. Preemption can be issued
at several different work boundaries that affects the latency and the amount of state that
gets saved or restored. For example, compute work can be preempted at a submission,
dispatch, thread group or at a shader instruction boundary. The preemption latency and
amount of saved or restored states will vary based on the preemption granularity.

• Wave limiting
This method reduces the workload from other queues by limiting the number of waves
that can be issued. “Wave” represents a group of shader threads.

• Pipe priority
Connected queues on each pipe asserts a pipe priority to the shader HW. The shader HW
uses this priority to select and launch upcoming work based on pipe priority.

• Dispatch tunneling
The method immediately disables the work from other queues when a dispatch from a
high-priority queue is executed. The ability to tunnel dispatches is configured as a queue-
property.

• Queue quantum
Quantum is implemented by both queue manager hardware and scheduler firmware. The
queue manager connects and disconnects queues based on the quantum configured in the
hardware queue by the scheduler firmware.
During queue oversubscription, the scheduler firmware un-maps the queue once its
quantum has expired to allow mapping of other unmapped user queues on the hardware
queues.

• Queue connection priority
The queue connection priority is specified for each hardware queue and is used by the
queue manager hardware to select the next hardware queue that will be connected to the
pipe.

• Compute unit reservation
This method allows a certain number of compute units to be carved out and only made
available for a particular queue. This method is used in scenarios where the machine
utilization launch latency is critical.

The scheduler uses a combination of the described methods to achieve the desired prioritization
in the presence of workload from queues with different priorities.

April 2024 15

The following table lists how various methods are employed in different scenarios:

Ready work to run Expected scheduling

behavior
How scheduler achieves it

1. Real time compute
queue

2. Focus gfx queue
3. Normal priority

compute queues
4. Idle Compute queue

1. Real time priority queue
runs without any delays

2. Once Real time queue is
idle, Focus queue will start
to execute.

3. Once Focus queue has
executed for a configured
amount of time, the Normal
queue will execute for a
certain period of time.

4. Once all Real time, Focus
and Normal queues have
nothing else to execute,
only then the Idle queue will
execute

Real time prioritization
1. Real time queue once created stays

mapped(max 4 RT queues allowed i.e. max
1 RT queue/pipe)

2. A certain # of Compute units are reserved
for the Real time queue. Certain Real time
queues will use Wave limiting instead of
Compute unit reservation to quickly get
their work to execute.

3. Highest queue connection priority
4. Highest shader type priority

Focus and Normal prioritization
1. Focus queue is mapped as the same

connection priority as Normal queue.
2. Focus queue has a larger quantum relative

to the Normal queue.
3. Focus queues have higher pipe priority.
4. Scheduler firmware may also unmap

Normal queues on other pipes when they
have long running shaders that prevent the
Focus work from being able to launch on
the compute units.

5. Normal queues get preempted with a
higher level of preemption than the Focus
queues.

Idle prioritization

Executes when all queue in the higher
priority levels have been idle for some time.

April 2024 16

MES API

This section describes MES API usage. The kernel mode driver (KMD) communicates with the
Micro Engine Scheduler (MES) firmware by submitting API commands to the MES queue ring
buffer.

• Some API’s fields are for debug purposes which are not enabled by default. These fields
have Debug Only in their descriptions

MES API format

• MES scheduler APIs are defined in mes_api_def.h

• Each API has length 64 DWORDS as defined in enum {API_FRAME_SIZE_IN_DWORDS = 64}

The following format is applicable to all APIs:
union MESAPI__APINAME
{
 struct
 {
 union MES_API_HEADER header;
 //API specific info

 struct MES_API_STATUS api_status;

 uint64_t timestamp;
 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];
};

Each API contains its specific information and three common fields: header, timestamp and
api_status:

union MES_API_HEADER

{

 struct

 {

 uint32_t type : 4; /* 0 - Invalid; 1 - Scheduling; 2-15 - Reserved*/

 uint32_t opcode : 8; /* API command defined in MES_SCH_API_OPCODE enum */

 uint32_t dwsize : 8; /* Size in DWORD of the API command including header */

 uint32_t reserved : 12;

 };

 uint32_t u32All;

};

April 2024 17

Opcode defines all supported MES APIs:
enum MES_SCH_API_OPCODE

{

 MES_SCH_API_SET_HW_RSRC = 0,

 MES_SCH_API_SET_SCHEDULING_CONFIG = 1,

 MES_SCH_API_ADD_QUEUE = 2,

 MES_SCH_API_REMOVE_QUEUE = 3,

 MES_SCH_API_PERFORM_YIELD = 4,

 MES_SCH_API_SET_GANG_PRIORITY_LEVEL = 5,

 MES_SCH_API_SUSPEND = 6,

 MES_SCH_API_RESUME = 7,

 MES_SCH_API_RESET = 8,

 MES_SCH_API_SET_LOG_BUFFER = 9,

 MES_SCH_API_CHANGE_GANG_PRORITY = 10,

 MES_SCH_API_QUERY_SCHEDULER_STATUS = 11,

 MES_SCH_API_PROGRAM_GDS = 12,

 MES_SCH_API_SET_DEBUG_VMID = 13,

 MES_SCH_API_MISC = 14,

 MES_SCH_API_UPDATE_ROOT_PAGE_TABLE = 15,

 MES_SCH_API_AMD_LOG = 16,

 MES_SCH_API_SET_SE_MODE = 17,

 MES_SCH_API_SET_GANG_SUBMIT = 18,

 MES_SCH_API_MAX = 0xFF

};

The api_status in each API command contains fence address and fence value that the KMD
inserts. MES firmware writes the fence value to the given address to notify the KMD that the
API has been processed by scheduler.

struct MES_API_STATUS

{

 uint64_t api_completion_fence_addr;

 uint64_t api_completion_fence_value;

};

April 2024 18

MES_SCH_API_SET_HW_RSRC

This is the first API that KMD submits to MES during initialization.

It provides list of hardware resources (hardware queues, virtual memory ID (VMID), etc.) to be
managed by the scheduler and configuration flags (OS dependent features, workaround, etc.).

enum { MAX_COMPUTE_PIPES = 8 };

enum { MAX_GFX_PIPES = 2 };

enum { MAX_SDMA_PIPES = 2 };

enum MES_AMD_PRIORITY_LEVEL

{

 AMD_PRIORITY_LEVEL_LOW = 0,

 AMD_PRIORITY_LEVEL_NORMAL = 1,

 AMD_PRIORITY_LEVEL_MEDIUM = 2,

 AMD_PRIORITY_LEVEL_HIGH = 3,

 AMD_PRIORITY_LEVEL_REALTIME = 4,

 AMD_PRIORITY_NUM_LEVELS

};

union MESAPI_SET_HW_RESOURCES

{

 struct

 {

 union MES_API_HEADER header;

 uint32_t vmid_mask_mmhub;

 uint32_t vmid_mask_gfxhub;

 uint32_t gds_size;

 uint32_t paging_vmid;

 uint32_t compute_hqd_mask[MAX_COMPUTE_PIPES];

 uint32_t gfx_hqd_mask[MAX_GFX_PIPES];

 uint32_t sdma_hqd_mask[MAX_SDMA_PIPES];

 uint32_t aggregated_doorbells[AMD_PRIORITY_NUM_LEVELS];

 uint64_t g_sch_ctx_gpu_mc_ptr;

 uint64_t query_status_fence_gpu_mc_ptr;

 uint32_t gc_base[MES_MAX_HWIP_SEGMENT];

