
Accurate Diffuse Lighting from Spherical Gaussian Lights
(Supplementary Document)

Yusuke Tokuyoshi
Advanced Micro Devices, Inc.

1 Accuracy of Our Approximation

1.1 Clamped Cosine

Fig. 1 shows the error of our spherical Gaussian (SG) approximation for clamped cosine. Our approximation balances
the approximation error and numerical error to reduce the sum of them. Even without using Kahan’s precise compu-
tation [Kahan(2004)] for Eq. 3 in the main document, the maximum numerical error is still almost the same as the
maximum approximation error.

Difference

Cosine

(a) with Kahan’s algorithm

Difference

Cosine

(b) w/o Kahan’s algorithm

Figure 1: Plots of the difference between our SG approximation and exact clamped cosine (orange: approximation error,
blue: numerical error).

1.2 Steepness for the Normalized Hemispherical Integral

Fig. 2 shows the plot of steepness t(κ) for the normalized hemispherical integral (Eq. 5 in the main document). The
reference is numerically computed optimal values. For κ → ∞, this optimal steepness asymptotically approaches to
√
κ/2 that is the steepness of the cumulative distribution function of a Gaussian on a plane. Our approximation (Eq. 6 in

the main document) is close to the reference, and it is also asymptotically approaches to
√
κ/2 for κ → ∞.

Steepness t(κ)

Sharpness κ

Figure 2: Plots of the steepness t(κ). Our approximation (orange) is close to the reference (dots).

1

mailto:yusuke.tokuyoshi@amd.com

2 Implementation Details

We implement our method in real-time indirect illumination using virtual SG lights [Tokuyoshi(2015)] whose source
code is available in https://github.com/yusuketokuyoshi/VSGL. Listing 1 shows HLSL code for the product integral of
an SG and clamped cosine using our approximation. In this code, the SGProduct function computes the product of
two SGs, and the HSGIntegral function computes the hemispherical integral of an SG. The implementations of these
functions are shown in Listings 2 and 3. Since a straightforward implementation for them is numerically unstable, we
use some numerically stable algorithms in our implementation.

Listing 1: Product integral of an SG and clamped cosine (HLSL). Our improrovement for the clamped-cosine approxi-
mation is written in red.
struct SGLobe {

float3 axis;

float sharpness;

float logAmplitude;

};

float HSGCosineProductIntegral(SGLobe sg, float3 normal) {

float LAMBDA = 0.00084560872241480124;

float ALPHA = 1182.2467339678153;

SGLobe prodLobe = SGProduct(sg.axis, sg.sharpness , normal, LAMBDA);

float p = HSGIntegral(dot(prodLobe.axis, normal), prodLobe.sharpness) * exp(LAMBDA + prodLobe.logAmplitude);

float q = HSGIntegral(dot(sg.axis, normal), sg.sharpness);

return exp(sg.logAmplitude) * max(ALPHA * p - ALPHA * q, 0.0);

}

2.1 SG Product

The product of two SGs is given by

G(ω; v1, κ1)G(ω; v2, κ2) = eκ3−κ1−κ2G
(
ω;

κ1v1 + κ2v2

κ3
, κ3

)
, (1)

where κ3 = ‖κ1v1 + κ2v2‖. However, when sharpness κ1 or κ2 is large, κ3− κ1− κ2 can produce a catastrophic cancellation.
To improve the numerical stability for large κ1 or κ2, we use the following form:

κ3 − κ1 − κ2 =
2κmin((v1 · v2) − 1)

1 +
κmin
κmax

+

√
2 κmin
κmax

(v1 · v2) +
(
κmin
κmax

)2
+ 1

, (2)

where κmin = min(κ1, κ2) and κmin = max(κ1, κ2). The HLSL code for this SG product is shown in Listing 2.

