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Figure 1. Rendering of the kitchen scene with 32 lights using screen-space ReSTIR (top left)
at 3.61 ms per frame, compared to our neural light sampling method (NLS) (top right) running
at 3.95 ms, our neural direct illumination (Neural DI) (bottom left) at 4.41 ms, and ground truth
(bottom right). Compared to screen-space ReSTIR, our neural light sampling produces less
noise (especially in occluded areas), reducing the FLIP error metric [Andersson et al. 2021].
Additionally, we can use the neural network to compute approximate direct lighting without the
necessity to cast shadow rays, except for the rays needed for neural network training.

Abstract

Direct illumination with many lights is an inherent component of physically-based rendering
that remains challenging, especially in real-time scenarios. We propose an online-trained
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neural cache that stores visibility between lights and 3D positions. We feed light visibility
to weighted reservoir sampling (WRS) [Chao 1982; Wyman 2021] to sample a light source.
The cache is implemented as a fully-fused multilayer perceptron (MLP) [Miiller et al. 2021]
with multi-resolution hash-grid encoding [Miiller et al. 2022], enabling online training and
efficient inference on modern GPUs in real-time frame rates. The cache can be seamlessly
integrated into existing rendering frameworks and can be used in combination with other real-

time techniques such as spatiotemporal reservoir sampling (ReSTIR) [Bitterli et al. 2020].

1. Introduction

Direct illumination has a significant impact on both the quality of rendered images and
the rendering performance. The reflected radiance due to direct illumination at point
X in direction ®, can be described as an integral over all light emitting surfaces A:

L(X,(l)o) :/fr(xa mx—)yawo)Le(X7my—)x)G(Xay)V(X7Y)dA(y)a (1)
A

where f, is the bidirectional reflectance function (BRDF), L, is the emitted radiance,
Wx—y 18 a unit direction pointing from point X to y, G is the geometry term includ-
ing cosine terms and the squared distance, and V is the visibility function indicating
binary visibility between two points.

We solve Equation (1) by means of Monte Carlo integration as there is no general
analytic solution. As with any method based on Monte Carlo integration, the chal-
lenging part is to find a probability density function that closely matches the desired
distribution. To tackle this problem, we train a neural network to provide estimates
of visibility between light sources and 3D positions that we use to guide the sampling
process.

We utilize weighted reservoir sampling (WRS) [Chao 1982; Wyman 2021] to
sample a light source based on the light visibility estimated by the neural network
and BRDF contribution to the shaded point, providing an unbiased sampling mecha-
nism (see Section 3). The network architecture is based on a fully-fused multilayer
perceptron (MLP) [Miiller et al. 2021], which allows for efficient online training
and inference on contemporary GPUs in real-time frame rates. We employ multi-
resolution hash-grid encoding [Miiller et al. 2022] to learn high-frequency details in a
lower-dimensional space. The proposed method can be easily integrated into existing
real-time rendering pipelines. For instance, it can be used in next event estimation
for reflected bounces in path tracing, or for spatiotemporal reservoir sampling (Re-
STIR) [Bitterli et al. 2020] to sample initial candidates or to recover after abrupt visi-
bility changes that might otherwise cause significant noise. Our neural representation
of visibility works with either individual lights directly or their clusters, to support
scenes with an arbitrary number of lights.
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2. Previous Work

Global illumination algorithms are notoriously known for their high computational
demands. Therefore, a vast body of acceleration techniques has been proposed.
Among these, various caching strategies play an important role, including irradiance
caching [Ward 1994], which was later generalized to radiance caching [Krivanek et al.
2005]. These approaches are generally biased due to interpolation. To avoid bias,
the idea is to reuse cached information only to guide the sampling process to better
match the target distribution. Thus, numerous path guiding algorithms have been pro-
posed, employing algorithms such as hierarchical data structures [Miiller et al. 2017;
Tokuyoshi et al. 2024], online-trained parametric mixture models [Vorba et al. 2014],
neural networks [Miiller et al. 2019], or a combination of these [Huang et al. 2024].