April 2024 19

 uint32_t mmhub_base[MES_MAX_HWIP_SEGMENT];

 uint32_t osssys_base[MES_MAX_HWIP_SEGMENT];

 struct MES_API_STATUS api_status;

 union

 {

 struct

 {

 uint32_t disable_reset : 1;

 uint32_t use_different_vmid_compute : 1;

 uint32_t disable_mes_log : 1;

 uint32_t apply_mmhub_pgvm_invalidate_ack_loss_wa : 1;

 uint32_t apply_grbm_remote_register_dummy_read_wa : 1;

 uint32_t second_gfx_pipe_enabled : 1;

 uint32_t enable_level_process_quantum_check : 1;

 uint32_t legacy_sch_mode : 1;

 uint32_t disable_add_queue_wptr_mc_addr : 1;

 uint32_t enable_mes_event_int_logging : 1;

 uint32_t enable_reg_active_poll : 1;

 uint32_t use_disable_queue_in_legacy_uq_preemption : 1;

 uint32_t send_write_data : 1;

 uint32_t os_tdr_timeout_override : 1;

 uint32_t use_rs64mem_for_proc_gang_ctx : 1;

 uint32_t use_add_queue_unmap_flag_addr : 1;

 uint32_t enable_mes_sch_stb_log : 1;

 uint32_t reserved : 15;

 };

 uint32_t uint32_all;

 };

 uint32_t oversubscription_timer;

 uint64_t doorbell_info;

 uint64_t event_intr_history_gpu_mc_ptr;

 uint64_t timestamp;

 uint32_t os_tdr_timeout_in_sec;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• vmid_mask_gfxhub – Bit mask of VMIDs in GC hub that are available for scheduler to
manage. Each bit position indicates the availability of the corresponding VMID, e.g., 0x6

April 2024 20

means VMID 1 and 2 are available

• vmid_mask_mmhub – Obsolete

• gds_size – Size of the global data storage (GDS) on the chip

• paging_vmid – VMID that driver assigns to paging process (excluded from
vmid_mask_gfxhub)

• compute_hqd_mask – Per pipe bit mask of compute hardware queue descriptors (HQD)
that are managed by scheduler. Each bit position indicates the availability of
corresponding compute HQD on the particular pipe, e.g., 0x3 means compute HQD 0
and 1 of the pipe are available

• gfx_hqd_mask - Per pipe bit mask of graphics (GFX) HQDs that are managed by
scheduler. Each bit position indicates the availability of corresponding GFX HQD on the
particular pipe, e.g., 0x3 means GFX queue 0 and 1 of the pipe are available

• sdma_hqd_mask – Per pipe bit mask of SDMA HQDs that are managed by scheduler.
Each bit position indicates the availability of corresponding SDMA HQD on the particular
pipe, e.g., 0x3 means SDMA queue 0 and 1 of the pipe are available

• aggregated_doorbells – Offsets of aggregated doorbells. Value of 0XFFFFFFFF indicates
invalid offset

• g_sch_ctx_gpu_mc_ptr – Obsolete

• query_status_fence_gpu_mc_ptr – MC address of query_status packet fence memory.

• gc_base – HWIP base for GC block

• mmhub_base – HWIP base for MM block

• ossys_base – HWIP base for OSSYS block

• oversubscription_timer – Duration in micro-second of timer when oversubscription
happens. Scheduler wakes up to check if any unmapped queue has new work when timer
is up

• doorbell_info – Debug only. Memory to hold aggregated doorbell counter

• event_intr_history_gpu_mc_ptr – Debug only. MC address to hold MES
event/interrupt/API history log

• os_tdr_timeout_in_sec – Unmap timeout value in seconds. The driver is able to use this
to overwrite the default unmap time out value of 2 seconds. Only valid when
os_tdr_timeout_override is set

April 2024 21

Flags

• disable_reset – Disable MES automatic hang detection

• use_different_vmid_compute – Scheduler assigns different VMIDs for GFX and compute
of the same process

• disable_mes_log– Disables MSFT GPU hardware scheduling log

• apply_mmhub_pgvm_invalidate_ack_loss_wa – Obsolete

• apply_grbm_remote_register_dummy_read_wa – Obsolete

• second_gfx_pipe_enabled – Enables 2nd GFX pipe

• enable_level_process_quantum_check – Enable an optimization that jumps out of the
scheduling loop to handle an API event

• legacy_sch_mode – Set to 1 on the older OSes that do not understand or support the
GPU hardware scheduling.

• disable_add_queue_wptr_mc_addr – If set to 1, the scheduler uses part of memory queue
descriptor (MQD) memory for wptr poll memory. Otherwise, scheduler use the address
passed in ADD_QUEUE API (see MES_SCH_API_ADD_QUEUE for details)

• enable_mes_event_int_logging – Debug only. Enables MES internal event/interrupt/API
logging

• enable_reg_active_poll – Controls how the scheduler polls queue's active bit. 1: poll HQD
register; 0: poll MQD memory

• use_disable_queue_in_legacy_uq_preemption – Set to 1 to allow the scheduler to use
disable_queue bit in MQD for OS preemption

• send_write_data – Set to 1 for the scheduler to send a write_date packet to write a fence
following each KIQ packet

• os_tdr_timeout_override – Enables unmap timeout overwrite

• use_rs64mem_for_proc_gang_ctx – Enables scheduler optimization that puts the process
context and gang context into the MES scheduler local memory

• use_add_queue_unmap_flag_addr – If set to 1, the scheduler uses MC address passed in
MES_SCH_API_ADD_QUEUE for queue unmap status. Else, scheduler will use the MQD
memory

• enable_mes_sch_stb_log – Enables MES to log into Smart Trace Buffer

April 2024 22

MES_SCH_API_ADD_QUEUE

The KMD uses this API to add a use queue into the scheduler's internal structure to schedule it
on GPU hardware.

union MESAPI__ADD_QUEUE

{

 struct

 {

 union MES_API_HEADER header;

 uint32_t process_id;

 uint64_t page_table_base_addr;

 uint64_t process_va_start;

 uint64_t process_va_end;

 uint64_t process_quantum;

 uint64_t process_context_addr;

 uint64_t gang_quantum;

 uint64_t gang_context_addr;

 uint32_t inprocess_gang_priority;

 enum MES_AMD_PRIORITY_LEVEL gang_global_priority_level;

 uint32_t doorbell_offset;

 uint64_t mqd_addr;

 uint64_t wptr_addr; //From MES_API_VERSION 2, mc addr is
expected for wptr_addr

 uint64_t h_context;

 uint64_t h_queue;

 enum MES_QUEUE_TYPE queue_type;

 uint32_t gds_base;

 uint32_t gds_size;

 uint32_t gws_base;

 uint32_t gws_size;

 uint32_t oa_mask;

 uint64_t trap_handler_addr;

 uint32_t vm_context_cntl;

 struct

 {

 uint32_t paging : 1;

 uint32_t debug_vmid : 4;

 uint32_t program_gds : 1;

 uint32_t is_gang_suspended : 1;

 uint32_t is_tmz_queue : 1;

