
TAKAHIRO	HARADA,	AMD	

	3/2018	

Real-Time	Ray-Tracing	Techniques	for	
Integration	into	Existing	Renderers	

2	 |					GDC	2018				|				19-23	MARCH	2018	

y  Radeon	ProRender,	Radeon	Rays	update	

y  Unity	GPU	Lightmapper	using	Radeon	Rays	(by	Jesper)	

‒ Helping	the	game	content	creator	to	make	better	assets	

y  Radeon	ProRender	+	Universal	Scene	Description	
‒  Real-time	preview	of	assets	

y  Radeon	ProRender	Real-time	Rendering	

‒ Hybrid	ray	tracing	is	a	stepping	stone	to	a	fully	ray	traced	future,	as	the	same	path	was	followed	with	

production	movie	rendering.	Our	solution	provides	a	was	to	fully	path	traced	rendering	with	Radeon	pro	
render	

AGENDA	

3	 |					GDC	2018				|				19-23	MARCH	2018	

RADEON	PRORENDER,	RADEON	RAYS	

AMD’s	Ray	tracing	solutions	

4	 |					GDC	2018				|				19-23	MARCH	2018	

y  Radeon	ProRender	
‒ A	complete	renderer	(ray	casting,	shading)	

‒  Physically	based	rendering	library	
‒ Output	-	Rendered	image	

‒  For	renderer	users,	or	developers	

y  Radeon	Rays	
‒  For	developers	
‒  Ray	intersection	library	
‒ Output	-	Intersections	

AMD’S	RAY	TRACING	SOLUTIONS	

RADEON	PRORENDER,	RADEON	RAYS	

5	 |					GDC	2018				|				19-23	MARCH	2018	

y  For	developers	
‒  SDK	available	today	on	request	
‒  Bruno.Stefanizzi@amd.com	

y  C	API	

y  OpenCL	1.2,	Metal	2	

y  Multi	platform	solution	

‒ OS	(Windows,	MacOs,	Linux)	

‒ Vendors	(AMD,…)	

RADEON	PRORENDER	

y  For	content	creators	
‒  https://pro.radeon.com/en/software/prorender/	

y  Plugins	
‒ Maya,	3DS	Max,	Blender,	Rhino,	SolidWorks	

y  Direct	integration	
‒  Cinema4D	(Maxon,	R19~)	

‒ Modo	(The	Foundry,	Beta)	

RPR	for	Blender	on	MacOs		
(BMW	from	Mike	Pan)	

6	 |					GDC	2018				|				19-23	MARCH	2018	

y  Heterogeneous	device	support	
‒ GPU+GPU,	GPU+CPU	
‒  Less	latency	for	interactive	render	

y  No	limit	for	the	texture	usage		

‒ Out	of	core	texture	
‒ Use	system	memory	or	disk	

y  MacOs	Metal	support		

‒ Maya,	Blender	betas,	C4D	available	today	

‒ https://pro.radeon.com/en/radeon-
prorender-macos-get-beta-now/	

FEATURE	HIGHLIGHTS	

RADEON	PRORENDER	

Multi	GPU	render		

WX7100	+	WX9100	

WX7100	 WX9100	

7	 |					GDC	2018				|				19-23	MARCH	2018	

y  Heterogeneous	device	support	
‒ GPU+GPU,	GPU+CPU	
‒  Less	latency	for	interactive	render	

y  No	limit	for	the	texture	usage		

‒ Out	of	core	texture	
‒ Use	system	memory	or	disk	

y  MacOs	Metal	support		

‒ Maya,	Blender	betas,	C4D	available	today	

‒ https://pro.radeon.com/en/radeon-
prorender-macos-get-beta-now/	

FEATURE	HIGHLIGHTS	

RADEON	PRORENDER	

4.4k	x	1k	textures	(4.4G	texels)	on	WX7100	(8GB)	

Texture	size	(~16GB)	is	larger	than	8GB	VRAM	size!!	