With the advent of many-light rendering [Dachsbacher et al. 2014], the problem
of global illumination reduces to direct lighting with a large number of virtual point
lights, necessitating efficient light sampling techniques. Traditional solutions are ei-
ther based on arranging light sources into a hierarchical data structure [Walter et al.
2005; Conty Estevez and Kulla 2018; Moreau et al. 2022], sampling the light transport
matrix [HaSan et al. 2007], visibility-aware reinforcement learning [Pantaleoni 2019],
or Bayesian inference [Vévoda et al. 2018]. Guo et al. [2020] presented a method
for caching visibility between voxels, significantly reducing the number of precise
visibility tests required. Most of the aforementioned methods are designed for offline
rendering; the overhead is prohibitively expensive for real-time applications. Li et al.
[2024] presented an online-trained hierarchical light cache for sampling a very large
number of lights in an unbiased manner in a production renderer.

With hardware acceleration of deep learning and ray tracing, physically-based
rendering and neural-based approaches have become more compelling for real-time
applications. Spatiotemporal reservoir sampling (ReSTIR) [Bitterli et al. 2020] be-
came the de facto standard for sampling direct lighting in real-time ray tracing, for-
going building any complex data structures and exploiting spatial and temporal cor-
relation to efficiently process a very large number of lights. Several neural-based
approaches have been recently proposed for real-time scenarios: a neural radiance
cache [Miiller et al. 2021], neural shadow mapping [Datta et al. 2022], a neural light
grid for precomputed indirect lighting [Iwanicki et al. 2024], and a neural-based ren-
dering framework employing an attention mechanism to solve the many-light prob-
lem [Ren et al. 2024]. Concurrently to our work, Dereviannykh et al. [2025] suggest
to use neural incidence radiance caching in combination with two-level Monte Carlo
integration to achieve unbiased estimates. The authors also proposed to cache visibil-
ity of the environment map lighting as a special case. A neural importance sampling
of many lights [Figueiredo et al. 2025] combines a light hierarchy with a neural net-
work to predict light selection distribution directly, based on reflected radiance.


http://jcgt.org

Journal of Computer Graphics Techniques Vol. 14, No. 2, 2025
Neural Visibility Cache for Real-Time Light Sampling http://jcgt.org

X—
. — W(yi)
Pi= s Swn
(1) (3)

Figure 2. Overview of our method. We use a multi-resolution hash-grid encoding [Mdller et al.
2022] to encode a 3D position (1), which is fed to a neural network (2). The output of the
network is plugged into weighted reservoir sampling (WRS) [Chao 1982; Wyman 2021] (3).

3. Neural Visibility Cache

3.1. Algorithm Qutline

In this section, we describe our neural visibility cache (NVC) and how to use it for
light sampling. We train a multilayer perceptron (MLP) to predict (nonbinary) vis-
ibility between any point and any light source (or a cluster of light sources) in the
scene. The nonbinary visibility accounts for soft shadows cast by area lights and
semitransparent surfaces. Given a 3D position in the scene, we first use the multi-
resolution hash-grid encoding [Miiller et al. 2022] to encode the position, which we
subsequently feed into the MLP, which outputs an estimated visibility for each light
source; each neuron of the output layer corresponds to a single light. Finally, we
use weighted reservoir sampling (WRS) [Chao 1982; Wyman 2021] to sample a light
source using the visibility estimates provided by the MLP (see Figure 2). To ensure
our method remains unbiased, we clamp zero and possibly negative values to a small
positive constant (see Figure 3). This introduces a slight amount of noise while avoid-
ing bias.

We approximate the product of BRDF and the cosine term (see Equation (1)) by
linearly transformed cosines (LTC) [Heitz et al. 2016]; we then multiply this by the
light radiance and visibility predicted by the neural network to calculate the weights
of the lights contributing to the shaded points for WRS. Thus, the probabilities of
selecting each sample account for both visibility and BRDF, reducing noise in shad-
owed areas and penumbras as well. In contrast to methods based on estimating radi-
ance [Figueiredo et al. 2025], we only estimate visibility and calculate exact reflected
radiance analytically. This leads to faster training of the network, requiring less train-
ing iterations to converge.