April 2024 23

 uint32_t map_kiq_utility_queue : 1;

 uint32_t is_kfd_process : 1;

 uint32_t trap_en : 1;

 uint32_t is_aql_queue : 1;

 uint32_t skip_process_ctx_clear : 1;

 uint32_t map_legacy_kq : 1;

 uint32_t exclusively_scheduled : 1;

 uint32_t is_long_running : 1;

 uint32_t is_dwm_queue : 1;

 uint32_t is_video_blit_queue : 1;

 uint32_t reserved : 14;

 };

 struct MES_API_STATUS api_status;

 uint64_t tma_addr;

 uint32_t sch_id;

 uint64_t timestamp;

 uint32_t process_context_array_index;

 uint32_t gang_context_array_index;

 uint32_t pipe_id; //used for mapping legacy kernel queue

 uint32_t queue_id;

 uint32_t alignment_mode_setting;

 uint64_t unmap_flag_addr; //Used for letting driver know queue
is unmapped, mc addr is expected

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• process_id – Process ID that appears in the IH Cookie as pasid. The KMD assigns unique
process ID to each process

• page_table_base_addr – Page table base address of the process, and is programmed in
VM_CONTEXTx_PAGE_TABLE_BASE_LO/HI registers

• process_va_start – Starting VA that’s covered by the process’s page table. Programmed
in VM_CONTEXTx_PAGE_TABLE_START_LO/HI

• process_va_end – End VA that’s covered by the process’s page table. Programmed in
VM_CONTEXTx_PAGE_TABLE_END_LO/HI

• process_quantum – Measured in 100ns units. Indicates the minimum time a process is
allowed to run on the GPU

April 2024 24

• process_context_addr – The memory where process specific information is saved. The
scheduler owns the format of content saved in this memory. The size of the process
context is defined in mes_api_def.h

• gang_quantum – Measured in 100ns units. Indicates the minimum amount of time a gang
runs on the GPU

• gang_context_addr – memory where gang specific information is saved. Scheduler owns
the format of content saved in this memory. The size of this memory is defined in the
mes_api_def.h

• inprocess_gang_priority – The priority number assigned to the gang relative to other
gangs within the same process

• gang_global_priority_level – The global priority level assigned to the gang. All queues
within a gang share this priority level

• doorbell_offset – The doorbell offset (DWORD offset, i.e bits[27:2]) assigned to the
queue

• mqd_addr – The MC address of queue's MQD memory

• wptr_addr – If MES_SCH_API_SET_HW_RSRC.disable_add_queue_wptr_mc_addr is set,
GPUVA of wptr poll memory. Else, it’s the MC address of wptr poll memory

• h_context – OS handle of the context

• h_queue – OS handle of the queue

• queue_type – GFX/compute/SDMA

• gds_base/size – GDS base/size

• gws_base/size – GWS base/size

• oa_mask – OA mask

• trap_handler_addr – CWSR trap handler GPU VA

• tma_addr – CWSR TMA GPU VA

• vm_context_cntl – Programmed in VM_CONTEXTx_CNTL

• sch_id – The scheduler ID of the engine node belonging to the queue

• timestamp – The CPU time stamp of when driver submits this packet to the ring. Used
for debugging only.

• process_context_array_index – The index of the process context array in scheduler's

April 2024 25

local memory; valid only when
MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is True

• gang_context_array_index – The index of the gang context array in scheduler's local
memory; valid only when
MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is True

• pipe_id – Used to map a kernel queue; the Pipe ID of the kernel queue

• queue_id – Used to map a kernel queue; the Queue ID of the kernel queue

• alignment_mode_setting – The shader alignment mode to be programmed in
SH_MEM_CONFIG

• unmap_flag_addr – The MC address for queue unmap status memory. Only valid when
MES_SCH_API_SET_HW_RSRC. use_add_queue_unmap_flag_addr is set

Flags

• paging – The queue belonging to the paging process

• debug_vmid – Process requires the debug vmid (used by RGP (Radeon GFX Profiling)
tool

• program_gds – Process uses GDS

• is_gang_suspended – A queue's context in suspended state to prevent scheduling of a
queue

• is_tmz_queue – Obsolete

• map_kiq_utility_queue – Obsolete

• is_kfd_process – Queue belonging to the KFD process

• trap_en – Enables trap for shader debugger

• is_aql_queue – The AQL queue

• map_legacy_kq – The kernel queue

• exclusively_scheduled – Supports cooperative launch

• is_long_running – Indicates that the queue has a long running compute job

• is_dwm_queue – Indicates that the queue belongs to the DWM process

April 2024 26

• is_video_blit_queue - Indicates the queue is a video blit queue

MES_SCH_API_AMD_LOG

Copy MES_SCH_CONTEXT to AMGLOG specified memory location for TDR analysis.

union MESAPI_AMD_LOG

{

 struct

 {

 union MES_API_HEADER header;

 uint64_t p_buffer_memory;

 uint64_t p_buffer_size_used;

 struct MES_API_STATUS api_status;

 uint64_t timestamp;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• p_buffer_memory - Pointer to amdlog buffer

• p_buffer_size_used - Not used, buffer size is equal to sizeof(struct MES_SCH_CONTEXT)

MES_SCH_API_REMOVE_QUEUE
The KMD uses this API to remove a user queue from the scheduler's internal structure.

If the queue being removed is the last queue in the gang, all information related to the gang is
removed from the scheduler context.

If the removed gang is the last in the process, the process information is removed from the
scheduler context.

union MESAPI__REMOVE_QUEUE

{

 struct

 {

 union MES_API_HEADER header;

 uint32_t doorbell_offset;

 uint64_t gang_context_addr;

 struct

 {

April 2024 27

 uint32_t reserved01 : 1;

 uint32_t unmap_kiq_utility_queue : 1;

 uint32_t preempt_legacy_gfx_queue : 1;

 uint32_t unmap_legacy_queue : 1;

 uint32_t reserved : 28;

 };

 struct MES_API_STATUS api_status;

 uint32_t pipe_id;

 uint32_t queue_id;

 uint64_t tf_addr;

 uint32_t tf_data;

 enum MES_QUEUE_TYPE queue_type;

 uint64_t timestamp;

 uint32_t gang_context_array_index;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• doorbell_offset – Doorbell offset [DWORD offset, bits [27:2]] of the queue to be
removed

• gang_context_addr – The gang’s context address that maintains the info of all queues
belonging to that gang

• pipe/queue_id – Used to remove a kernel queue (i.e., queues are managed by KMD); pipe
ID/queue ID of the kernel queue being removed

• tf_addr/data – Trailing fence address and value for OS preemption

• queue_type – Gfx/compute/SDMA

• gang_context_array_index – Index of the gang context array in scheduler's local memory;
valid only when MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is true

Flags
• unmap_kiq_utility_queue – Obsolete

• preempt_legacy_gfx_queue – Indicates that this is for OS preemption

• unmap_legacy_queue – Indicates that this is for kernel queue

MES_SCH_API_SET_SCHEDULING_CONFIG
Corresponds to Windows DDI DxgkDdiSetProrityBands.

Sets up process quantum and other related information during bootup for each priority band.
The MES scheduler uses this information for scheduling decisions.

