
A Numerically Stable Implementation of the
von Mises–Fisher Distribution on S2

YUSUKE TOKUYOSHI, Advanced Micro Devices, Inc., Japan

0

800000

1600000

-0.001 0 0.001

(a) Eq. 2 (double precision)

0

800000

1600000

-0.001 0 0.001

(b) Eq. 2 (single precision)

0

800000

1600000

-0.001 0 0.001

(c) Eq. 4 (single precision)

Fig. 1. Plots of a sharp vMF distribution (𝜅 = 10000000, 𝛍 = [0, 0, 1]) with the traditional form (a, b) and our
form (c). The horizontal axis is the angle between a direction 𝛚 and the vMF center axis 𝛍. (b) The traditional
vMF form with single precision produces a significant numerical error. (c) Our vMF form is more numerically
stable than the traditional form.

1 Introduction
The von Mises–Fisher (vMF) distribution [1953] on S2 is a normalized spherical Gaussian defined as

𝑝 (𝛚; 𝛍, 𝜅) = 𝜅

4𝜋 sinh𝜅 exp(𝜅 (𝛚 · 𝛍)), (1)

where 𝛚 ∈ S2 is a unit vector, 𝛍 ∈ S2 is the center axis of the vMF distribution, and 𝜅 ∈ [0,∞) is
the sharpness of the vMF distribution. This distribution has often been used in computer graphics,
such as real-time lighting approximation [Tsai and Shih 2006] and path guiding [Dong et al. 2023;
Ruppert et al. 2020]. However, a straightforward implementation of the vMF distribution using
floating points can produce a noticeable numerical error. Therefore, we describe a numerically
stable implementation of the vMF distribution.

2 Numerically Stable Form of the vMF Distribution
Eq. 1 can produce NaN because exp(𝜅 (𝛚 · 𝛍)) and sinh(𝜅) can overflow for large 𝜅 (e.g., 𝜅 >

arsinh((2 − 2−23) × 2127) ≈ 89.4 for single precision). To avoid such NaN, computer graphics
applications have often used the following equivalent form:

𝑝 (𝛚; 𝛍, 𝜅) = 𝜅

2𝜋 (1 − exp(−2𝜅)) exp(𝜅 ((𝛚 · 𝛍) − 1)), (2)

where exp(𝜅 ((𝛚 · 𝛍) − 1)) ∈ (0, 1] is the unnormalized spherical Gaussian. On the other hand, Eq. 2
in floating point can produce a significant error for 𝜅 → 0 and 𝜅 → ∞. Therefore, we use a more
numerically stable form. To improve the stability for small 𝜅, we use an accurate implementation
of 𝑎(𝑥) = 𝑥/(exp(𝑥) − 1) [Higham 2002] for the normalization factor 𝜅

2𝜋 (1−exp(−2𝜅)) as follows:

𝑝 (𝛚; 𝛍, 𝜅) = 𝑎(−2𝜅)
4𝜋 exp(𝜅 ((𝛚 · 𝛍) − 1)) . (3)

Advanced Micro Devices, Inc. Technical Report, No. 25-01-5053, January 2025.

Author’s Contact Information: Yusuke Tokuyoshi, yusuke.tokuyoshi@amd.com, Advanced Micro Devices, Inc., Japan.

2 Y. Tokuyoshi

For an HLSL implementation of 𝑎(𝑥), please see Listing 1. Although the above form is accurate
for the normalization factor, the unnormalized spherical Gaussian term exp(𝜅 ((𝛚 · 𝛍) − 1)) is
still numerically unstable for 𝛚 → 𝛍. This numerical error can be noticeable for a sharp vMF
distribution (Fig. 1). For applications that require numerical accuracy for such high-frequency
distributions, we use the Euclidean distance between 𝛚 and 𝛍 instead of (𝛚 · 𝛍) − 1 as follows:

𝑝 (𝛚; 𝛍, 𝜅) = 𝑎(−2𝜅)
4𝜋 exp

(
−𝜅2 ∥𝛚 − 𝛍∥2

)
. (4)

Listing 2 shows our vMF implementation using the above form.