Our algorithm can be used as a standalone or as a generator of initial candidates
for ReSTIR (see Section 4.2). This increases convergence speed and reduces noise in
disoccluded pixels where ReSTIR can struggle to find meaningful initial light sam-
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Figure 3. Our method can produce a biased result (left column) that typically exhibits as a
hard boundary around heavily shadowed areas or as fireflies. The top row shows neural light
sampling (NLS) with leaky rectified linear unit (ReLU) as the activation function for the output
layer, which accentuates hard shadow boundary artifacts. The bottom row uses sigmoid for
output activation, which has more fireflies instead. Clamping the visibility to 0.001 (center col-
umn) yields an unbiased result at the cost of slightly higher variance, alleviating these artifacts
and converging to the ground truth. Images have been accumulated for 16K frames.

ples. ReSTIR implementations typically cast a shadow ray for a selected initial can-
didate and invalidate it if it is occluded. When generating initial candidates using our
method, this is unnecessary as we already take visibility into account for all candi-
dates.

To solve a many-lights problem, we employ a clustered approach, where each out-
put neuron represents the average visibility of a light cluster, instead of an individual
light source. This way, we can support an arbitrary number of lights, sorted into a
fixed number of clusters. Sampling then becomes a two-step process, where a cluster
of lights is selected first, and then a light sample within the cluster.

3.2. Neural Direct lllumination

Since the light weights used for WRS are based on LTC shading and visibility, we
can also use them directly as an approximate direct illumination (see Figure 4). This
yields illumination with approximate shadows, which is biased but very fast and
noise-free, without casting any shadow rays. We call this neural direct illumination
(Neural DI), which can be used as an approximation of direct illumination for deeper
bounces in path tracing or for a fast preview. Note that this is only applicable to the
case when output neurons represent individual lights, not clusters.

3.3. Neural Network Architecture

We use a multilayer perceptron (MLP) with two hidden layers, each containing 32
neurons. The activation function for hidden layers is the leaky rectified linear unit
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Figure 4. Neural DI produces noise-free images using only one sample per pixel: Sponza (left)
and kitchen (right) scenes using 32 lights and one sample per pixel. To accentuate shadows,
we replaced textured materials with gray diffuse material. Notice that our method can learn
penumbras from noisy training data.

(ReLU) with a slope of 0.01. We have tested several activation functions and found
that leaky ReLU achieves the lowest training loss. For the output layer, we use the
sigmoid activation function. Sigmoid not only maps the output to the range of valid
visibility values [0, 1], but it also reduces the training loss faster than leaky ReLU.
The neural network training with backpropagation uses the L2 loss function. For the
multi-resolution hash-grid encoding, we use ten levels with the base resolution 16 and
four features per level. This setup leads to approximately 562K learned parameters
represented using 32-bit floats. Notice that the majority of these parameters corre-
spond to the hash-grid weights, with only a marginal number dedicated to the MLP.
The hash encoding is a critical component in achieving high quality and fast training
with our method. For scenes with a low light count, the number of features per level
can be decreased.
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3.4. Training

We use the He initialization strategy [He et al. 2015] to initialize the MLP. For train-
ing, we use the Adam optimizer [Kingma and Ba 2014] with a variable base learning
rate. We start with a learning rate of 0.05 and we linearly lower it for the first 200
training steps down to 0.001. This significantly speeds up training at the beginning,
which converges to a stable state faster. We perform one training step (one epoch with
one batch) per frame. Our training examples consist of a random position in the scene
as the input to the network and the corresponding visibility of each light as the target
for the network output.