April 2024 28

union MESAPI__SET_SCHEDULING_CONFIG

{

 struct

 {

 union MES_API_HEADER header;

 uint64_t grace_period_other_levels[AMD_PRIORITY_NUM_LEVELS];

 /* Default quantum for scheduling across processes within a priority band. */

 uint64_t process_quantum_for_level[AMD_PRIORITY_NUM_LEVELS];

 /* Default grace period for processes that preempt each other within a priority
band.*/

 uint64_t
process_grace_period_same_level[AMD_PRIORITY_NUM_LEVELS];

 /* For normal level this field specifies the target GPU percentage in situations
when it's starved by the high level.

 Valid values are between 0 and 50, with the default being 10.*/

 uint32_t normal_yield_percent;

 struct MES_API_STATUS api_status;

 uint64_t timestamp;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• grace_period_other_levels - Grace period when preempting another priority band for this
priority band. The value for idle priority band is ignored, as it never preempts other bands

• process_quantum_for_level - Default quantum for scheduling across processes within a
priority band

• process_grace_period_same_level - Default grace period for processes that preempt each
other within a priority band

• normal_yield_percent - For normal level this field specifies the target GPU percentage in
situations when it's starved by the high level. Valid values are between 0 and 50, with
the default being 10

Note: In current fw, only relevant quantum is process_quantum_for_level, other fields are not
used in scheduling/

MES_SCH_API_PERFORM_YIELD
This API is not currently supported.

April 2024 29

MES_SCH_API_SET_GANG_PRIORITY_LEVEL
This API is not currently supported.

MES_SCH_API_SUSPEND
When MES_SCH_API_SET_HW_RSRC.legacy_sch_mode is set, the KMD uses this API to
suspend a single queue to prevent it from being scheduled for a single engine in Windows OS
preemption.

(Used in the following DDIs in Windows: DxgkDdiSuspendContext, DxgkDdiPreemptCommand.)
union MESAPI__SUSPEND

{

 struct

 {

 union MES_API_HEADER header;

 /* false - suspend all gangs; true - specific gang */

 struct

 {

 uint32_t suspend_all_gangs : 1;

 uint32_t reserved : 31;

 };

 /* gang_context_addr is valid only if suspend_all = false */

 uint64_t gang_context_addr;

 uint64_t suspend_fence_addr;

 uint32_t suspend_fence_value;

 struct MES_API_STATUS api_status;

 union

 {

 uint32_t return_value; // to be removed

 uint32_t sch_id; //keep the old return_value temporarily for
compatibility

 };

 uint32_t doorbell_offset;

 uint64_t timestamp;

 enum MES_QUEUE_TYPE legacy_uq_type;

 enum MES_AMD_PRIORITY_LEVEL legacy_uq_priority_level;

 uint32_t gang_context_array_index;

April 2024 30

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• gang_context_addr - Gang context address for target queue to be suspended

• suspend_fence_addr – MC address for suspend completion fence

• suspend_fence_value - Suspend fence ID

• doorbell_offset - Doorbell offset for target queue to be suspended. Only used if no flag is
set

• gang_context_array_index - Gang context array index for target queue to be suspended.
Valid only when MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is set

The following fields are only valid for Windows OS preemption.

• return_value - Obsolete

• sch_id –Scheduler ID for target engine to be suspended

• legacy_uq_type – Queue type for target engine to be suspended (GFX/compute/SDMA)

• legacy_uq_priority_level – Priority level to be suspended

Flags
• suspend_all_gangs – Not currently supported

MES_SCH_API_RESUME
The KMD uses this API to resume a single queue suspended by MES_SCH_API_SUSPEND, or
resume scheduling after reset.

(Used in the following DDIs in Windows OS: DxgkDdiResumeContext,
DxgkDdiResumeHwEngine.)

union MESAPI__RESUME

{

 struct

 {

 union MES_API_HEADER header;

 /* false - resume all gangs; true - specified gang */

 struct

 {

 uint32_t resume_all_gangs : 1;

 uint32_t reserved : 31;

 };

April 2024 31

 /* valid only if resume_all_gangs = false */

 uint64_t gang_context_addr;

 struct MES_API_STATUS api_status;

 uint32_t doorbell_offset;

 uint64_t timestamp;

 uint32_t gang_context_array_index;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• gang_context_addr - Gang context address for target queue to be resumed. Valid only if
resume_all_gangs = 0

• gang_context_array_index – Gang context array index for target queue to be resumed.
Valid only if resume_all_gangs = 0 and
MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx = 1

Flags
• resume_all_gangs - Resume all scheduling. Meant to be called after an engine reset

MES_SCH_API_RESET
In Windows, the KMD uses this API for hang detection and reset. The MES scheduler returns a
list of doorbell offsets of hung queues. If the list is empty, no hangs are detected.

Used in the following Windows DDIs; DxgkDdiQueryEngineStatus, DxgkDdiResetEngine,
DxgkDdiResetHwEngine

The KMD can also use this API to reset kernel queues by setting reset_legacy_gfx flag.
union MESAPI__RESET

{

 struct

 {

 union MES_API_HEADER header;

 struct

 {

 uint32_t reset_queue_only : 1; // Only reset the queue given
by doorbell_offset (not entire gang)

 uint32_t hang_detect_then_reset : 1; // Hang detection first
then reset any queues that are hung

 uint32_t hang_detect_only : 1; // Only do hang detection (no
reset)

April 2024 32

 uint32_t reset_legacy_gfx : 1; // Reset HP and LP kernel
queues not managed by MES

 uint32_t use_connected_queue_index : 1; // Fallback to use
conneceted queue index when CP_CNTX_STAT method fails (gfx pipe 0)

 uint32_t use_connected_queue_index_p1 : 1; // For gfx pipe 1

 uint32_t reserved : 26;

 };

 uint64_t gang_context_addr;

 /* valid only if reset_queue_only = true */

 uint32_t doorbell_offset;

 /* valid only if hang_detect_then_reset = true */

 uint64_t doorbell_offset_addr;

 enum MES_QUEUE_TYPE queue_type;

 //valid only if reset_legacy_gfx = true

 uint32_t pipe_id_lp;

 uint32_t queue_id_lp;

 uint32_t vmid_id_lp;

 uint64_t mqd_mc_addr_lp;

 uint32_t doorbell_offset_lp;

 uint64_t wptr_addr_lp;

 uint32_t pipe_id_hp;

 uint32_t queue_id_hp;

 uint32_t vmid_id_hp;

 uint64_t mqd_mc_addr_hp;

 uint32_t doorbell_offset_hp;

 uint64_t wptr_addr_hp;

 struct MES_API_STATUS api_status;

 uint32_t active_vmids;

 uint64_t timestamp;

 uint32_t gang_context_array_index;

 uint32_t connected_queue_index;

 uint32_t connected_queue_index_p1;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• gang_context_addr - Obsolete

• doorbell_offset – Doorbell offset of the queue. Only valid when reset_queue_only = 1

April 2024 33

• doorbell_offset_addr – MC address of memory that holds doorbell offset array. MES
scheduler populates this array with offsets for queues that are hung

• queue_type - Indicates which engine MES should reset/hang detect
(GFX/compute/SDMA)

• active_vmids - Workaround to indicate which VMIDs are currently active for
CP_CNTX_STAT hang detect method

• gang_context_array_index - Obsolete

• connected_queue_index - Workaround to indicate which queue is currently connected
on GFX Pipe 0. Valid only when use_connected_queue_index = 1

• connected_queue_index_p1 - Workaround to indicate which queue is currently
connected on GFX Pipe 1. Valid only when use_connected_queue_index_p1 = 1

