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Figure 1: The high resolution model (memory size ∼10 MB) has been simplified to a DMM base mesh that reduces triangle count by a
factor of 64, which amounts to a DMM of subdivision level 3. The combined memory size of the base mesh and the displacements amounts
to ∼0.5 MB. (a) Original high resolution frog model (∼400k triangles) animated through skinning with magnified elbow and knee zoom-ins.
(b) Standard animated DMMs (∼6k base triangles), micro-triangle normals used for flat shading. (c) Standard animated DMMs (∼6k base
triangles), using our interpolated matrix approach to compute micro-triangle normals (flat shaded). (d) Our interpolated matrix approach,
used for geometry and micro-triangle normals (flat shaded) shows improved silhouettes and no normal artefacts.

Abstract
We present a new method that allows efficient ray tracing of virtually artefact-free animated displaced micro-meshes
(DMMs) [MMT23] and preserves their low memory footprint and low BVH build and update cost. DMMs allow for com-
pact representation of micro-triangle geometry through hierarchical encoding of displacements. Displacements are computed
with respect to a coarse base mesh and are used to displace new vertices introduced during 1 : 4 subdivision of the base mesh.
Applying non-rigid transformation to the base mesh can result in silhouette and normal artefacts (see Figure 1) during anima-
tion. We propose an approach which prevents these artefacts by interpolating transformation matrices before applying them to
the DMM representation. Our interpolation-based algorithm does not change DMM data structures and it allows for efficient
bounding of animated micro-triangle geometry which is essential for fast tessellation-free ray tracing of animated DMMs.

1. Introduction

Real-time rendering has always been striving for greater geometric
complexity to increase scene fidelity. Recently, displaced micro-
meshes (DMMs) [MMT23] have been proposed as an efficient rep-
resentation for lossily compressed geometry. The representation
requires topology restrictions but achieves very high compression
rates of as little as four bits per triangle. The DMM format is based
on hierarchically encoded displacements per base triangle in com-
bination with error correction at each subdivision level. At each
subdivision level, vertices are displaced along the interpolated ver-
tex normals of the base triangle.

Ray tracing applications use bounding volume hierarchies
(BVH), see e.g., [MOB∗21], to enable fast ray versus scene in-

tersection tests. Real-time ray tracing applications, like computer
games, still face two problems related to BVHs.

The first problem is that BVHs consume large amounts of mem-
ory. The second is that the time to construct a BVH from highly
detailed objects can be prohibitively high. This is especially true
if the detailed geometry is animated and its BVH needs to be up-
dated or recomputed every frame. DMMs promise to alleviate both
problems. Memory consumption is down because DMM geometry
is highly compressed. Furthermore, the displacement data for an
object comprised of DMMs need to be stored only once and can be
reused by each instance of this object, even if the DMM base mesh
is animated. So each new instance only adds an amount of mem-
ory that is proportional to the number of base mesh triangles. BVH
build and update costs are also down as the complexity of the BVH
is a function of the triangle count of the coarse DMM base mesh.
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Animated DMMs can show various artefacts though. One of
our main contributions is to redefine DMMs under animation to
remove artefacts while preserving their low BVH memory foot-
prints and low BVH construction costs. The other contribution is a
tessellation-free algorithm for ray tracing these animated DMMs.
Our approach does not change the data structures that represent
DMMs and that allows for high compression rate.

The most frequently used type of animated geometry in com-
puter games are game characters. Typically, these characters are an-
imated using a form of skinning (see e.g., [KCvO07] and [Gru24]).
Skinning techniques such as linear blend skinning (LBS) [Gru24]
assign a set of transformation matrices and associated weights to
each vertex that is influenced by this given set of transformations.
As the transformation matrices, usually called bones in the context
of LBS, are animated, updated vertex positions and normals are an-
imated as well. In the context of this work we concentrate on skin-
ning/animation techniques that ultimately produce a 4× 4 matrix
which is then used to transform or skin a vertex. LBS is probably
the most popular skinning technique used in computer games and
real-time applications. Note that LBS has also been used success-
fully to animate tree geometry and other geometry that represents
plants [Kiy24].

DMM base meshes are created in a simplification
scheme [MMT23] tailored to the generation of high-quality
base meshes which are optimized for tessellation and displacement
sampling. The result of applying this scheme is a simplified or
coarse DMM base mesh with a low number of triangles, vertex
positions and normals and the data that describes the DMM
displacements.

The highly detailed mesh, that is the input to the DMM sim-
plification process, needs a set of bones and weights attached to
each of its vertices for it to be animatable with LBS. These matri-
ces and weights are typically assigned and tuned by a human artist
who is responsible for animating a game character. Maggiordomo
et al. [MMT23] use tweaked edge collapses (see [Hop23]) during
simplification. Each edge collapse eliminates two triangles and re-
duces the two vertices of an edge to one new vertex. The position
of a new vertex is chosen to minimize some error function. As a
result it is unclear what set of bones and weights to use for each
new vertex.