8	 |					GDC	2018				|				19-23	MARCH	2018	

y  Improved	heterogeneous	volume	

‒  Efficient	sampling,	less	memory	

y  Metal	support	on	MacOs	

‒  Requires	MacOs	High	Sierra	(10.13.3)	

y  Nested	Dielectrics	

y  More	AOVs	

‒  Per	BRDF	AOVs	(diffuse,	reflect,	refract,	volume)	

y  Color	LUTs	
‒  Color	correction	using	.cube	file	

y  Procedural	UVs	(Decal	projection,	triplanar)	

y  Easier	to	use	Uber	Material	(Closer	to	Disney)	

y  Performance	improvements	

y  Real	time	denoiser	

SDK	UPDATES	

RADEON	PRORENDER	

Improved	uber	material	

Heterogeneous	volume	(Volumes	from	OpenVDB)	

9	 |					GDC	2018				|				19-23	MARCH	2018	

HELLO	PRORENDER	

RADEON	PRORENDER	

 1 rpr_int tahoePluginID = rprRegisterPlugin("Tahoe64.dll"); !
 2 rpr_int plugins[] = { tahoePluginID }; !
 3 rprCreateContext(RPR_API_VERSION, plugins, 1, !
#if MACOS_METAL!
 4 RPR_CREATION_FLAGS_ENABLE_GPU0 | RPR_CREATION_FLAGS_ENABLE_METAL, !
#else !
 4 RPR_CREATION_FLAGS_ENABLE_GPU0, !
#endif!
 5 NULL, NULL, &context) ; !
 6 rprContextSetActivePlugin(context, plugins[0]); !
 7 !
 8 rpr_material_system matsys; !
 9 rprContextCreateMaterialSystem(context, 0, &matsys); !
 10 !
 11 // Create a scene!
 12 rpr_scene scene; !
 13 rprContextCreateScene(context, &scene); !
 14 rprContextSetScene(context, scene); !
 15 !
 16 // Create cube mesh!
 17 rpr_shape cube; !
 18 rprContextCreateMesh(context, ...); !
 19 rprSceneAttachShape(scene, cube); !
 20 !
	

Only	Change	to	run	on	Metal	

10	 |					GDC	2018				|				19-23	MARCH	2018	

HELLO	PRORENDER	

RADEON	PRORENDER	

 21 // Create camera!
 22 rpr_camera camera; !
 23 rprContextCreateCamera(context, &camera); !
 24 rprCameraLookAt(camera, 5, 5, 20, 0, 0, 0, 0, 1, 0); !
 25 rprSceneSetCamera(scene, camera); !
 26 !
 27 // Create point light!
 28 rpr_light light; !
 29 rprContextCreatePointLight(context, &light); !
 30 rprPointLightSetRadiantPower3f(light, 100,100,100); !
 31 rprSceneAttachLight(scene, light); !
 32 !
 33 // Create framebuffer to store rendering result!
 34 rpr_framebuffer_desc desc; !
 35 desc.fb_width = 800; desc.fb_height = 600; !
 36 rpr_framebuffer_format fmt = {4, RPR_COMPONENT_TYPE_FLOAT32}; !
 37 rpr_framebuffer frame_buffer; !
 38 rprContextCreateFrameBuffer(context, fmt, &desc, &frame_buffer); !
 39 rprFrameBufferClear(frame_buffer); !
 40 rprContextSetAOV(context, RPR_AOV_COLOR, frame_buffer); !
 41 !
 42 rprContextRender(context); !
 43 !
 44 // Save the result to file!
 45 rprFrameBufferSaveToFile(frame_buffer, "rprRender.png");	

11	 |					GDC	2018				|				19-23	MARCH	2018	

y  Revised	BVH	builder	
‒ Up	to	10x	faster	builds	

‒ Manual	vectorization	

‒ Multithreading	

‒  Lower	memory	overhead	

y  Improved	BVH	layouts	

‒ Using	less	GPU	memory	bandwidth	

‒ Up	to	20%	performance	improvement	(for	secondary	rays)	

	

y  Available	today	at	GPUOpen	

y  Vulkan	version!	