We have also tried training the network on the shadowed radiance of lights (light
intensity attenuated by the squared distance to the light multiplied by visibility). For
complex scenes, most of the training samples were close to zero due to strong dis-
tance attenuation, and the network had a tendency to predict extremely low values
everywhere. Therefore, we settled on training the network only on visibility values.
Each training sample comprises mutual visibility for one random sample on a light
and a given point. The visibility in this case is binary, but for area lights, the neural
network will eventually learn the average visibility over the whole area of the light
(penumbra), which is not binary.

There are several options for generating these training examples. Random points
on surfaces visible from the camera (screen space) achieve best result for a given
camera view, but the network adapts slowly for new views. Using random points
within scene bounds (world space) needs no adaptation for new views, but introduces
dark blob artifacts (see Figure 5). A third option, generating samples on the geometry,
does not train the network to predict visibility in empty areas, which might become
occupied in future frames due to animation. Additionally, it makes it impossible
to use our method for light sampling within volumes of participating media, so we
do not recommend it. We found that using a combination of world-space data and
screen-space data works best as it fixes the artifacts but also adapts rapidly to camera

World-space data World-space + screen-space data

Figure 5. Using world-space data for training causes artifacts that manifest as dark blobs,

highlighted in red circles (left). Introducing screen-space data for training fixes the problem
(right). Images show our biased Neural DI method.
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movement. Our solution uses a combination of 4096 world-space samples and another
4096 screen-space samples.

We cast a shadow ray toward each of the light sources from each training point to
produce the training example. This is very fast in practice, since we only use 8196
training points per frame, and the number of lights is limited to the number of output
neurons (32 in our tests).

3.5. Dynamic Scenes

Our method is online-trained, therefore it supports dynamic scenes including ani-
mated geometry, lights, and camera. When the scene changes, the network state might
not approximate the visibility well until it adapts to the new situation. As our method
is unbiased, this exhibits as an increase in variance (noise) but not bias. When train-
ing from scratch (see Figure 6), the training needs only about 16 frames to reduce the
FLIP error to almost a half. Smooth changes to the scene can be expected to adapt
faster than 16 frames, but the application may need to increase the learning rate tem-
porarily, or perform more than one training step per frame. Abrupt changes, such as
teleportation of camera, or dynamic geometry are handled by using world-space sam-
ples that pre-train the network to be used on unseen views and previously unoccupied
space.

3.6. Clustering

The method described so far, representing visibility of each light in the scene with
a dedicated output neuron, limits the number of supported lights to the size of the
output layer allowed by the selected network architecture and target hardware (32 in
our implementation). In this section, we introduce a clustered neural visibility cache
approach (Clustered NVC), where instead of representing individual lights, the output
neurons represent the visibility of a cluster, which can consist of an arbitrary number
of lights.

We use the k-means algorithm [MacQueen 1967; Lloyd 1982] to cluster the lights
into k clusters (we use k = 32). During training, we randomly select a light source
within each cluster to train the network to predict average visibility of the cluster for
any point in the scene. This approach works especially well for interior scenes with
many rooms, as we can quickly cull light clusters not contributing to the room with the
camera. Alternatively, lights can be clustered based on the mesh they belong to (e.g.,
clustering emissive triangles of a complex mesh representing a lamp or a neon sign).

To sample a light using our neural visibility cache with clusters, we employ a two-
step process based on WRS and resampled importance sampling (RIS) [Talbot et al.
2005] implemented with reservoirs [Bitterli et al. 2020]. The first step uses WRS to
sample a cluster y out of m clusters, based on the inferred average cluster visibility
at that point, resulting in a reservoir with the selected sample y, its sampling weight
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w(y), and the sum of their sampling weights weum = X7, w(y;). The second step
uses a streaming RIS [Bitterli et al. 2020] to generate a final light sample x selected
from the pool of m, lights within the cluster y. The source probability density function
p(x) for RIS is defined as p(x) = m%% where m% is a reciprocal weight of the
reservoir from the first step and m% is the probability of sampling a light uniformly
within the cluster. The target probability density function p(x) for RIS is selected
based on the BRDF contribution and LTC lighting, same as before.