One way to deal with this problem is to let a human artist
regenerate bone and weight assignments for the simplified base
mesh. DeCoro and Rusinkiewicz [DR05] extend the commonly-
used quadric error metric [GH97] to simplify a mesh by incorpo-
rating knowledge of potential poses. They also present a method to
update bone weights during simplification. This however can lead
to a higher number of bones influencing vertices created during
simplification. This is not desirable for most game applications.

Another way to deal with the issue is to only use half-edge col-
lapses (see [LWL∗12]) during simplification. Half-edge collapses
ensure that one of the two vertices that participate in an edge col-
lapse is dropped into the other destination vertex. This destination
vertex does not change position and can thus keep its original bone
and weights assignments. The animated base meshes of the test
objects in our work uses this method to get around the problem
of assigning new bones and weights during or after simplification.

Half-edge collapses are an efficient way of computing lower detail
approximations of objects that do not need additional artists inter-
vention for animation and are popular among game developers.

In the context of e.g., LBS animations, the DMM representation
causes issues in our test objects. The encoded displacements are
computed along the interpolated normals with respect to a fixed
pose (for example: the rigging pose) of the base mesh. After an-
imating base mesh positions and normals by LBS, displacements
along interpolated animated normals do not always generate an
artefact-free displaced mesh (see Figure 1b).

Some of the artefacts result from the fact that the combined
DMM displacements that produce a smooth looking composite
surface do not produce a smooth looking composite surface af-
ter animation. If some part of the surface bends the pre-computed
displacements do not change magnitude to produce the expected
smooth overall surface with the expected higher curvature as shown
in Figure 2. The sharp bends produced by using interpolated nor-
mals can create unwanted silhouette edges. These tend to be where
the surface deforms non-rigidly because of skinning.

As displacements are pre-computed and thus static, they also do
not change amplitude or signs. This means that e.g., the undulating
animation of a snake which locally changes the surface from curv-
ing outwards to curving inwards can’t be represented by the static

Figure 2: (Left) 2D depiction of two edges of a DMM base mesh
in the rigging pose in blue. The red arrows show interpolated
base mesh normals that sample the green high resolution mesh.
The length of the normals indicates the magnitude of the displace-
ment that scale the interpolated normal. (Right) After animation,
the skinned high resolution mesh (green) has bent at and around
the central vertex (yellow). Scaling the interpolated skinned nor-
mals (long green arrows) of the animated base by the displace-
ments computed for the rigging pose shows a reconstructed red
surface that has a sharp bend in the middle and also each part
of the composite surface lacks sufficient curvature. Depending on
the animated base mesh normals, the micro-triangle surface that is
reconstructed can be a close match to high resolution skinned sur-
face, but it can also be below or above the high resolution skinned
surface.
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(a) (b)
Figure 3: (a) A close-up of the left knee of the frog model’s DMM
base mesh (created using half-edge collapses) in the rigging pose.
(b) A close-up of the left knee of the frog model’s DMM base mesh
(created using half-edge collapses) skinned during animation. It
already shows internal silhouette artefacts.

displacements of standard DMMs. The general problem is that in-
terpolated normals do not follow any real underlying surface shape
as in the case of displaced subdivision surfaces [LMH00].

Some surface artefacts are generated by skinning base meshes
that were created using half-edge collapses only (see Figure 3). A
human artist who adjusts bone and weights assignments after sim-
plification can probably avoid some of those. In this work we will
continue to use base meshes produced by half-edge collapses, as
we will show that our proposed method can even remove artefacts
created by these base meshes.

On top of strong silhouette artefacts, the animated normals and
tangent frames of resulting micro-triangles can generate shading
artefacts. These silhouette and normal artefacts can prevent DMMs
from being adopted as a compact representation for animated as-
sets. As a result, none of the BVH build time savings and memory
savings can be carried over to animated characters.

Note that some of these issues could be overcome at the cost of
lower compression ratios by the use of lower subdivision levels in
mesh regions that undergo strong non-rigid deformations. We point
this out below in Section 8.

We propose a novel approach which addresses silhouette, nor-
mal and tangent frame artefacts for animated DMMs. Our approach
uses barycentric interpolation of animation matrices defined for
each vertex of the DMM base mesh. The resulting interpolated
matrices are then used to transform the DMMs’ micro-poly ver-
tices and normals as defined in the original fixed pose. This has the
advantage that both the displaced vertices and normals are locally
consistent with the encoded DMM representation. For rasterization,
interpolation of animation matrices can be efficiently implemented
by e.g., mesh shaders [Mic19b]. Even if these interpolated matri-
ces are not used to deform DMM geometry, they can still be used
to construct a higher quality normal and tangent frame per micro-
triangle.