WHAT’S	NEW	IN	RADEON	RAYS	

12	 |					GDC	2018				|				19-23	MARCH	2018	

y  We	have	done	proper	Vulkan	version	(available	in	soon)	

‒  Simplified	C	API	

‒ Designed	around	flexible	interop	with	graphics	
‒  Commit	calls	now	return	VK	command	buffers	

‒  Intersect	calls	now	return	VK	command	buffers	

‒  Can	run	asynchronously	with	graphics	
‒  Application	uses	VK	semaphores	to	setup	dependencies	

RADEON	RAYS	VULKAN	

Graphics		
queue	

Compute	
queue	

13	 |					GDC	2018				|				19-23	MARCH	2018	

 1 int nativeidx = -1; !
 2 // Always use OpenCL!
 3 IntersectionApi::SetPlatform(DeviceInfo::kOpenCL); !
 4 !
 5 for (auto idx = 0U; idx < IntersectionApi::GetDeviceCount(); ++idx) !
 6 { !
 7 DeviceInfo devinfo; !
 8 IntersectionApi::GetDeviceInfo(idx, devinfo); !
 9 if (devinfo.type == DeviceInfo::kGpu && nativeidx == -1) !
 10 nativeidx = idx; !
 11 } !
 12 !
 13 IntersectionApi* api = IntersectionApi::Create(nativeidx); !
 14 !
 15 //adding triangle to tracing scene!
 16 Shape* shape = api->CreateMesh(g_vertices, 3, 3 * sizeof(float), g_indices, 0, g_numfaceverts, 1); !
 17 api->AttachShape(shape); !
 18 api->Commit(); !
 19 !
 20 // prepare rays for intersection!
 21 ray rays[3] = {...}; !
 22 auto ray_buffer = api->CreateBuffer(3 * sizeof(ray), rays); !
 23 !
 	

HELLO	WORLD	IN	RADEON	RAYS	

RADEON	RAYS	

14	 |					GDC	2018				|				19-23	MARCH	2018	

 24 // prepare intersection data!
 25 Intersection isect[3]; !
 26 auto isect_buffer = api->CreateBuffer(3 * sizeof(Intersection), nullptr); !
 27 !
 28 //intersection!
 29 api->QueryIntersection(ray_buffer, 3, isect_buffer, nullptr, nullptr); !
 30 !
 31 //get results!
 32 Event* e = nullptr; !
 33 Intersection* tmp = nullptr; !
 34 api->MapBuffer(isect_buffer, kMapRead, 0, 3 * sizeof(Intersection), (void**) &tmp, &e); !
 35 //RadeonRays calls are asynchronous, so need to wait for calculation to comp lete.!
 36 e->Wait(); !
 37 api->DeleteEvent(e);	

HELLO	WORLD	IN	RADEON	RAYS	

RADEON	RAYS	

15	 |					GDC	2018				|				19-23	MARCH	2018	

UNITY	GPU	LIGHTMAPPER	

Unity	+	Radeon	Rays	
Jesper	Mortensen		

Unity	

Jesper Mortensen

Lead Graphics Engineer, Unity Technologies

GPU Progressive Lightmapper

So what's up?

•  Who are we?

•  Why do we need lightmap baking at all?

•  What’s the problem with baking?

•  Progressive Lightmapping

•  Integration with AMD RadeonRays

•  Some results

•  Live demo

•  Questions

Who are we?

500+ R&D Developers

Massive community of game devs

50% 60%

20+ billion yearly installs

 on 3+ billion unique devices

- all new mobile games - all new AR/VR

Why lightmaps?

Why lightmaps?