The following fields are only valid when reset_legacy_gfx is set and are used in Windows:

• pipe_id_lp - Pipe ID for low priority GFX Kernel queue

• queue_id_lp - Queue ID for low priority GFX Kernel queue

• vmid_id_lp - VMID for low priority GFX Kernel queue

• mqd_mc_addr_lp - MQD MC address for low priority GFX Kernel queue

• doorbell_offset_lp - Doorbell offset for low priority GFX Kernel queue

• wptr_addr_lp - Write pointer poll memory address for low priority GFX Kernel queue

• pipe_id_hp - Pipe ID for high priority GFX Kernel queue

• queue_id_hp - Queue ID for high priority GFX Kernel queue

• vmid_id_hp - VMID for high priority GFX Kernel queue

• mqd_mc_addr_hp - MQD MC address for high priority GFX Kernel queue

• doorbell_offset_hp - Doorbell offset for high priority GFX Kernel queue

• wptr_addr_hp - Write pointer poll memory address for high priority GFX Kernel queue

Flags
• reset_queue_only - Reset single queue with no hang detection

• hang_detect_then_reset - Performs hang detection, and reset all hung queues. Return
doorbell offsets of all hung queues

• hang_detect_only - Perform hang detection only. Returns doorbell offsets of all hung
queues

• reset_legacy_gfx – Resets legacy GFX queue

• No flag set - Obsolete. The driver is expected to set one of the above flags

April 2024 34

MES_SCH_API_SET_LOG_BUFFER
The KMD uses this API to save log buffer information passed from Windows OS DDI
DxgkDdiSetSchedulingLogBuffer.

union MESAPI__SET_LOGGING_BUFFER

{

 struct

 {

 union MES_API_HEADER header;

 /* There are separate log buffers for each queue type */

 enum MES_QUEUE_TYPE log_type;

 /* Log buffer GPU Address */

 uint64_t logging_buffer_addr;

 /* number of entries in the log buffer */

 uint32_t number_of_entries;

 /* Entry index at which CPU interrupt needs to be signalled */

 uint32_t interrupt_entry;

 struct MES_API_STATUS api_status;

 uint64_t timestamp;

 uint32_t vmid;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• log_type - Target engine type for this log buffer update (each engine has its own log
buffer)

• logging_buffer_addr – GPU virtual address of log buffer

• number_of_entries - Log buffer size

• interrupt_entry - When number of entries logged in the log buffer reaches this log entry
index, it raises an interrupt to KMD/OS. The interrupt is meant to give OS advanced
warning of when the existing log buffer is going to be filled up so that it can allocate a
new log buffer

MES_SCH_API_CHANGE_GANG_PRORITY
In the Windows use-case, this API corresponds to DDI
DxgkDDiSetContextSchedulingProperties. The Windows OS changes user queue quantum to
reflect changes in the owning process's status. For example, when a user’s mouse focus changes

April 2024 35

from one process to another.
union MESAPI__CHANGE_GANG_PRIORITY_LEVEL

{

 struct

 {

 union MES_API_HEADER header;

 uint32_t inprocess_gang_priority;

 enum MES_AMD_PRIORITY_LEVEL gang_global_priority_level;

 uint64_t gang_quantum;

 uint64_t gang_context_addr;

 struct MES_API_STATUS api_status;

 uint32_t doorbell_offset;

 uint64_t timestamp;

 uint32_t gang_context_array_index;

 struct

 {

 uint32_t queue_quantum_scale : 2;

 uint32_t queue_quantum_duration : 8;

 uint32_t apply_quantum_all_processes : 1;

 uint32_t reserved : 21;

 };

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• inprocess_gang_priority - Gang priority within a process, not used in current FW

• gang_global_priority_level - Overall gang priority level, lower priority gangs tend to get
preempted for high priority gangs during scheduling

• gang_quantum - Quantum provided by Windows OS, usually 2ms, queue is considered
"expired" after its quantum runs out

• doorbell_offset – Obsolete

• gang_context_array_index – index of the gang context array in scheduler's local memory;
valid only when MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is set

• queue_quantum_scale – Used by Windows OS

• queue_quantum_duration – Used by Windows OS

• apply_quantum_all_processes – Used by Windows OS

April 2024 36

MES_SCH_API_QUERY_SCHEDULER_STATUS
The KMD uses this API to query status/info from MES firmware.

enum MES_API_QUERY_MES_OPCODE

{

 MES_API_QUERY_MES__GET_CTX_ARRAY_SIZE,

 MES_API_QUERY_MES__CHECK_HEALTHY,

 MES_API_QUERY_MES__MAX,

};

union MESAPI__QUERY_MES_STATUS

{

 struct

 {

 union MES_API_HEADER header;

 enum MES_API_QUERY_MES_OPCODE subopcode;

 struct MES_API_STATUS api_status;

 uint64_t timestamp;

 union

 {

 struct MES_API_QUERY_MES__CTX_ARRAY_SIZE ctx_array_size;

 struct MES_API_QUERY_MES__HEALTHY_CHECK healthy_check;

 uint32_t data[QUERY_MES_MAX_SIZE_IN_DWORDS];

 };

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• subopcode - Changes functionality based on what MES_API_QUERY_MES_OPCODE is
used

MES_API_QUERY_MES__GET_CTX_ARRAY_SIZE

The KMD uses this to query MES internal structure size.
struct MES_API_QUERY_MES__CTX_ARRAY_SIZE

{

 uint64_t proc_ctx_array_size_addr;

 uint64_t gang_ctx_array_size_addr;

};

April 2024 37

• proc_ctx_array_size_addr - Memory address where MES will write process context array
size

• gang_ctx_array_size_addr - Memory address where MES will write gang context array
size

MES_API_QUERY_MES__HEALTHY_CHECK
The KMD uses this API to check if MES is running and responding.

struct MES_API_QUERY_MES__HEALTHY_CHECK

{

 uint64_t healthy_addr;

};

• healthy_addr – Not used. Currently, MES firmware writes fence to the memory to notify
KMD that MES is not hang

MES_SCH_API_PROGRAM_GDS
The KMD uses this API to request MES for GDS programming for the target process. GDS
registers are programmed when VMID is allocated. If VMID is already allocated, registers will be
programmed before API returns.

union MESAPI__PROGRAM_GDS

{

 struct

 {

 union MES_API_HEADER header;

 uint64_t process_context_addr;

 uint32_t gds_base;

 uint32_t gds_size;

 uint32_t gws_base;

 uint32_t gws_size;

 uint32_t oa_mask;

 struct MES_API_STATUS api_status;

 uint64_t timestamp;

 uint32_t process_context_array_index;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• process_context_addr - Memory where process specific information is saved. Scheduler
owns the format of this memory. The size of the process context is defined in the

April 2024 38

mes_api_def.h

• gds_base - GDS base address. Programming for GDS_VMIDx_BASE register

• gds_size - GDS aperture size. Programming for GDS_VMIDx_SIZE register

• gws_base - GWS base. Programming for BASE field in GDS_GWS_VMIDx register

• gws_size - GWS size. Programming for SIZE field in GDS_GWS_VMIDx register

• oa_mask - Bit mask representing the alloc counters allocated VMID can use.
Programming for GDS_OA_VMIDx register

• process_context_array_index - Processes context array index for target process. Valid
only when MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is set

MES_SCH_API_SET_DEBUG_VMID
The KMD uses this API to set up the page table for a process that requests debug VMID for
tools like Radeon GPU Profiler (RGP).