Listing 1. 𝑎(𝑥) = 𝑥/(exp(𝑥) − 1) with cancellation of rounding errors [Higham 2002] (HLSL).
float x_over_expm1(float x) {
float u = exp(x);
if (u == 1.0f) { return 1.0f; }
float y = u - 1.0f;
if (abs(x) < 1.0f) { return log(u) / y; }
return x / y;

}

Listing 2. Our numerically stable vMF implementation (HLSL). Instead of using 𝛚 · 𝛍, we use the Euclidean
distance between 𝛚 and 𝛍.
float vmf(float3 dir , float3 axis , float sharpness) {
float3 d = dir - axis;
return exp(-0.5f * sharpness * dot(d, d)) * x_over_expm1 (-2.0f * sharpness) / (4.0f * M_PI);

}

3 Sampling of the vMF Distribution
To sample a direction 𝛚 according to the vMF distribution 𝑝 (𝛚; 𝛍, 𝜅), we first sample a direction
[cos𝜙 sin𝜃, cos𝜙 sin𝜃, cos𝜃] ∈ S2 in a local frame, where 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋) are the polar
coordinates of this local direction. Then, we rotate the local direction into world space. For this
case, the azimuthal angle 𝜙 is uniformly distributed as follows:

𝜙 = 2𝜋𝜉0, (5)

where 𝜉0 ∈ [0, 1) is a uniform random number. To sample cos𝜃 = 𝛚 · 𝛍 using a different uniform
random number 𝜉1 ∈ [0, 1), Jakob [2012] improved the numerical stability from Jung [2009] by
deriving the following form:

cos𝜃 = 1 + 1
𝜅
log (𝜉1 + (1 − 𝜉1) exp(−2𝜅)) . (6)

However, this sampling can still produce a significant error for small 𝜅 , because the precision of the
random variable is lost by 𝜉1 + (1 − 𝜉1) exp(−2𝜅) → 1 for 𝜅 → 0. To reduce the error, we replace 𝜉1
with 1 − 𝜉1 in Eq. 6 as follows:

cos𝜃 = 1 + 1
𝜅
log (1 − 𝜉1 + 𝜉1 exp(−2𝜅)) = 1 + 1

𝜅
log1p (𝜉1expm1(−2𝜅)) , (7)

where expm1(𝑥) = exp(𝑥) − 1 and log1p(𝑥) = log(1 + 𝑥) are built-in functions available in some
programming languages (e.g., C++), and they are numerically stable for small |𝑥 |. When 𝜅 is small,
|𝜉1expm1(−2𝜅) | is small. Therefore, Eq. 7 reduces the numerical error for small 𝜅. The same form
was used by Frisch and Hanebeck [2023] for their deterministic sampling.

A Numerically Stable Implementation of the von Mises–Fisher Distribution on S2 3

(a) Jakob [2012] (b) Jakob [2012] (c) Ours
(double precision) (single precision) (single precision)

𝜅
=
0
.000001

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

𝜅
=
10000000

-0.001

-0.0005

0

0.0005

0.001

-0.001 -0.0005 0 0.0005 0.001

-0.001

-0.0005

0

0.0005

0.001

-0.001 -0.0005 0 0.0005 0.001

-0.001

-0.0005

0

0.0005

0.001

-0.001 -0.0005 0 0.0005 0.001

Fig. 2. Plots of sample directions [cos𝜙 sin𝜃, sin𝜙 sin𝜃] in the local frame for vMF distributions. For low-
frequency distribution (upper row) and high-frequency distribution (lower row), Jakob [2012]’s method with
single precision (b) generates highly correlated samples due to numerical errors, while ours (c) does not.