In the context of ray tracing, tight bounding volumes are re-
quired for efficiently detecting intersections between a ray and
DMM sub-regions. Our approach allows for efficient bounding of
DMM sub-regions by evaluating two quadratic triangular Bézier
patches [Far02]. The first Bézier patch provides position data while
the second Bézier patch generates normals which then are scaled
by the precomputed DMM displacements. Together this data is

used to compute a tight bounding volume of the sub-region’s con-
vex hull. This sub-region bounding is applied during hierarchical
patch subdivision, culling sub-regions which a ray does not inter-
sect. Our bounding approach allows for an efficient tessellation-free
ray-DMM intersection test.

2. Related Work

Displaced subdivision surfaces [LMH00] have been a popular ap-
proach for adding geometric detail to a coarse base mesh represen-
tation. Subdivision surfaces can evaluated either directly or using
hierarchical subdivision. The results are on the limit surface and
can be displaced along the limit surface normals at the given points.
Expressing highly-detailed geometry by applying a set of displace-
ments on a hierarchically refined surface over a coarse base mesh
allows for a compact and memory-efficient representation. Our ap-
proach for animated DMMs follows a similar path of using only
one single set of displacements, the precomputed DMM displace-
ments, even in the context of animations.

Besides hierarchical encoding of displacements, Smith et
al. [SSHI00] presented an approach very similar to DMMs as pro-
posed by Maggiordomo et al. [MMT23]. Their work even discusses
animating displaced meshes. They do not describe any geometric
artefacts seen during animation which can most likely be attributed
to a limited set of test cases.

Our work uses quadratic Bézier triangles to efficiently bound
animated DMMs. Boubekeur et al. [BA08] introduced quadratic
triangular patches for smoothing triangular meshes. Similarly, PN
triangles [VPBM01] based on cubic triangular Bézier patches use
(quadratic) Bézier triangles to generate smooth normals. In a sim-
ilar vein, Loop et al. [LSNCn09] use quadratic tangent patches to
compute smooth normals. However, we are not aware of a method
that uses a second surface patch to compute displacement direc-
tions.

Our work focuses on ray tracing animated DMMs but various
approaches for ray tracing general displaced meshes have been
proposed before. Smits et al. [SSS00] proposed a method for di-
rect ray tracing of displacement mapped meshes but does not han-
dle hierarchical displacement encoding as used for DMMs. Thonat
et al. [TBS∗21] proposed a tessellation-free ray tracing algorithm
for displacement mapped meshes. In their work, displacements are
sampled from a displacement texture instead of using a hierarchi-
cally encoded displacements and their approach relies on affine
arithmetic [dFS04] to bound the displaced micro geometry. DMMs
encode displacements hierarchically. They perform repeated 1 : 4
subdivision to introduce new vertices until the desired detail is
reached. After each subdivision step, linear predictions of displace-
ments at new vertices are computed. Only correctional deltas be-
tween the predicted and measured displacements are stored, using
fewer bits at increasing subdivision levels. The use of displacement
maps by de Figueiredo et al. [dFS04] does not allow for the same
compression ratios at the same surface quality that DMM encod-
ing achieves. As the highly-efficient memory representation is one
of the key attributes of DMMs, we only use some key ideas of
the tessellation-free ray tracing algorithm described by Thonat et
al. [TBS∗21].
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float4 SkinPosAndNorm(float3 PosIn,
inout float3 NormInOut,
float4 Weights,
uint4 Bones)

{
matrix M_accum = {0};

for (int i = 0; i < 4; ++i)
M_accum += Weights[i] * FetchBoneXfm(Bones[i]);

NormInOut = mul(float4(NormInOut,0.0f),M_accum);

return mul(float4(posIn,1.0f), M_accum);
}

Listing 1: Skinning positions and normals using four bones per
vertex. The weighted sum of bone matrices is used to transform the
vertex and the normal.

Munkberg et al. [MHTAM10] introduced an efficient culling al-
gorithm for displaced rectangular Bézier patches that uses oriented
bounding boxes to bound the displaced patches.

DMMs [MMT23] are limited by topological constraints, as a
DMM over a base triangle can only represent micro-geometry
that can be expressed as displacements along the interpolated nor-
mals of the base triangle. This means the topological genus of a
DMM surface, over one base mesh triangle, is zero. Other loss-
ily compressed micro-geometry representations like Nanite clus-
ters [Bri22] or DGF (dense geometry format) blocks [BBM24] do
not have these topological limitations but exhibit a lower degree of
compression density. Note that DGF is particularly geared at being
consumed by future ray tracing hardware. As each DGF block en-
capsulates a small mesh and a BVH is built over DGF blocks, BVH
build complexity is reduced. The cost of a build is proportional to
the number of DGF blocks.

Our approach relies on skinned animations of triangle meshes
which are based on LBS animated bone matrices. The actual an-
imation of the bone matrices is typically driven by a quaternion-
based interpolation (see, e.g., [Han12]) between key-frames. Each
key-frame stores orientation, position and potentially scaling data
for all bones use by the animated object.