The user mode driver can request debug VMID, and KMD/MES will allocate a VMID for this
process. The page table base registers for this allocated debug VMID will be programed to this
process's page table base.

union MESAPI__SET_DEBUG_VMID

{

 struct

 {

 union MES_API_HEADER header;

 struct MES_API_STATUS api_status;

 union

 {

 struct

 {

 uint32_t use_gds : 1;

 uint32_t operation : 2;

 uint32_t reserved : 29;

 }flags;

 uint32_t u32All;

 };

 uint32_t reserved;

 uint32_t debug_vmid;

 uint64_t process_context_addr;

 uint64_t page_table_base_addr;

 uint64_t process_va_start;

 uint64_t process_va_end;

April 2024 39

 uint32_t gds_base;

 uint32_t gds_size;

 uint32_t gws_base;

 uint32_t gws_size;

 uint32_t oa_mask;

 uint64_t output_addr; // output addr of the acquired vmid
value

 uint64_t timestamp;

 uint32_t process_vm_cntl;

 enum MES_QUEUE_TYPE queue_type;

 uint32_t process_context_array_index;

 uint32_t alignment_mode_setting;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• debug_vmid - The VMID reserved as the debug VMID, used when operation flag =
DEBUG_VMID_OP_RELEASE (2)

• process_context_addr – Memory where process specific context is saved. Scheduler
owns the format of this memory. The size of the process context is defined in the
mes_api.def.h, this is for the process that requests the debug VMID

• page_table_base_addr – page table base address of the process

• process_va_start - Starting address of the process's VA space

• process_va_end - Ending address of the process's VA space

• gds_base/size – GDS base/size

• gws_base/size – GWS base/size

• oa_mask – OA mask

• output_addr – MES scheduler writes the allocated debug VMID value to this address for
driver to read. This is used when operation flag = DEBUG_VMID_OP_ALLOCATE (1)

• process_vm_cntl - Not used

• queue_type – gfx/compute/SDMA

• process_context_array_index – Index of the process context array in scheduler's local
memory; valid only when
MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is set

• alignment_mode_setting – alignment mode setting to be programmed in
SH_MEM_CONFIG

April 2024 40

MES_SCH_API_UPDATE_ROOT_PAGE_TABLE
The KMD uses this API to change page table base of a process.

union MESAPI__UPDATE_ROOT_PAGE_TABLE

{

 struct

 {

 union MES_API_HEADER header;

 uint64_t page_table_base_addr;

 uint64_t process_context_addr;

 struct MES_API_STATUS api_status;

 uint64_t timestamp;

 uint32_t process_context_array_index;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• page_table_base_addr - Page table base address

• process_context_addr – Memory where process specific context is saved

• process_context_array_index – Index of the process context array in scheduler's local
memory; valid only when
MES_SCH_API_SET_HW_RSRC.use_rs64mem_for_proc_gang_ctx is set

MES_SCH_API_SET_SE_MODE
The API allows the driver to turn off the second shader engine.

enum MES_SE_MODE
{
 MES_SE_MODE_INVALID = 0,
 MES_SE_MODE_SINGLE_SE = 1,
 MES_SE_MODE_DUAL_SE = 2,
 MES_SE_MODE_LOWER_POWER = 3,
};

union MESAPI__SET_SE_MODE

{

 struct

 {

 union MES_API_HEADER header;

 /* the new SE mode to apply*/

 MES_SE_MODE new_se_mode;

 /* the fence to make sure the ItCpgCtxtSync packet is completed */

April 2024 41

 uint64_t cpg_ctxt_sync_fence_addr;

 uint32_t cpg_ctxt_sync_fence_value;

 /* log_seq_time - Scheduler logs the switch seq start/end ts in the IH cookies */

 union

 {

 struct

 {

 uint32_t log_seq_time : 1;

 uint32_t reserved : 31;

 };

 uint32_t uint32_all;

 };

 struct MES_API_STATUS api_status;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• new_se_mode – New SE mode to be applied

MES_SCH_API_SET_GANG_SUBMIT
The KMD uses this API to pair two queues together for the purpose of gang submission. MES
scheduler will guarantee that the paired queues will always be mapped at the same time.

struct SET_GANG_SUBMIT

{

 uint64_t gang_context_addr;

 uint64_t slave_gang_context_addr;

 uint32_t gang_context_array_index;

 uint32_t slave_gang_context_array_index;

};

union MESAPI__SET_GANG_SUBMIT

{

 struct

 {

 union MES_API_HEADER header;

 struct MES_API_STATUS api_status;

 struct SET_GANG_SUBMIT set_gang_submit;

 };

April 2024 42

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

};

• gang_context_addr - Gang context address of master queue

• slave_gang_context_addr - Gang context address of slave queue

• gang_context_array_index - Gang context array index of master queue. Valid only when
use_rs64mem_for_proc_gang_ctx is set in mes_sch_api_set_hw_rsrc

• slave_gang_context_array_index - Gang context array index of slave queue. Valid only
when use_rs64mem_for_proc_gang_ctx is set in mes_sch_api_set_hw_rsrc

MES_SCH_API_MISC
This API contains miscellaneous non-scheduling functionalities. Each functionality has a sub-
opcode and corresponding structures.

union MESAPI__MISC

{

 struct

 {

 union MES_API_HEADER header;

 enum MESAPI_MISC_OPCODE opcode;

 struct MES_API_STATUS api_status;

 union

 {

 struct WRITE_REG write_reg;

 struct INV_GART inv_gart;

 struct QUERY_STATUS query_status;

 struct READ_REG read_reg;

 struct WAIT_REG_MEM wait_reg_mem;

 struct SET_SHADER_DEBUGGER set_shader_debugger;

 enum MES_AMD_PRIORITY_LEVEL queue_sch_level;

 uint32_t data[MISC_DATA_MAX_SIZE_IN_DWORDS];

 };

 uint64_t timestamp;

 uint32_t doorbell_offset;

 uint32_t os_fence;

 };

 uint32_t max_dwords_in_api[API_FRAME_SIZE_IN_DWORDS];

April 2024 43

};

enum MESAPI_MISC_OPCODE

{

 MESAPI_MISC__WRITE_REG,

 MESAPI_MISC__INV_GART,

 MESAPI_MISC__QUERY_STATUS,

 MESAPI_MISC__READ_REG,

 MESAPI_MISC__WAIT_REG_MEM,

 MESAPI_MISC__SET_SHADER_DEBUGGER,

 MESAPI_MISC__NOTIFY_WORK_ON_UNMAPPED_QUEUE,

 MESAPI_MISC__NOTIFY_TO_UNMAP_PROCESSES,

 MESAPI_MISC__MAX,

};

• opcode - Changes functionality based on what MESAPI_MISC_OPCODE is used. See
each opcode's section for more details

MESAPI_MISC__WRITE_REG
Perform register write on request of KMD.

struct WRITE_REG

{

 uint32_t reg_offset;

 uint32_t reg_value;

};

• reg_offset - Offset of the register

• reg_value - Value to be written to the register

MESAPI_MISC__INV_GART
Perform GART invalidation.

struct INV_GART

{

 uint64_t inv_range_va_start;

 uint64_t inv_range_size;

};

• inv_range_va_start - starting VA for invalidation range

April 2024 44

• inv_range_size - invalidation range size

Note: If inv_range_va_start = 0 or inv_range_size = 0, then MES scheduler invalidates entire
range.