Once we get cos𝜃 , we then calculate sin𝜃 . Although Jakob [2012] used sin𝜃 =
√
1 − cos2 𝜃 , it

can produce a noticeable error due to catastrophic cancellation when cos𝜃 → 1. To avoid the
catastrophic cancellation for sin𝜃 , we use the following equation:

𝑟 =

{
1
𝜅
log1p (𝜉1expm1(−2𝜅)) if 𝜅 > 𝑡

−2𝜉1 if 𝜅 ≤ 𝑡
, (8)

cos𝜃 = 1 + 𝑟 , (9)

sin𝜃 =
√
−𝑟 2 − 2𝑟 =

√︁
−fma(𝑟, 𝑟, 2𝑟) , (10)

where 𝑡 = 0 for the exact solution, and fma(𝑥,𝑦, 𝑧) = 𝑥 × 𝑦 + 𝑧 is the fused multiply-add operation
to reduce the numerical error in floating-point arithmetic. Even if the built-in fma function is
not available, the calculation of sin𝜃 =

√
−𝑟 2 − 2𝑟 is still more numerically stable than sin𝜃 =√

1 − cos2 𝜃 for cos𝜃 → 1. For a sharp distribution with large𝜅 , 𝑟 is densely and precisely distributed
around zero. Therefore, Eq. 10 produces accurate sin𝜃 around zero. Fig. 2 shows plots of samples
generated using our method. Listing 3 shows an HLSL implementation for our sampling routine.

To further improve the numerical stability, we use 𝑡 = 𝜖/4 where 𝜖 is the machine epsilon. This
is because, let fl(𝑓 (·)) be an operation 𝑓 (·) in floating-point arithmetic, and 𝑥 be a floating point
value, then fl(expm1(𝑥)) = 𝑥 and fl(log1p(𝑥)) = 𝑥 when |𝑥 | ≤ 𝜖/2. Therefore, for floating-point 𝜅

4 Y. Tokuyoshi

and 𝜉1, we obtain

𝑟 ≈ fl
(
fl (log1p (𝜉1fl(expm1(−2𝜅))))

𝜅

)
= fl

(
−2𝜅𝜉1
𝜅

)
≈ −2𝜉1 for 0 < 𝜅 ≤ 𝜖/4. (11)

The rightmost approximation 𝑟 ≈ −2𝜉1 is more accurate than calculating the exact form in floating-
point arithmetic.

Listing 3. Numerically stable sampling of the vMF distribution. Since HLSL does not have a built-in fma
function for single precision, we use the mad function instead. For the implementation details of expm1, log1p,
and orthonormal_basis functions, please see Listings 4, 5, and 6, respectively.
float3 sample_vmf(float2 rand , float3 axis , float sharpness) {
float phi = 2.0f * M_PI * rand.x;
float THRESHOLD = FLT_EPSILON / 4.0f;
float r = sharpness > THRESHOLD ? log1p(rand.y * expm1 (-2.0f * sharpness)) / sharpness

: -2.0f * rand.y;
float cos_theta = 1.0f + r;
float sin_theta = sqrt(-mad(r, r, 2.0f * r));
float3 dir = {cos(phi) * sin_theta , sin(phi) * sin_theta , cos_theta };
float3x3 frame = orthonormal_basis(axis);
return mul(dir , frame);

}

Listing 4. expm1(𝑥) = exp(𝑥) − 1 with cancellation of rounding errors [Higham 2002] (HLSL). Since HLSL
does not have a built-in expm1 function unlike C++, we use this implementation as a workaround.
float expm1(float x) {
float u = exp(x);
if (u == 1.0f) { return x; }
float y = u - 1.0f;
if (abs(x) < 1.0f) { return x * y / log(u); }
return y;

}

Listing 5. log1p(𝑥) = log(𝑥 + 1) with cancellation of rounding errors [Goldberg 1991] (HLSL). Since HLSL
does not have a built-in log1p function unlike C++, we use this implementation as a workaround. For this
classic algorithm, aggressive compiler optimization must be disabled for floating points.
float log1p(float x) {
// For this algorithm , we must prevent compilers from optimizing (x + 1) - 1 to x.
volatile float u = x + 1.0f;
if (u == 1.0f) { return x; }
float y = log(u);
if (x < 1.0f) { return x * y / (u - 1.0f); }
return y;