•  Need high fidelity physically based GI

•  Must be performant

•  Consoles and PC

•  Mobile and VR

•  Mix and match

•  Realtime direct / shadowmasks / baked direct

•  Realtime GI / baked GI

•  Realtime AO / baked AO

the problem with lightmapping…

press

wait…

500 msec

Progressive Lightmapper

Progressive updates

Prioritize view

Integration with RadeonRays

aka

GPU Progressive Lightmapper

OpenCL + RadeonRays

•  Cross platform (Editor)

•  Vendor agnostic

•  Wavefront compute based

•  Kernels operate on lightmaps

•  Compaction removes empty areas

•  Very little RadeonRays code

•  It’s a lean and mean interface

•  Up to 10x faster than CPU

Results

GPU bake

Live demo

What’s next

•  Use the rays better

•  MIS

•  Light power sampling

•  Shoot fewer rays

•  Denoising

•  Exploit coherence

•  Multi GPU

Acknowledgements

•  AMD RadeonRays team

•  Special thanks

•  Dmitry Kozlov

•  Guillaume Boisse

•  Bruno Stefanizzi

•  Bikram Singh

Questions?

Thank you!

46	 |					GDC	2018				|				19-23	MARCH	2018	

PRORENDER	+	USD	

Real-time	preview	of	assets	

47	 |					GDC	2018				|				19-23	MARCH	2018	

y  Scene	description	from	Pixar	

y  Interchange	between	applications	

y  Used	in	production	VFX	and	animation	

y  Quickly	becoming	standard	in	VFX	industry	

UNIVERSAL	SCENE	DESCRIPTION	

48	 |					GDC	2018				|				19-23	MARCH	2018	

USDVIEW,	HYDRA	

y  One	of	the	tools	comes	with	USD	

y  Handy	for	investigation	of	a	USD	file	

y  Comes	with	the	high	performance	Hydra	OGL	renderer	

‒ Visual	debugging	
‒  Scalability	
‒ OpenSubdiv	support	
‒ Designed	for	multiple	back-ends,	front-ends	

y  Hydra	OGL	isn’t	designed	to	investigate	materials,	lights	visually	

‒ Nicer	to	visualize	the	work	in	real	time	closer	to	final	than	OGL	

‒  Computationally	expensive	to	solve	light	transport	equation	
‒  	(Embree	backend)	

‒  Radeon	ProRender	can	help	

usdview	Hydra	
(kitchen	from	Pixar)	

49	 |					GDC	2018				|				19-23	MARCH	2018	

y  Export	from	Maya	

y  Debug	display	in	usdview	

OGL	BACKEND	

CURRENT	WORKFLOW	

USD	file	

50	 |					GDC	2018				|				19-23	MARCH	2018	

y  Export	from	Maya	

y  See	the	lighting	and	shading	in	real	time	in	usdview	with	RPR	

PRORENDER	BACKEND	

WORKFLOW	WITH	RPR	

USD	file	

ProRender	Backend	

51	 |					GDC	2018				|				19-23	MARCH	2018	

y  Light	
‒  Rect	light	
‒ Dome	light	

y  Material	

‒  PxrSurface,	RPR	
‒  Image	Textures	

y  Geometry	

‒ Quad,	triangle	mesh	

‒  Instancing	

PROTOTYPE	IMPLEMENTATION	FEATURE	LIST	

	

PRORENDER	+	USD	

(Rolling	Teapot	from	Pixar)	

Rect	Light	

Dome	Light	

Artistic	Reflection	

Physical	Reflection	Instancing	

52	 |					GDC	2018				|				19-23	MARCH	2018	

Demo	

53	 |					GDC	2018				|				19-23	MARCH	2018	

y  RPR	is	implemented	as	a	usdImaging	plugin	

y  Some	applications	are	integrating	USD	Hydra	as	the	main	viewport	renderer	

‒  You	can	get	ProRender	viewport	automatically	

y  Multiplatform	support	

RPR	IN	3DCC	TOOLS	

WHY	IMPLEMENTED	A	HYDRA	BACKEND?	