MESAPI_MISC__QUERY_STATUS
The KMD uses this to trigger an interrupt from KIQ.

struct QUERY_STATUS

{

 uint32_t context_id;

};

• context_id - Value is copied to CONTEXT_ID in QueryStatus PM4 packet

MESAPI_MISC__READ_REG
Perform register read on request of the KMD.

struct READ_REG

{

 uint32_t reg_offset;

 uint64_t buffer_addr;

 union

 {

 struct

 {

 uint32_t read64Bits : 1;

 uint32_t reserved : 31;

 }bits;

 uint32_t all;

 }option;

};

• reg_offset - Offset of the register

• buffer_addr – MC address to which MES scheduler writes the register value

• read64Bits - Control bit to enable 64-bit register read (0 = 32-bit, 1 = 64-bit)

MESAPI_MISC__WAIT_REG_MEM
The KMD uses this API to request for the MES to wait on specific register values.

enum WRM_OPERATION

{

April 2024 45

 WRM_OPERATION__WAIT_REG_MEM,

 WRM_OPERATION__WR_WAIT_WR_REG,

 WRM_OPERATION__MAX,

};

struct WAIT_REG_MEM

{

 enum WRM_OPERATION op;

 // only function = equal_to_the_reference_value and mem_space = register_space
supported for now

 uint32_t reference;

 uint32_t mask;

 uint32_t reg_offset1;

 uint32_t reg_offset2;

};

• op - WRM_OPERATION opcode

• WRM_OPERATION__WAIT_REG_MEM (0) - MES will tight loop on reg_offset1 until it
equals reference value

• WRM_OPERATION__WR_WAIT_WR_REG (1) - MES will first write reference to
reg_offset1, then it will poll reg_offset2 until it equals reference value

• reference - Reference value to poll (op = 0), or reference value to poll/write (op = 1).

• mask - Mask off comparison bits

• reg_offset1 - Register to poll (op = 0), or target register to write to (op = 1)

• reg_offset2 - Register to poll (op = 1)

MESAPI_MISC__SET_SHADER_DEBUGGER
This API enables shader debugger register programming.

The MES also clears the process context if the process has not been added.

The shader debugger settings are saved to the process context.

Registers are programmed whenever a compute queue belonging to the process is mapped.
Registers are restored to their default settings when process has no compute queues mapped.

struct SET_SHADER_DEBUGGER

{

 uint64_t process_context_addr;

 union

 {

April 2024 46

 struct

 {

 uint32_t single_memop : 1; // SQ_DEBUG.single_memop

 uint32_t single_alu_op : 1; // SQ_DEBUG.single_alu_op

 uint32_t reserved : 30;

 }flags;

 uint32_t u32All;

 };

 uint32_t spi_gdbg_per_vmid_cntl;

 uint32_t tcp_watch_cntl[4]; // TCP_WATCHx_CNTL

 uint32_t trap_en;

};

• single_memop - SINGLE_MEMOP setting in SQ_DEBUG register

• single_alu_op - SINGLE_ALU_OP setting in SQ_DEBUG register

• process_context_addr - Memory where process specific context is saved

• spi_gdbg_per_vmid_cntl - Setting for SPI_GDBG_PER_VMID_CNTL register

• tcp_watch_cntl[4] - Setting for TCP_WATCHx_CNTL registers

• trap_en - TRAP_EN setting in SQ_SHADER_TBA_HI register

MESAPI_MISC__NOTIFY_WORK_ON_UNMAPPED_QUEUE
KMD uses this API as a workaround for aggregate doorbell. Meant to be called when an
unmapped queue has a new submission. Notifies MES that target priority level has new work
and MES will try to schedule queues of this level.

enum MES_AMD_PRIORITY_LEVEL queue_sch_level;

• queue_sch_level - Target priority level that has new work

MESAPI_MISC__NOTIFY_TO_UNMAP_PROCESSES

The KMD uses this API to request the MES to unmap queues for all processes.

April 2024 47

Scheduler log

As described in previous sections, MES scheduler firmware interacts with kernel mode driver
and CP block. Events between MES scheduler and KMD, MES scheduler and CP are of interests
to understand system state when it comes to debugging MES issues.

To use MES log, KMD needs to allocate log buffer memory and passes GPU address of the log
buffer memory to MES scheduler in API MES_SCH_API_SET_HW_RSRC.

MES log format is defined in the following structure.

struct MES_EVT_INTR_HIST_LOG

{

 struct MES_SCH_INTR_HIST_INFO interrupt_history[MES_SCH_MAX_NUM_MES_INTR_ENTRY];

 struct MES_SCH_EVT_LOG_HIST_INFO
event_log_history[MES_SCH_MAX_NUM_MES_EVT_LOG_ENTRY];

 struct MES_SCH_API_HIST_INFO api_history[MES_SCH_MAX_NUM_API_CALL_ENTRY];

 uint32 interrupt_history_index;

 uint32 event_log_history_index;

 uint32 api_history_index;

};

It contains three arrays, api_history is for events from KMD to MES scheduler, event_log_history
is for events from MES scheduler to CP and interrupt_history is for interrupt events from CP to
MES scheduler. These arrays are updated in a circular buffer fashion and each array has an index
which always points to the entry in the array that will be updated next.

API history

Each entry in api_history array has the following format:
struct MES_SCH_API_HIST_INFO

{

 enum MES_SCH_API_CALL_ID api_id;

 uint64_t time_before_call;

 uint64_t time_after_call;

 uint32_t error_code;

 struct

 {

 uint32 status : 1;

 uint32 reserved : 31;

April 2024 48

 };

};

• api_id – indicates which API command of this entry

• time_before_call – GPU timestamp when MES scheduler starts processing this API
command

• timer_after_call – GPU timestamp when MES scheduler finishes processing this API
command

• error_code – error code for certain APIs if API processing encounters error. Error code is
defined in mes_sch_context.h

• status – 1: API processing is successful; 0: otherwise

Event log history

Each entry in event_log_hisotry array has the following format:

struct MES_SCH_EVT_LOG_HIST_INFO

{

 enum MES_SCH_EVT_LOG_ID event_log_id;

 uint32_t doorbell_offset;

 uint64_t time_before_call;

 uint64_t time_after_call;

 struct

 {

 uint32 status : 1;

 uint32 queue_type : 2;

 uint32 reserved : 29;

 };

};

enum MES_SCH_EVT_LOG_ID

{

 MES_EVT_LOG_MAP_QUEUE = 0,

 MES_EVT_LOG_UNMAP_QUEUE = 1,

 MES_EVT_LOG_QUERY_STATUS = 2,

 MES_EVT_LOG_UNMAP_RESET_QUEUE = 3

};

April 2024 49

• event_log_id – events that MES scheduler sends to CP; Defined in enum
MES_SCH_EVT_LOG_ID

• doorbell_offset – doorbell offset of the queue for which the event is sent

• time_before_call – GPU timestamp at which scheduler sends event to CP

• time_after_call – GPU timestamp at which CP finishes processing the event

• status – if CP processing event is successful or not, 1: success, 0: otherwise

• queue_type – queue type (gfx/compute/sdma) of the queue for which the event is sent

Interrupt history

Each entry in interrupt_history array has the following format:
struct MES_SCH_INTR_HIST_INFO