3. Animating Displaced Micro-Meshes

In general, LBS mesh animation consists of two steps: the first step
computes a weighted sum of (typically affine) 4× 4 matrices as-
sociated with each vertex of the mesh. The second step applies the
resulting matrix to transform each vertex and a corresponding nor-
mal [SSHI00]. Note that this method can be applied regardless of
whether the mesh is a regular mesh, a subdivision surface or DMM
base mesh. Also, the number of matrices associated with each ver-
tex is typically small, usually less than four for computer game ap-
plications. The weights required for computing the weighted sum
are typically stored alongside the vertex. The vertex transformation
uses a weighted sum of matrices as illustrated in the HLSL code
snippet in Listing 1.

Note that the example snippet uses four bones per vertex, while

each bone contributes a matrix. The function FetchBoneXfm re-
turns the current matrix for bone i for the given vertex. Some imple-
mentations do not accumulate a weighted sum of matrices. Instead,
for each mesh vertex, they iterate over the matrices, transform the
vertex by each matrix and compute a sum of weighted vertices.

In the general case, the code computes an accumulated matrix
Ma(v) = ∑

N
n=0 wn(v)Mn(v) for vertex v. The upper 3×3 part of the

matrix is often used to encode rotation data only. It is assumed to be
‘sufficiently’ orthonormal, and can thus also be used to transform a
shading normal. Note that if the upper 3× 3 is not sufficiently or-
thonormal, e.g., if the bone animation applies key-frame dependent
scaling, the transpose of its inverse needs to be used to transform
shading normals.

We now turn to describing the current state-of-the-art to use
LBS on animated objects comprised of DMMs. As there are no
explicit bone and weight assignments for the vertices of micro-
triangles created during DMM surface reconstruction, the method
of choice is to only apply LBS to the vertices and normals of the
base mesh. Micro-triangles then get generated during subdivision
from the skinned/animated base mesh positions and base mesh nor-
mals, and the pre-computed displacements are applied on the inter-
polation between the animated base mesh normals.

A DMM base mesh triangle consists of three base vertices v0,
v1 and v2, and three corresponding (per vertex) base mesh normals
n0, n1 and n2. The three accumulated matrices, one per base mesh
vertex, are computed:

Ma0 =
N

∑
n=0

wn(v0)Mn(v0)

Ma1 =
N

∑
n=0

wn(v1)Mn(v1)

Ma2 =
N

∑
n=0

wn(v2)Mn(v2)

(1)

We apply the accumulated matrices to the three base mesh ver-
tices, which results in v0′, v1′ and v2′:

v0′ = v0 ·Ma0

v1′ = v1 ·Ma1

v2′ = v2 ·Ma2

(2)

The same accumulated matrices are used to transform the three
positions po0 , po1 and po2 :

po0 = (v0 +n0) ·Ma0

po1 = (v1 +n1) ·Ma1

po2 = (v2 +n2) ·Ma2

(3)

These (po0 , po1 and po2 ) are generated by displacing the base
mesh vertices along the base mesh normals before transforming
them. The next step computes the transformed normals n0′, n1′ and
n2′, as shown in Equation 4. Note that normal vectors n0, n1 and n2
are four component vectors that have zero in the fourth component
and that Equation 4 also is valid if the 3× 3 part of Ma0 , Ma1 and
Ma2 is not orthogonal.
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Figure 4: The current state-of-the-art is to skin the DMM base mesh positions and normals and to interpolate between these results for
micro-vertices using their barycentric coordinates α, β and, γ.

n0′ = po1 − v0′ = n0 ·Ma0

n1′ = po1 − v1′ = n1 ·Ma1

n2′ = po2 − v2′ = n2 ·Ma2

(4)

A DMM is comprised of micro-triangles. In the following we de-
fine a DMM micro-vertex as a vertex of any DMM micro-triangle.
Every DMM micro-vertex (produced by hierarchical subdivision)
at any given subdivision level can be computed by, in a first step,
interpolating between transformed base mesh positions and nor-
mals. Then, in a second step, the resulting interpolated position is
displaced along the interpolated normal. Given barycentric coordi-
nates α, β, γ = 1−α−β, and a scalar displacement d(α,β,γ), the
interpolated position of the final animated micro-vertex Panimold is
given by:

Panimold = α · v0′+β · v1′+ γ · v2′+d(α,β,γ) · (α ·n0′+β ·n1′+ γ ·n2′)
= (α · v0 ·Ma0 +β · v1 ·Ma1 + γ · v2 ·Ma2 )+

= d(α,β,γ) · (α ·n0 ·Ma0 +β ·n1 ·Ma1 + γ ·n2 ·Ma2 )

(5)

Note that the original DMM definition adds base offsets and bi-
ases, but these are ignored here for illustration purposes. Equation 5
shows that interpolated normals do not get normalized in the con-
text of DMMs. There is also, in the context of micro-vertex com-
pututation, no need to use an the inverse transposed of the skin-
ning matrix to transform the normal. This allows the tessellation-
free algorithm for ray tracing standard DMMs to bound the micro-
geometry in a nested series of triangular bilinear prismoids. We de-
scribe this in more detail in Section 6 and Section 7. Normalization
does not change the direction of an interpolated normal but influ-
ences the magnitude of displacements only. Thonat et al. [TBS∗21]
use normalized interpolated normals and thus need to employ a
more complicated algorithm and more complex computations for
bounding volumes using affine arithmetic [dFS04]. We strive to
stay as close as possible to standard DMMs and do not normal-
ize interpolated normals. This allows us to directly consume the
compressed data blocks that DMMs use without any change.