We found out that more training data is needed to provide plausible results for
scenes with many lights. Therefore, we use 49,152 training examples for the Subway
scene with 59K lights. We have also found out that the optimal hash-grid settings are
different for the clustered approach, since the approximation we are trying to learn
is lower frequency in nature, and we use eight levels with the base resolution 2 for

this case.

4. Results and Discussion

We implemented the proposed method in DirectX 12 and HLSL. Rendering each
frame consists of the following five passes: (1) G-buffer generation, (2) training data
generation, (3) network training, (4) inference and light sampling, and (5) shading.
The neural network is implemented as a fully fused MLP [Miiller et al. 2021], allow-
ing us to train and infer the neural network entirely in the on-chip shared memory.
Our implementation allows to execute inference inline in the scope of DirectX Ray-
tracing (DXR) ray tracing shaders, enabling to use our method on every bounce of
light while tracing paths. All tests were executed on AMD Radeon RX 7900 XT.

4.1. Comparison to Screen-Space ReSTIR

As a reference method, we implemented screen-space ReSTIR using eight initial can-
didates, casting a shadow ray for the selected initial candidate. We use temporal
resampling where we clamp the contribution of the previous reservoir to 20x the
contribution of the new reservoir. Spatial resampling uses a radius of 32 pixels. Un-
less stated otherwise, we use one sample per pixel for all tests, and both ReSTIR and
the neural network are converged for 1024 frames. Note that the FLIP error of both
methods is already significantly reduced after 20 to 30 frames (see Figure 6).
Compared to screen-space ReSTIR, our neural light sampling achieves a lower
FLIP error [Andersson et al. 2021] at a similar time budget, especially in the occluded
regions (see Figures 1 and 7). FLIP error is reduced by about 20% for the Kitchen
scene and about 45% for the Sponza scene. We can make the method unbiased by
clamping the output of the neural network (discussed in Section 3.1) at the cost of
slightly increased variance (see Figure 3). Neural DI that directly uses the visibility
estimates provided by the neural network (see Section 3.2) is biased by definition,
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Figure 6. A comparison of NRC (top), our neural light sampling (NLS) (middle) and screen
space ReSTIR (bottom) on a progression of 128 frames. The number under each image
represents its FLIP error, which decreases over time for all methods, but NRC suffers from
color artifacts, especially at the beginning of training. Our method remains unbiased even at
the beginning while the network is not sufficiently trained, exhibiting as increased variance,
similarly to ReSTIR. Our method reduces the FLIP error faster than other methods, achieving
lower error than ReSTIR even only after three training steps.

yet it provides significantly lower error than ReSTIR and neural light sampling (see
Figure 1). The bias exhibits at the edges and in heavily shadowed areas (see Figure 4).

4.2. Combining ReSTIR with Clustered NVC

To generate initial candidates, standard ReSTIR uses a RIS loop with a user-selected
number of candidates (we use eight), which generates a reservoir that can participate
in the streaming RIS and for spatial and temporal reuse. We combine our neural
approach with ReSTIR by replacing the initial candidates generation routine with
our clustered NVC. Our method also generates a reservoir, using a two-step process
described in Section 3.6, therefore it can be directly used to generate initial candidates.

Though using NVC for initial candidates improves the quality of ReSTIR overall,
the biggest benefit is for boosting the convergence rate for disocclusions. Figure 8
shows a significant noise reduction when NVC is used for initial candidates after

10
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' Neural Light Sampling (ours)

Figure 7. Comparison of neural light sampling (left) to screen-space ReSTIR (right) on the
Sponza scene with 32 lights. Neural light sampling produces lower error at the same perfor-
mance cost.