Listing 2: Numerically stable SG product (HLSL).
SGLobe SGProduct(float3 axis1, float sharpness1 , float3 axis2, float sharpness2) {

float3 axis = axis1 * sharpness1 + axis2 * sharpness2;

float sharpness = length(axis);

float cosine = clamp(dot(axis1, axis2), -1.0, 1.0);

float sharpnessMin = min(sharpness1 , sharpness2);

float sharpnessRatio = sharpnessMin / max(sharpness1 , sharpness2);

float logAmplitude = 2.0 * sharpnessMin * (cosine - 1.0) / (1.0 + sharpnessRatio + sqrt(2.0 * sharpnessRatio * cosine

+ sharpnessRatio * sharpnessRatio + 1.0));

SGLobe result = { axis / max(sharpness , FLT_MIN), sharpness , logAmplitude };

return result;

}

2.2 Hemispherical Integral

The hemispherical integral of an SG is given by an interpolation between upper hemispherical integral A(κ) = 2π(1 −
e−κ)/κ and lower hemispherical integral B(κ) = 2πe−κ(1 − e−κ)/κ. However, the calculation of (1 − e−κ)/κ can produce

2

https://github.com/yusuketokuyoshi/VSGL

a large numerical error if sharpness κ is small. Therefore, we use a numerically stable algorithm [Higham(2002)] to
compute (ex − 1) /x where x = −κ (see Listing 4 for HLSL implementation). Listing 3 shows our hemispherical integral
using this algorithm. For the interpolation factor (i.e., normalized hemispherical integral) in Listing 3, our approximation
uses the error function (erf). Although erf is available in some computer languages (such as C++), HLSL does not have
a built-in erf. Therefore, we use Listing 5 for HLSL.

Listing 3: Numerically stable hemispherical integral of an SG (HLSL). Our improvement for the normalized hemispher-
ical integral is written in red.
float HSGIntegral(float cosine, float sharpness) {

// Our fitted steepness (Eq. 6 in the main document).

float steepness = sharpness * sqrt((0.5 * sharpness + 0.65173288269070562) / ((sharpness + 1.3418280033141288) *

sharpness + 7.2216687798956709));

// Our approximation for the normalized hemispherical integral (Eq. 5 in the main document).

float s = 0.5 + 0.5 * (erf(steepness * clamp(cosine, -1.0, 1.0)) / erf(steepness));

// Interpolation between upper and lower hemispherical integrals.

return 2.0 * M_PI * lerp(exp(-sharpness), 1.0, s) * expm1_over_x(-sharpness);

}

Listing 4: (ex − 1)/x with cancellation of rounding errors [Higham(2002)] (HLSL).
float expm1_over_x(float x) {

float u = exp(x);

if (u == 1.0) {

return 1.0;

}

float y = u - 1.0;

if (abs(x) < 1.0) {

return y / log(u);

}

return y / x;

}

Listing 5: Error function (HLSL).
float erf(float x) {

// Early return for large |x|.

if (abs(x) >= 4.0) {

return asfloat((asuint(x) & 0x80000000) ˆ asuint(1.0));

}

// Polynomial approximation based on https://forums.developer.nvidia.com/t/optimized -version-of-single-precision -error

-function-erff/40977

if (abs(x) > 1.0) {

float A1 = 1.628459513;

float A2 = 9.15674746e-1;

float A3 = 1.54329389e-1;

float A4 = -3.51759829e-2;

float A5 = 5.66795561e-3;

float A6 = -5.64874616e-4;

float A7 = 2.58907676e-5;

float a = abs(x);

float y = 1.0 - exp2(-(((((((A7 * a + A6) * a + A5) * a + A4) * a + A3) * a + A2) * a + A1) * a));

return asfloat((asuint(x) & 0x80000000) ˆ asuint(y));

} else {

float A1 = 1.128379121;

float A2 = -3.76123011e-1;

float A3 = 1.12799220e-1;

float A4 = -2.67030653e-2;

float A5 = 4.90735564e-3;

float A6 = -5.58853149e-4;

float x2 = x * x;

return (((((A6 * x2 + A5) * x2 + A4) * x2 + A3) * x2 + A2) * x2 + A1) * x;

}

}

3

References

[Higham(2002)] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics.

[Kahan(2004)] William Kahan. 2004. On the Cost of Floating-Point Computation Without Extra-Precise Arithmetic.
https://people.eecs.berkeley.edu/˜wkahan/Qdrtcs.pdf

[Tokuyoshi(2015)] Yusuke Tokuyoshi. 2015. Fast Indirect Illumination Using Two Virtual Spherical Gaussian Lights.
In SIGGRAPH Asia ’15 Posters. 12:1–12:1.

©2022 Advanced Micro Devices, Inc. All rights reserved. AMD, Radeon and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

4

https://people.eecs.berkeley.edu/~wkahan/Qdrtcs.pdf

	Accuracy of Our Approximation
	Clamped Cosine
	Steepness for the Normalized Hemispherical Integral

	Implementation Details
	SG Product
	Hemispherical Integral