As described in Section 1, using LBS on the DMM base mesh
positions and normals only, can result in artefacts during animation

as shown in Figure 1b. These artefacts can affect internal and exter-
nal silhouettes of animated objects. The use of the resulting micro-
triangles to compute tangent frames or micro-triangle normals can
result in shading artefacts as shown in Figure 1b.

Before we describe our new approach to skinning animated
DMMs we summarize the current state-of-the-art in Figure 4

Now we describe our new approach to skin an animated DMM,
as shown in Figure 5. Our approach follows a novel and different
path:

1. We reconstruct the micro-triangles of the DMM in the rigging
pose they were created from. This produces an almost artefact-
free reconstruction of the original high detail object.

2. We implicitly and automatically assign bone matrices and
weights to micro-vertices introduced at predefined barycentric
coordinates during DMM surface reconstruction. Instead of
using barycentric interpolation of the transformed DMM
base vertices and normals at the barycentric coordinates of a
micro-vertex, we use a barycentric interpolation of the animated
accumulated transformation matrices (see Equation 6) Ma0 ,
Ma1 and Ma2 from Equation 1.

3. We apply the resulting interpolated matrix to the reconstructed
micro-vertex in the rigging pose’s base mesh vertices and nor-
mals.

In general, using interpolated animation matrices is not advis-
able when matrices contain rotations. In the context of skinning for
video game characters this is tolerable because of two reasons: first,
the weights and matrices have been crafted by human animators for
a range of relevant motions and second, the matrices, which are typ-
ically derived from quaternion interpolation [Han12], are sampled
with small intermediate time intervals. In most cases the three ver-
tices of a DMM base mesh share a common set of matrices with
similar weights. As the skinning matrices are considered well be-
haved and valid for animating the DMM base mesh, we can assume
that the interpolated matrix over the base triangle domain is valid
as well. In Section 4 we will show that the interpolation can be
considered as the sweeping of a quadratic surface.

Given the three accumulated matrices Ma0 , Ma1 and Ma2 for the
three base mesh vertices v0, v1 and v2 (see Equation 1), the inter-
polated matrix Mi(α,β,γ) is computed by:

© 2024 Eurographics - The European Association
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Figure 5: Our new method interpolates skinning matrices and skins each micro-vertex using their barycentric coordinates α, β and, γ to
create a unique skining matrix.

(a) (b) (c) (d)
Figure 6: (a) A degree-two triangular Bézier patch and it’s control points x200, x020, x002, x110, x011 and x101. (b) Grey base surface patch
and green normals patch. (c) Sum of base surface patch (grey) and normals (red) produces the (green) surface patch. (d) Scaling normals
with (scalar) displacements results in a modified displaced green patch.

Mi(α,β,γ) = α ·Ma0 +β ·Ma1 + γ ·Ma2 (6)

The final vertex Panimnew is now derived by applying Mi(α,β,γ)
to the interpolated and displaced vertex of the original base mesh
(see Equation 7). This method makes sure that the reconstructed
micro-vertex is valid by using the original DMM algorithm to com-
pute its position.

Panimnew (α,β,γ) =(α · v0 +β · v1 + γ · v2) ·Mi(α,β,γ)+

d(α,β,γ) · (α ·n0 +β ·n1 + γ ·n2) ·Mi(α,β,γ)
(7)

It is possible to rewrite Equation 7 to show that animated po-
sitions in our new scheme can be written as the sum of the two
surfaces Panim_pos and Panim_normal (Equation 8). Relying on matrix
interpolation for computing the final DMM micro-vertex provides
consistent results, thereby removing almost all artefacts on silhou-
ettes as seen before (see Figure 1d).

Panimnew (α,β,γ) = Panim_pos(α,β,γ)+ d(α,β,γ) ·Panim_normal(α,β,γ) (8)

As shown in in Figure 1c it is possible to use our method to
compute improved micro-triangle tangent frames and normals but
to not affect the geometry of the animated DMM. This approach

does not lead to improved silhouettes but has the benefit of using an
existing DMM ray tracing pipeline with improved tangent frames
and normals.

4. A Bézier form for Animated Displaced Micro Meshes

For rasterization, Equation 7 can be easily implemented using e.g.,
programmable mesh shaders [Mic19b]. Ray tracing DMMs ani-
mted by our new scheme, however, requires efficient computa-
tion of three-dimensional bounding volumes of DMM sub-regions
given a two-dimensional range in the barycentric parameter do-
main. In this section, we analyze how to rewrite Equation 8 in order
to efficiently obtain tight bounding volumes for animated DMMs
and DMM sub-regions. In the following we define an animated
DMM patch as the animated micro-poly surface that a DMM cre-
ates when it is skinned or animated by a barycentric blend of three
skinning or animation matrices. An animated DMM patch is de-
fined by three base mesh vertices, normals and a hierarchy of dis-
placements.