At C-NVC—ReSTIR

Figure 8. A comparison of standard ReSTIR (left), ReSTIR with initial candidates generated

by our clustered NVC (center), and the ground truth (right) in an idealized case where disocclu-
sions happen in every pixel. The Subway scene contains 59K lights. We simulate disocclusions
by invalidating motion vectors for all pixels, using one sample per pixel. This demonstrates how
clustered NVC can help ReSTIR to recover after disocclusion.

a disocclusion event. Running NVC for ReSTIR once it converges only improves
ReSTIR quality insignificantly; the average FLIP reduction is about 5% (see Figure 9,
while introducing an overhead of running the inference for every pixel. Therefore, we
recommend running NVC only for disoccluded pixels to boost the quality of initial
candidates. This implementation leads to runtime performance being only 5% lower
compared to standard ReSTIR, on a test using a dynamic camera flying around the
scene for 1024 frames. Results of clustered NVC in comparison to other methods are
summarized in Figure 9.

4.3. Comparison to Neural Radiance Cache

For a direct comparison of our method to the neural radiance cache (NRC) [Miiller
et al. 2021], we have implemented a version of NRC that caches only direct illumina-
tion from all lights on a primary hit (NRC DI). We use the same network architecture
and training data procedure as we do for our method, except the output layer has three

11
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Subway ZeroDay Bistro Exterior
59,164 lights 4820 lights 4499 lights

RIS

C-NVC (ours)

ReSTIR

C-NVC—ReSTIR

Ground Truth

Figure 9. Comparison of tested methods on scenes with many lights, captured after 1024
frames. The numbers under each image correspond to the FLIP error against the ground
truth and a total frame time. Note that Cluster NVC is more expensive than NVC compared
to ReSTIR, due to 6 x more training data needed and a more complex sampling process. For
scenes with up to 32 lights, the performance of NVC is comparable to ReSTIR. In these tests,
we ran Clustered NVC (C-NVC) to generate initial ReSTIR candidates for every pixel, instead
of only on disocclusions as we recommend.

12
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‘ Neural Light Sampling (ours) ‘ Ground Truth

Figure 10. NRC approximating a product of radiance and visibility exhibits blurry artifacts
and color shifts (left). Our method computes exact radiance analytically and samples the light
sources stochastically for unbiased rendering (middle). The ground truth was accumulated
with many frames (right).

neurons for RGB radiance values, and we use the leaky ReLLU activation function to
allow for unbounded values. NRC is not limited by the number of lights, but it has
several drawbacks compared to our method. For optimal results, NRC implementa-
tion requires a larger MLP, which increases the training and inference time. Another
disadvantage is that NRC requires more training steps to achieve usable results (see
Figure 6). At the beginning of training, NRC produces random colors, introducing
significant error to the resulting image. NRC predicts a product of the wavelength-
dependent radiance and visibility, manifesting blurry artifacts and color shifts (see
Figure 10). Our method instead calculates the radiance analytically with LTC. The
predicted visibility is used to guide the light sampling process, which remains unbi-
ased, even when the network training has not yet converged. In this case, we get an
increase in variance instead of bias. Compared to NRC, our method is limited to direct
illumination and a smaller number of lights, but for this purpose it achieves unbiased
results with a smaller network and does not suffer from artifacts due to under-training
and radiance approximation.

4.4. Performance

The performance of all tested methods is summarized in Table 1. Training data gen-
eration with our default configuration (8196 training examples and 32 lights) takes
0.34 ms for the Kitchen scene and 0.43 ms for the Sponza scene. The neural network
training step (backpropagation and optimization) takes ~ 0.75 ms for both scenes.
When training data generation and the training itself are implemented as separate
steps, where the first step writes out the data into memory for the second step to con-
sume, it is possible to perform multiple training iterations over the same data. As we
only perform one step per frame, we can fuse data generation and training together,
achieving about 5% speedup. We run inference once per pixel at ~ 1.8 ms per frame
for 1920 x 1080 resolution with 32 lights. The inference itself takes 1.32 ms, while
the remaining time is spent on the WRS algorithm. For comparison, replacing the
inference call of our NVC by casting a shadow ray toward each of the light sources
for every pixel on screen takes about 7 ms for the Kitchen scene with 32 lights (more
than 3x higher).