54	 |					GDC	2018				|				19-23	MARCH	2018	

RADEON	PRORENDER	

REAL	TIME	RAY	TRACING	

Bridging	the	gap	

55	 |					GDC	2018				|				19-23	MARCH	2018	

y  In	Pro	Graphics	(e.g.,	3DCC	tools)	
‒ Viewport	is	using	mostly	OpenGL	

y  2	issues	
‒  Scalability	
‒ Quality	of	the	rendering	

y  Announce	2	solutions	
‒ V-EZ	

‒  Better	performance	from	Vulkan	without	going	through	API	complexity	

‒  Radeon	ProRender	real-time	ray	tracing	
‒  Bringing	the	viewport	to	the	next	level	

PRO	GRAPHICS	VIEWPORT	RENDER	

56	 |					GDC	2018				|				19-23	MARCH	2018	

y  Problem	

‒ Vulkan	API	adoption	among	ProGraphics	ISVs	slow	

‒ Vulkan	API	difficult	to	learn	relative	to	OpenGL	
‒  Inordinate	amounts	of	code	relative	to	OpenGL	

‒  ISVs	see	no	compelling	reasons	to	migrate	from	

OpenGL	

‒ Vulkan	middleware	layers	and	libraries	exist	but	not	
being	adopted	

‒ Vulkan	missing	required	CAD	features	(ex:	line	

stipple)	

VULKAN	MIDDLEWARE	SOLUTION	FROM	AMD	
V-EZ	

y  Objectives	
‒  Provide	a	simplified	layer	on	top	of	Vulkan	

‒  Be	a	stepping	stone	between	OpenGL	and	Vulkan	
‒ Maintaining	existing	API	semantics	

‒  Allow	ISVs	to	learn	Vulkan	API	without	the	explicit	
responsibilities	

‒  Allow	for	interop	with	native	Vulkan	
‒ Make	GLSL	a	first	class	citizen	again	

57	 |					GDC	2018				|				19-23	MARCH	2018	

y  Solution	
‒  A	slimmed	down	Vulkan	API	that	still	exposes	the	strengths	of	

Vulkan	

‒  Multi-threaded	command	buffer	recording	

‒  Asynchronous	compute	

‒  Asynchronous	transfers	
‒  Multi-gpu	

‒  Alleviates	responsibilities	from	application:	

‒  Swapchain	management	

‒  Memory	management	

‒  Command	pools	

‒  Descriptor	pools	
‒  Descriptor	sets	
‒  Pipeline	permutations	

‒  Render	pass	management	

‒  Render	pass	compatibility	

‒  Pipeline	barriers	
‒  Image	layout	transitions	

‒  SPIR-V	compilation	

VULKAN	MIDDLEWARE	SOLUTION	FROM	AMD	
V-EZ	

y  Additional	benefits:	
‒  Vulkan	interop	
‒  GLSL	and	SPIR-V	reflection	
‒  Line	stipple	support	

58	 |					GDC	2018				|				19-23	MARCH	2018	

Fast	

MOTIVATION	

REAL	TIME	RAY	TRACING	

58	

Offline	Renderers	

y  Photo	real	

y  Long	render	time	

y  Fully	physically	based	

Game	Engine	Renderers	

y  Good	quality	

y  Real	time	

y  Relaxed	physically	based	

y  Fakes	

?	

Slow	

59	 |					GDC	2018				|				19-23	MARCH	2018	

MOTIVATION	

REAL	TIME	RAY	TRACING	

59	

Offline	Renderers	

y  Photo	real	

y  Long	render	time	

y  Physically	accurate	

Game	Engine	Renderers	

y  Good	quality	

y  Real	time	

y  Relaxed	physically	based	

y  Fakes	

ProRender	Real-time	Ray	Tracing	

y  Better	quality	

y  Adjustable	computational	cost	

y  Lerp(accurate,	fake,	your	flavor)	

y  We	take	care	the	complexity	in	the	

API	

y  Add	physically	based	effect	on	your	
raster	renderer	

Fast	Slow	

60	 |					GDC	2018				|				19-23	MARCH	2018	

y  Add	physically	based	effect	on	your	rasterization	based	renderer	

y  Implemented	using	Vulkan	

y  Asynchronous	compute	in	mind	

y  Dispatch	the	ray	tracing	effect	kernels	at	the	back	of	the	graphics	tasks	

y  Adjust	the	amount	of	ray	tracing	effect	depends	on	the	target	(HW	and	frame	rate)	

y  Built	in	denoiser	to	produce	less	noise	image	for	effects	using	Monte	Carlo	integration	