Expanding the first part of Equation 8 (interpolation of animated
base mesh positions) yields:

Panim_pos(α,β,γ) =α
2 · v0 ·Ma0 +β

2 · v1 ·Ma1 + γ
2 · v2 ·Ma2+

α · γ · (v2 ·Ma0 + v0 ·Ma2 ))+

α ·β · (v1 ·Ma0 + v0 ·Ma1 )+

β · γ · (v2 ·Ma1 + v1 ·Ma2 )

(9)

© 2024 Eurographics - The European Association
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A quadratic triangular Bézier patch can be written as shown in
Equation 10. Its six control points x200, x020, x002, x110, x011 and
x101 are placed along the border curves (see Figure 6a).

P(α,β,γ) =α
2 · x200 +β

2 · x020 + γ
2 · x002+

2 ·α ·β · x110 +2 ·β · γ · x011+

2 ·α · γ · x101

(10)

Comparing Equations 9 and 10 shows that we can write Equa-
tion 9 as a quadratic triangular Bézier patch. The control points of
this patch are given by:

x200 = v0 ·Ma0

x020 = v1 ·Ma1

x002 = v2 ·Ma2

x110 =
v1 ·Ma0 + v0 ·Ma1

2

x011 =
v2 ·Ma1 + v1 ·Ma2

2

x101 =
v2 ·Ma0 + v0 ·Ma2

2

(11)

Relying on the properties of triangular Bézier patches [Far02]
allows for bounding a patch by looking solely at the convex hull
spawned by the patch’s control points; any bounding volume which
bounds the control points also bounds the patch itself.

Equations 10 and 11 can be used in the same way to compute
the interpolated normal, just replacing vi by ni. As we have seen
in Equation 8, we can express the animated DMM by evaluat-
ing two quadratic triangular Bézier patches Panim_pos(α,β,γ) and
Panim_normal(α,β,γ).

Note that only using Equation 9 without any displacements al-
ready acts like as a smoothing operator on the base mesh similar
to [BA08] as shown in Figure 7.

(a) (b) (c)
Figure 7: (a) A close-up of the left knee of the frog model’s
DMM base mesh during animation without DMM displacements.
(b) Same close-up but micro-triangle vertices are computed using
Equation 9 - again without DMM displacements. (c) Same close-up
but micro-triangle vertices are computed using Equation 7 which
uses the DMM displacements.

5. Computing Efficient Bounding Volumes

Computing the DMM displacements includes hierarchical subdi-
vision of each the base mesh triangle in a 4 : 1 fashion. As shown
in Equation 8, an animated DMM can be written as the sum of
one triangular Bézier patch and a displacement scaled second

triangular Bézier patch. Using Equation 11 and the minimum and
the maximum displacement for a given DMM base mesh triangle,
two new surfaces Pmin and Pmax can be defined (see Figure 8):

Figure 8: (Blue) minimum patch Pmin (Equation 12), (green) maxi-
mum patch Pmax (Equation 12) encapsulate the (grey) displaced an-
imated DMM Panim over one base mesh triangle (Equation 10). Red
arrows illustrate base position displacement direction by Pnormal.

Pmin/max = Ppos_anim(α,β,γ)+dmin/max ·Pnormal_anim(α,β,γ) (12)

All possible micro vertices of an animated DMM are guaran-
teed to be contained within the curved prism spawned by Pmin and
Pmax. Due to Equation 11, the convex hull of the combined 12 con-
trol points (Equation 13) of Pmin and Pmax (6 control points each)
conservatively bounds the curved prism and therefore bounds the
animated DMM itself.

x200min/max = (v0 +dmin/max ·n0) ·Ma0

x020min/max = (v1 +dmin/max ·n1) ·Ma1

x002min/max = (v2 +dmin/max ·n2) ·Ma2

x110min/max =
(v1 +dmin/max ·n1) ·Ma0 +(v0 +dmin/max ·n0) ·Ma1

2

x011min/max =
(v2 +dmin/max ·n2) ·Ma1 +(v1 +dmin/max ·n1) ·Ma2

2

x101min/max =
(v2 +dmin/max ·n2) ·Ma0 +(v0 +dmin/max ·n0) ·Ma2

2

(13)

We chose to construct an oriented bounding box (OBB) from the
control points from Equation 13. This bounding box is used in the
following as a bounding volume for ray intersection testing. We
construct our OBB in a similar way as described in [MHTAM10]
but adapt their method to triangular Bézier patches.