{

 enum MES_SCH_INTR_ID intr_id;

 uint64_t time_trace;

 struct MES_SCH_INTR_CB_DATA intr_callback;

};

enum MES_SCH_INTR_ID

{

 MES_INTR_ME_0 = 0,

 MES_INTR_ME_1 = 1,

 MES_INTR_PACKET = 2,

 MES_INTR_TIMER = 3,

 MES_INTR_AGGREAGATE_DOORBELL = 4

};

• intr_id – interrupt ID defined in enum MES_SCH_INTR_ID

• time_trace – GPU timestamp at which MES scheduler receives the interrupt

• intr_callback – Interrupt call back data defined in struct MES_SCH_INTR_CB_DATA
below

struct MES_SCH_INTR_CB_DATA

{

 union

 {

April 2024 50

 struct

 {

 uint32_t enc_inter : 5;

 uint32_t intr_pipe_id : 2;

 uint32_t intr_queue_id : 3;

 uint32_t reserved1 : 1;

 uint32_t action_id : 4;

 uint32_t enc_inter_valid : 1;

 uint32_t reserved2 : 12;

 uint32_t vmid : 4;

 } inter_encode;

 uint32_t inter_enc;

 };

 union

 {

 struct

 {

 uint64_t intr_data : 62;

 uint64_t intr_pipe_id : 2;

 } inter_data_pipe;

 struct

 {

 uint64_t doorbell_offset : 26;

 uint64_t reserved3 : 6;

 uint64_t data : 32;

 } fence;

 uint64_t inter_data;

 uint64_t inter_addr;

 };

};

Example of log usage

When KMD reports MES API timeout error message, one may use MES log to understand the
failure.

For example, one of the most common MES API timeout error is message 3 timeout. From enum
MES_SCH_API_OPCODE defined in mes_api_def.h, 3 is MES_SCH_API_REMOVE_QUEUE.
KMD issues this API to request MES scheduler to remove a user queue. There may be multiple
reasons of this API failure. From MES log, one can find the most recent entry in api_history array

April 2024 51

which has api_id MES_API_REMOVE_QUEUE (3). Then, from the error_code (see below), one
can check the reason of the error.

enum MES_SCH_API_REMOVEQUEUE_ERRCODE

{

 API_REMOVEQUEUE_NOERROR = 0,

 API_REMOVEQUEUE_UNMAP_FAIL = 1,

 API_REMOVEQUEUE_HQDQUEUE_MAP_MISMATCH = 2,

 API_REMOVEQUEUE_CLEANUP_FAIL = 3,

 API_REMOVEQUEUE_QUEUE_NOT_FOUND = 4,

 API_REMOVEQUEUE_NULL_GANG = 5,

};

If error_code is 1, it means when MES scheduler requests CP to unmap the queue, CP failed the
unmap request. This usually means the queue being unmapped is in a hang state. As the next
debugging step, one need to look for the reason why the queue is hang. In this scenario, in the
most recent entry in event_log_history array with event_log_id
MES_EVT_LOG_UNAMP_QUEUE, one would see the status bit is 0, which means unmap failure
and doorbell_offset field tells which queue has triggered this error.

If error_code is not 1, it means error in either MES scheduler firmware or in driver. For example,
3 means when MES scheduler cleans up its internal structure, it encounters some issue; 5 means
KMD has passed a null gang in the API command.

April 2024 52

Disclaimer

The information contained herein is for informational purposes only, and is subject to change
without notice. This document may contain technical inaccuracies, omissions and typographical
errors, and AMD is under no obligation to update or otherwise correct this information.
Advanced Micro Devices, Inc. makes no representations or warranties with respect to the
accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular
purposes, with respect to the operation or use of AMD hardware, software or other products
described herein.

No license, including implied or arising by estoppel, to any intellectual property rights is granted
by this document. Terms and limitations applicable to the purchase or use of AMD’s products or
technology are as set forth in a signed agreement between the parties or in AMD’s Standard
Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. OpenCL is a trademark of Apple Inc. used by permission by Khronos Group, Inc.
DirectX is a registered trademark of Microsoft Corporation in the US and other jurisdictions.
Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

© 2018-2024 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc.
2485 Augustine Drive

Santa Clara, CA, 95054
www.amd.com

April 2024 53

Notices
© 2024 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or
other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights
is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth
in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. Any unauthorized
copying, alteration, distribution, transmission, performance, display or other use of this material is prohibited.

April 2024 54

Trademarks
AMD, the AMD Arrow logo, AMD AllDay, AMD Virtualization, AMD-V, PowerPlay, Vari-Bright, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

Microsoft, Windows, Windows Vista, MSFT, OneDrive and DirectX are registered trademarks of Microsoft Corporation in
the US and/or other countries.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO VIDEO AND/OR AUDIO
STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY LICENSES UNDER APPLICABLE PATENTS. SUCH
LICENSES MAY BE ACQUIRED FROM VARIOUS THIRD PARTIES INCLUDING, BUT NOT LIMITED TO, IN THE MPEG PATENT
PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM MPEG LA, L.L.C., 6312 S. FIDDLERS GREEN CIRCLE, SUITE 400E,
GREENWOOD VILLAGE, COLORADO 80111.

	Micro Engine Scheduler Specification
	Specification Agreement
	Scheduling requirements
	HW architecture overview
	Scheduler FW architecture
	Scheduling algorithm
	Queue state transitions
	Round robin scheduling
	Queue prioritization

	MES API
	MES API format
	MES_SCH_API_SET_HW_RSRC
	Flags

	MES_SCH_API_ADD_QUEUE
	Flags

	MES_SCH_API_AMD_LOG
	MES_SCH_API_REMOVE_QUEUE
	Flags

	MES_SCH_API_SET_SCHEDULING_CONFIG
	MES_SCH_API_PERFORM_YIELD
	MES_SCH_API_SET_GANG_PRIORITY_LEVEL
	MES_SCH_API_SUSPEND
	Flags

	MES_SCH_API_RESUME
	Flags

	MES_SCH_API_RESET
	Flags

	MES_SCH_API_SET_LOG_BUFFER
	MES_SCH_API_CHANGE_GANG_PRORITY
	MES_SCH_API_QUERY_SCHEDULER_STATUS
	MES_API_QUERY_MES__GET_CTX_ARRAY_SIZE
	MES_API_QUERY_MES__HEALTHY_CHECK
	MES_SCH_API_PROGRAM_GDS
	MES_SCH_API_SET_DEBUG_VMID
	MES_SCH_API_UPDATE_ROOT_PAGE_TABLE
	MES_SCH_API_SET_SE_MODE
	MES_SCH_API_SET_GANG_SUBMIT
	MES_SCH_API_MISC
	MESAPI_MISC__WRITE_REG
	MESAPI_MISC__INV_GART
	MESAPI_MISC__QUERY_STATUS
	MESAPI_MISC__READ_REG
	MESAPI_MISC__WAIT_REG_MEM
	MESAPI_MISC__SET_SHADER_DEBUGGER
	MESAPI_MISC__NOTIFY_WORK_ON_UNMAPPED_QUEUE
	MESAPI_MISC__NOTIFY_TO_UNMAP_PROCESSES

	Scheduler log
	API history
	Event log history
	Interrupt history
	Example of log usage

	Disclaimer
	Notices
	Trademarks