DETAIL	

REAL	TIME	RAY	TRACING	

61	 |					GDC	2018				|				19-23	MARCH	2018	

y  Rasterization	for	primary	visibility	and	lighting	

‒ No	noise	in	primary	

‒  Fast	feedback	

PRORENDER	REAL-TIME	RAY	TRACING	

y  Deferred	shading	

y  First	step	is	render	G-buffers	
‒  Normal	and	depth	

‒  Albedo	and	transparency	
‒  Roughness,	metallicity	and	motion	vectors	

62	 |					GDC	2018				|				19-23	MARCH	2018	

y  Rasterization	for	primary	visibility	and	lighting	

‒ No	noise	in	primary	

‒  Fast	feedback	

y  Asynchronous	ray	tracing	for	secondary	and	complex	effects	

‒  Based	on	RadeonRays	

y  You	choose	
‒ Ambient	occlusion	

‒ Glossy	reflections	
‒ Diffuse	global	illumination	

‒ Area	lighting	

y  Effects	can	be	turned	on/off	based	on	HW	capabilities	

y  MC-based	effects	are	denoised	using	wavelet	filter	

PRORENDER	REAL-TIME	RAY	TRACING	

63	 |					GDC	2018				|				19-23	MARCH	2018	

y  True	ray	traced	ambient	occlusion	(shadow	from	an	IBL)	

y  Compute	shader	generates	AO	rays	based	on	G-buffer	position	and	normal	

y  RadeonRays	traces	rays	asynchronously	

y  Ambient	occlusion	is	applied	to	an	IBL	component	of	a	direct	illumination	

y  Performance:	

‒  ~500-600	MRays/s	for	moderate	scenes*	

AMBIENT	OCCLUSION	

AO	

*Depends	on	the	number	of	pixels	marked	for	AO	/	visibility	complexity	

64	 |					GDC	2018				|				19-23	MARCH	2018	

y  True	ray	traced	reflections	(multiple	bounces)	

y  Compute	shader	handles	Gbuffer	

‒ Generates	reflection	rays	for	pixels	marked	for	reflection	

y  RadeonRays	traces	rays	asynchronously	

y  Resolve	kernel	calculates	illumination	

y  Performance:	

‒  ~500-600	MRays/s	for	moderate	scenes*	

GLOSSY	REFLECTIONS	

AO	 Reflection	

*Depends	on	the	number	of	pixels	marked	for	reflection	

65	 |					GDC	2018				|				19-23	MARCH	2018	

y  Ray	traced	refractions	

y  Compute	shader	handles	Gbuffer	

‒ Generates	refraction	rays	for	pixels	marked	for	refraction	

y  RadeonRays	traces	rays	asynchronously	

y  Resolve	kernel	calculates	illumination	

y  Performance:	

‒  ~1-1.5GRays/s	for	moderate	scenes*	

y  If	you	are	not	satisfied	with	these…	

GLOSSY	REFRACTION	

AO	 Reflection	 Refraction	

*Depends	on	the	number	of	pixels	marked	for	refraction	

66	 |					GDC	2018				|				19-23	MARCH	2018	

y  True	ray	traced	reflections	(#	of	bounces,	your	choice)	

y  Compute	shader	starts	reflection	or	diffuse	rays		

y  RadeonRays	traces	rays	asynchronously	

y  Resolve	kernel	calculates	illumination	

y  Performance:	