6. Ray Tracing Animated Displaced Micro Meshes

Similar to [TBS∗21] our approach for ray tracing an animated
DMM patch relies on traversing an implicit quad tree of bound-
ing volumes generated by recursive DMM patch subdivision. An
animated DMM patch subdivision step produces four sub-patches,
hence the quad-tree structure. The bounding volumes of these sub-
DMMs are computed on-the-fly without any explicit tessellation
involved. In the following we will provide a more detailed descrip-
tion of all steps required.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



8 of 15 H.Gruen, C. Benthin, A. Kensler, J. Barczak, D. McAllister / Ray Tracing Animated Displaced Micro-Meshes

(a) (b)
Figure 9: (a) Quadratic Bézier triangle with three border curves.
(b) A 1 : 4 subdivision step produces four children, each one a
degree-two Bézier triangle, resulting in nine border curves total.

(a) (b)
Figure 10: (a) The three (red, green and blue) unclipped border
curves for an arbitrary subpatch. (b) The clipped curves that form
the actual subpatch.

If a ray is found to intersect an animated DMM patch’s (ori-
ented) bounding box, its four new sub-patches (see Figure 9) get
computed. For each sub-patch, an oriented bounding box is cre-
ated. Then each sub-patch is processed recursively. We can op-
tionally sort the boxes based on the distance of their center to the
starting point of the ray to facilitate a front-to-back inspired traver-
sal order. Note that other and more elaborate sorting algorithms
could be used. The recursion continues until the subdivision level
is deep enough to switch to micro-triangle testing. At that point ray-
triangle intersection tests are used to test the ray against the (ani-
mated) micro-triangles. As our method for bounding DMM patches
relies on quadratic Bézier patches, we need to be able to compute
Bézier sub-patches at each subdivision level. Instead of keeping a
stack of patches for recursive splitting, we compute the required
Bézier subpatches and their border curves directly from the top
level patches.

Figure 10a shows the three unclipped degree-two border curves
that form the borders of a subpatch inside a degree-two triangular
Bézier patch. Figure 10b shows the clipped curves that fully define
the subpatch. For each of the three border curves we start by com-
puting the coefficients of the full curves as shown in Figure 10a.
Next we offset the starting point of each curve and reparameterize
it to only run the length of a border curve for the required sub-

division level. In a final step we convert the three curves, each rep-
resented by three polynomial coefficients a, b and c, back to Bézier
form. Rewriting a quadratic polynomial at2 +bt +c in Bézier form
(1− t)2cp0 + 2(1− t)t p1 + t2cp2 yields cp0 = c, cp1 = 0.5b+ c
and cp2 = a+ b+ c. This allows us to compute the control points
of the subpatch. Note that it is also possible to compute Bézier con-
trol points for the curves in Figure 10a and to then use blossom
notation (see [Far02]) to directly compute the Bézier control points
of the clipped curves.

We can now summarize the tessellation-free ray tracing algo-
rithm in Algorithm 1. The entry point to raytrace an animated
DMM patch is RAYTRACEANIMATEDDMM. This function takes
a ray, an array of three base mesh vertices, an array of three nor-
mals and an array of three accumulated animation matrices as in-
puts. First it computes the control points of top-level position and
normal patch Pnormal and Pposition from Equation 10. It then uti-
lizes a precomputed hierarchy of minimum and maximum displace-
ments (see Figure 11) to create the control points of Pmin and Pmax
(see Equations 12 and 13) and computes a bounding box for the
whole DMM. Next it iterates over the four sub-patches of Pnormal
and Pposition. Using the precomputed hierarchy of minimum and
maximum displacements, a bounding box is created for each sub-
patch. Here each subpatch is computed directly from the top-level
patches. Bounding boxes are sorted to prioritize bounding boxes
closer to the origin of the ray. Then RAYTRACESUBPATCH is called
to recursively handle the intersection of each animated DMM sub-
patch with the ray. The function computeSubPatch utilizes a run-
ning count of visited subpatches and combines this with the index
of the current subpatch and its subdivision levels to compute the
subpatch from Figure 10b.

Algorithm 1 shows that the algorithm structure for ray tracing
animated DMMs using our interpolated matrix approach is roughly
similar to the structure of a tessellation-free algorithm for ray trac-
ing static DMMs (see Algorithm 2). Algorithm 2 also relies on a
precomputed hierarchy of minimum and maximum displacements
and recursively splits a static DMM base triangle using a 1 : 4 sub-
division scheme (Figures 12b and 12c). In the static case, the DMM
is within the volume of a triangular bilinear prismoid [MMT23]

Figure 11: Building a triangular min/max displacement hierarchy
starting at mip2 at the right. The mip2 min/max displacements from
subtriangles with IDs 0−3, 4−7, 8−11 and 12−15 get combined
for subtriangles with IDs 0, 1, 2 and 3 at mip1. In the next step
min/max displacements from subtriangles with IDs 0− 3 at mip1
get combined to compute the min/max displacements of a base mesh
triangle at mip0.

© 2024 Eurographics - The European Association
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(a) (b) (c)
Figure 12: (a) Triangular bilinear prismoid that bounds a static DMM. (b) Static DMM base triangle along with the three barycentric axis
α, β and γ. (c) Base triangle is split into four sub-triangles.