}

Listing 6. Building of an orthonormal basis [Duff et al. 2017] (HLSL). We use this basis for the local frame of
the vMF distribution.
float3x3 orthonormal_basis(float3 axis) {
float s = axis.z >= 0.0f ? 1.0f : -1.0f;
float c = -1.0f / (s + axis.z);
float b = axis.x * axis.y * c;
float3 b1 = {1.0f + s * axis.x * axis.x * c, s * b, -s * axis.x};
float3 b2 = {b, s + axis.y * axis.y * c, -axis.y};
return float3x3(b1 , b2, axis);

}

A Numerically Stable Implementation of the von Mises–Fisher Distribution on S2 5

References
Honghao Dong, Guoping Wang, and Sheng Li. 2023. Neural Parametric Mixtures for Path Guiding. In SIGGRAPH ’23

Conference Proceedings. Article 29, 10 pages. https://doi.org/10.1145/3588432.3591533
Tom Duff, James Burgess, Per Christensen, Christophe Hery, Andrew Kensler, Max Liani, and Ryusuke Villemin. 2017.

Building an Orthonormal Basis, Revisited. J. Comput. Graph. Tech. 6, 1 (2017), 1–8. http://jcgt.org/published/0006/01/01/
Ronald Aylmer Fisher. 1953. Dispersion on a sphere. Proc. R. Soc. Lond. Ser. A 217, 1130 (1953), 295–305. https://doi.org/10.

1098/rspa.1953.0064
Daniel Frisch and Uwe D. Hanebeck. 2023. Deterministic Von Mises–Fisher Sampling on the Sphere Using Fibonacci Lattices.

In SDF-MFI ’23. 1–8. https://doi.org/10.1109/SDF-MFI59545.2023.10361396
David Goldberg. 1991. What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23,

1 (1991), 5–48. https://doi.org/10.1145/103162.103163
Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics.
Wenzel Jakob. 2012. Numerically stable sampling of the von Mises Fisher distribution on 𝑆2 (and other tricks). Technical

Report. https://www.mitsuba-renderer.org/~wenzel/files/vmf.pdf
Sungkyu Jung. 2009. Generating von Mises Fisher distribution on the unit sphere (S2). Technical Report. U. Pittsburgh.

https://www.stat.pitt.edu/sungkyu/software/randvonMisesFisher3.pdf
Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. 2020. Robust fitting of parallax-aware mixtures for path

guiding. ACM Trans. Graph. 39, 4, Article 147 (2020), 15 pages. https://doi.org/10.1145/3386569.3392421
Yu-Ting Tsai and Zen-Chung Shih. 2006. All-Frequency Precomputed Radiance Transfer Using Spherical Radial Basis

Functions and Clustered Tensor Approximation. ACM Trans. Graph. 25, 3 (2006), 967–976. https://doi.org/10.1145/
1141911.1141981

©2024 Advanced Micro Devices, Inc. All rights reserved.

https://doi.org/10.1145/3588432.3591533
http://jcgt.org/published/0006/01/01/
https://doi.org/10.1098/rspa.1953.0064
https://doi.org/10.1098/rspa.1953.0064
https://doi.org/10.1109/SDF-MFI59545.2023.10361396
https://doi.org/10.1145/103162.103163
https://www.mitsuba-renderer.org/~wenzel/files/vmf.pdf
https://www.stat.pitt.edu/sungkyu/software/randvonMisesFisher3.pdf
https://doi.org/10.1145/3386569.3392421
https://doi.org/10.1145/1141911.1141981
https://doi.org/10.1145/1141911.1141981

	1 Introduction
	2 Numerically Stable Form of the vMF Distribution
	3 Sampling of the vMF Distribution
	References