‒  ~300	MRays/s	for	moderate	scenes*	

TURNING	IT	TO	11	

FULL	GI	

*Depends	on	the	number	of	pixels	marked	for	AO/visibility	complexity	

67	 |					GDC	2018				|				19-23	MARCH	2018	

Demo	

68	 |					GDC	2018				|				19-23	MARCH	2018	

y  Gave	latest	updates	on	Radeon	ProRender,	Radeon	Rays	

y  Showed	the	Unity	GPU	Lightmapper	using	Radeon	Rays	improves	the	game	contents	creation	pipeline	

y  Showed	Radeon	ProRender	+	USD	extends	the	capability	of	the	hydra	renderer,	added	lighting	preview	
functionality	

y  Empower	the	Pro	Graphics	viewport	by	2	new	solutions,	V-EZ	and	Radeon	ProRender	real-time	rendering	

CONCLUSION	

69	 |					GDC	2018				|				19-23	MARCH	2018	

y  Bruno.Stefanizzi@amd.com	

	

FOR	SDK	ACCESSES	

70	 |					GDC	2018				|				19-23	MARCH	2018	

DISCLAIMER	&	ATTRIBUTION	

The	information	presented	in	this	document	is	for	informational	purposes	only	and	may	contain	technical	inaccuracies,	omissions	and	typographical	errors.	
	

The	information	contained	herein	is	subject	to	change	and	may	be	rendered	inaccurate	for	many	reasons,	including	but	not	limited	to	product	and	roadmap	changes,	component	and	motherboard	version	changes,	new	

model	and/or	product	releases,	product	differences	between	differing	manufacturers,	software	changes,	BIOS	flashes,	firmware	upgrades,	or	the	like.	AMD	assumes	no	obligation	to	update	or	otherwise	correct	or	revise	

this	information.	However,	AMD	reserves	the	right	to	revise	this	information	and	to	make	changes	from	time	to	time	to	the	content	hereof	without	obligation	of	AMD	to	notify	any	person	of	such	revisions	or	changes.	

	

AMD	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES	WITH	RESPECT	TO	THE	CONTENTS	HEREOF	AND	ASSUMES	NO	RESPONSIBILITY	FOR	ANY	INACCURACIES,	ERRORS	OR	OMISSIONS	THAT	MAY	APPEAR	IN	THIS	

INFORMATION.	

	

AMD	SPECIFICALLY	DISCLAIMS	ANY	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	OR	FITNESS	FOR	ANY	PARTICULAR	PURPOSE.	IN	NO	EVENT	WILL	AMD	BE	LIABLE	TO	ANY	PERSON	FOR	ANY	DIRECT,	INDIRECT,	SPECIAL	OR	

OTHER	CONSEQUENTIAL	DAMAGES	ARISING	FROM	THE	USE	OF	ANY	INFORMATION	CONTAINED	HEREIN,	EVEN	IF	AMD	IS	EXPRESSLY	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.	

	

ATTRIBUTION	

©	2018	Advanced	Micro	Devices,	Inc.	All	rights	reserved.	AMD,	the	AMD	Arrow	logo	and	combinations	thereof	are	trademarks	of	Advanced	Micro	Devices,	Inc.	in	the	United	States	and/or	other	jurisdictions.	Other	names	

are	for	informational	purposes	only	and	may	be	trademarks	of	their	respective	owners.	

Instance	

PhysicalDevice	

Queue(s
)	

G
ra
p
h
ic
s	

C
o
m
p
u
te
	

T
ra
n
sf
e
r	

Heaps(s)	

Lo
ca
l	

H
o
st
	V
is
ib
le
	

C
o
h
e
re
n
t	

PhysicalDevice	

CommandBuffer	

Dispatch	RenderPass	 Pipeline	Barriers	

Subpass(s)	