13
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G-Buffer Training (fused) Light Sampling Shading Frame Total

[ms] [ms] [ms] [ms] [ms]
RIS
Subway 1.09 - 0.62 1.16 2.92
ZeroDay 0.61 - 0.36 0.99 2.00
Bistro 0.78 - 0.31 1.61 2.74
Kitchen 0.58 - 0.47 0.57 1.65
Sponza 1.00 - 0.27 0.67 1.97
ReSTIR
Subway 1.17 - 2.01 1.11 4.48
ZeroDay 0.64 - 1.67 0.92 343
Bistro 0.83 - 2.30 1.83 5.15
Kitchen 0.58 - 2.45 0.53 3.61
Sponza 1.00 - 2.23 0.64 3.95
NVC (ours)
Kitchen 0.60 0.99 1.74 0.52 3.95
Sponza 0.99 1.18 1.85 0.61 4.69
Clustered NVC (ours)
Subway 1.11 3.01 1.87 1.11 7.37
ZeroDay 0.63 2.63 1.70 0.95 6.18
Bistro 0.80 3.20 1.71 1.87 7.85
Clustered NVC—ReSTIR (ours)

Subway 1.12 3.00 3.61 1.05 8.99
ZeroDay 0.64 2.58 343 0.90 7.75
Bistro 0.80 3.38 2.24 1.61 8.24

Table 1. Performance breakdown of tested methods. Scenes with 32 lights are tested on
NVC and many-light scenes on Clustered NVC. Training data generation and network training
has been fused into a single pass for better performance. The light sampling column contains
time spent in either the resampling loop (RIS), inference and light selection process (NVC and
Clustered NVC), all ReSTIR passes (ReSTIR), or ReSTIR passes with Clustered NVC as the
initial samples generator (Clustered NVC—ReSTIR).

5. Conclusion and Future Work

We proposed a lightweight neural-based sampling method for real-time direct illu-
mination based on caching the nonbinary visibility. With a minor modification, our
method provides unbiased estimates with lower error than screen-space ReSTIR at a
similar cost. Compared to ReSTIR, our method operates in the world space, making
it more robust to visibility changes with which ReSTIR struggles. In fact, our neu-
ral light sampling could be used in combination with ReSTIR to sample the initial
candidates. As a world-space method, it can also be used for direct illumination of
volumes of participating media. We used a clustered approach to support an arbitrary
number of lights with a fixed-size neural network. We also proposed a biased variant

14
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that directly uses the visibility estimates, decreasing variance even further at the cost
of some bias. Thanks to continuous online training, our method adapts to the dynamic
content including animated lights, geometry, and camera. Compared to neural impor-
tance sampling of many lights [Figueiredo et al. 2025], we are only caching visibility
with a smaller MLP, achieving faster training and simpler implementation (we do not
require other inputs, e.g., the surface normal to the MLP, only the position).

The limitation of our clustered NVC approach is that efficiency is highly depen-
dent on the quality of the clusters created and the total number of lights. For future
work, an interesting direction would be to explore other methods for light clustering,
e.g., the ones based on hierarchies [Vévoda et al. 2018; Figueiredo et al. 2025] and
light culling [Tokuyoshi and Harada 2016]. An early approach of Shirley et al. [1996]
of sorting lights into sets of important and unimportant lights could be adapted to our
approach by creating one cluster of unimportant lights to ensure unbiasedness and
using the remaining available clusters to represent the important lights.

Another interesting research direction would be to cache mutual visibility be-
tween any two points in the scene. This would enable us to query the visibility of any
light, not just the ones represented by output neurons. To make this practical, such a
query would either have to be faster than a ray cast or have to return visibility for a
batch of queries in a single inference call, to amortize the cost.

Finally, we need to overcome the limitation of the count of lights (or light clus-
ters) due to the restrictions imposed on the size of the neural network. We can achieve
linear scaling naively by having multiple networks and possibly time-slicing their
training (only train one network per frame) to maintain a fixed training budget. Over-
coming this limitation in a scalable way is a nontrivial task for the future.
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