Dynamic	State	

Bind	Pipeline	

Bind	DescriptorSet	

Draw	

Pipeline	

R
e
n
d
e
rP
a
ss
	

P
ip
e
lin
e
La
yo
u
t	

V
e
rt
e
x	
In
p
u
t	
St
a
te
	

In
p
u
t	
A
ss
e
m
b
ly
	

St
a
te
	

T
e
ss
e
lla
ti
o
n
	S
ta
te
	

V
ie
w
p
o
rt
	S
ta
te
	

M
u
lt
is
a
m
p
le
	S
ta
te
	

D
e
p
th
	S
te
n
ci
l	S
ta
te
	

C
o
lo
r	
B
le
n
d
	S
ta
te
	

D
yn
a
m
ic
	S
ta
te
	

Su
b
p
a
ss
	I
n
d
e
x	

Sh
a
d
e
r	

M
o
d
u
le
s	

RenderPass	

Input	
Attachment(s)	

Color	
Attachment(s)	

Resolve	
Attachment(s)	

Preserve	
Attachment(s)	

Subpass	indices	

Pipeline	Stage	Flags	

Access	Flags	

Dependencies	

Attachment(s)	

Image	format	

Load	Store	Ops	

Image	Layouts	

Framebuffer	 Subpasses	

Thread	

Application	

Device	 Thread	

CommandPoo
l	

CmdBuffer	

CmdBuffer	

CmdBuffer	

DescriptorPoo
l	

DescriptorSet	

DescriptorSet	

GLSL	

glslangValidato
r	

SPIRV-Tools	
SPIR-V	

Framebuffer	

R
e
n
d
e
rP
a
ss
	

A
tt
a
ch
m
e
n
t	

A
tt
a
ch
m
e
n
t	

A
tt
a
ch
m
e
n
t	

Memory	Heap	

Memory	

Buffer	

Buffer	

Image	

Memory	

Instance	

PhysicalDevice	

Queue(s
)	

G
ra
p
h
ic
s	

C
o
m
p
u
te
	

T
ra
n
sf
e
r	

Heaps(s)	

Lo
ca
l	

H
o
st
	V
is
ib
le
	

C
o
h
e
re
n
t	

PhysicalDevice	

CommandBuffer	

Dispatch	RenderPass	 Pipeline	Barriers	

Subpass(s)	

Dynamic	State	

Bind	Pipeline	

Bind	Resource(s)	

Draw	

Pipeline	

R
e
n
d
e
rP
a
ss
	

P
ip
e
lin
e
La
yo
u
t	

V
e
rt
e
x	
In
p
u
t	
St
a
te
	

In
p
u
t	
A
ss
e
m
b
ly
	

St
a
te
	

T
e
ss
e
lla
ti
o
n
	S
ta
te
	

V
ie
w
p
o
rt
	S
ta
te
	

M
u
lt
is
a
m
p
le
	S
ta
te
	

D
e
p
th
	S
te
n
ci
l	S
ta
te
	

C
o
lo
r	
B
le
n
d
	S
ta
te
	

D
yn
a
m
ic
	S
ta
te
	

Su
b
p
a
ss
	I
n
d
e
x	

Sh
a
d
e
r	

M
o
d
u
le
s	

RenderPass	

Input	
Attachment(s)	

Color	
Attachment(s)	

Resolve	
Attachment(s)	

Preserve	
Attachment(s)	

Subpass	indices	

Pipeline	Stage	Flags	

Access	Flags	

Dependencies	

Attachment(s)	

Image	format	

Load	Store	Ops	

Image	Layouts	

Framebuffer	 Subpasses	

Thread	

Application	

Device	 Thread	

CommandPoo
l	

CmdBuffer	

CmdBuffer	

CmdBuffer	

DescriptorPoo
l	

DescriptorSet	

DescriptorSet	

GLSL	

glslangValidato
r	

SPIRV-Tools	
SPIR-V	

Framebuffer	

R
e
n
d
e
rP
a
ss
	

A
tt
a
ch
m
e
n
t	

A
tt
a
ch
m
e
n
t	

A
tt
a
ch
m
e
n
t	

Memory	Heap	

Memory	

Buffer	

Buffer	

Image	

Memory	

V-EZ