(see Figure 12a). After splitting a uv-space triangle 1 : 4 (see Fig-
ures 12b and 12c), the algorithm recursively constructs and tests
each triangular bilinear sub-prismoid. Note that both algorithms,
for simplicity, omit details about fetching and applying additive hi-
erarchical DMM displacements.

7. Results and Discussion

For our evaluation, we used a prototype DXR [Mic20] application
which implements Algorithm 1 as an intersection shader [Mic19a].
All tests were conducted on an AMD® Radeon™ 7900 XT GPU
and Windows 11.

Our approach for ray tracing animated DMMs object consists
of three steps. In the first step, a GPU compute pass stores the ac-
cumulated weighted skinning matrices (as defined by the current
animation pose - see Equation 1) for each object (comprised of ani-
mated DMMs) and all its DMM patches to a GPU buffer. The same
GPU pass computes the AABB of each DMM patch’s twelve con-
trol points (minimum and maximum patch, see Figure 8) and stores
these AABBs to a separate GPU buffer. In the second step, one
bottom-level acceleration structure (BLAS) for each object com-
prised of animated DMMs is built. Each BLAS contains all the
patch AABBs of its object. Next, a top-level acceleration structure
over the objects’ BLAS structures is built. In the final step, rays
are generated and dispatched to render the animated DMM model.
Note that a full BLAS rebuild is not always necessary, instead a
faster BLAS refit is often sufficient for animated game assets.

We evaluate three animated objects (see Figure 13) with vary-
ing complexity and animations. Our approach (bottom row) in Fig-
ure 13 does not show the artefacts seen in regular animated DMMs
(middle row). For performance comparison, we have implemented
a tessellation-free ray tracing algorithm (see Algorithm 2) for static
DMMs. This approach uses a 1 : 4 subdivision scheme on triangu-
lar prisms and is used as the performance baseline. It follows a flow
that is similar to Algorithm 1 but instead of subdividing degree-two
triangular Bézier patches it uses planar subdivision. Starting at a
base mesh triangle, a maximum bounding triangle (see green tri-
angle in Figure 12a) and a minimum bounding triangle (see blue

Frog Hell Hound Octopus
Subdivision Level=3

Our Approach 2.75 6.61 4.05
Static DMM 1.17 2.55 1.84

Subdivision Level=4
Our Approach 3.84 8.71 6.20
Static DMM 1.56 3.80 2.61

Table 1: Rendering time (ms) comparison between our approach
and ray tracing static DMMs (primary rays only, full HD reso-
lution) for subdivision levels 3 and 4. Due to higher algorithmic
complexity and register pressure, our approach has ∼ 2.3− 2.5×
higher ray tracing costs than regular ray tracing of static DMMs.

triangle in the Figure 12a) are computed. If the ray intersects the
bounding box of the triangular prism, defined by the minimum and
the maximum bounding triangle, the triangle is subdivided into four
sub-triangles and four sub-prisms. These sub-prisms get recursively
tested until the algorithm reaches the level of micro-triangles. Note,
that in our algorithms (Algorithm 1 and 2) we, for brevity’s sake,
ignore the multi-resolution nature of- and watertightness concerns
between neighboring DMMs with non-uniform subdivisions levels.

The accumulated skinning matrices at each vertex of the DMM
base mesh are only needed when we compute control points of
quadratic patches from Equation 10. We need the matrices during
BLAS construction to compute the control points of the minimum
and maximum Bézier patches for the animated DMM over each
base mesh triangle (see Figure 8). These control points are used
to compute the bounding volumes (AABBs in our implementation)
of each animated DMM patch. Whenever we detect that a ray en-
ters such a bounding volume, the matrices are used to compute the
Bézier control points as shown in Algorithm 1. In our prototype im-
plementation, an intersection shader gets invoked when the AABB
of a DMM over a base triangle is hit. The intersection shader then
recomputes the accumulated skinning matrices for the three base
triangle vertices. The final interpolated matrix is then used for Al-
gorithm 1. This means that we do not need to store accumulated
skinning matrices for the whole frame, deferring it until BLAS con-
struction. As we use a single AABB to bound each animated DMM

© 2024 Eurographics - The European Association
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Figure 13: (Top row) Original high resolution models: frog (∼400k triangles), hell hound (∼362k triangles), and octopus (∼153k triangles)
animated through skinning. (Middle row) Standard animated displaced micro meshes: frog (∼6k base triangles), hell hound (∼5.7k base
triangles), and octopus (∼5.9k base triangles) show geometry and normal artefacts when animated. (Bottom row) Our interpolated matrix
approach shows virtually no artefacts.

© 2024 Eurographics - The European Association
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base triangle, BLAS construction and refit times are roughly pro-
portional to the number of triangles in the DMM base mesh.

Table 1 shows a rendering time comparison between our ap-
proach (Algorithm 1) and ray tracing static DMMs (Algorithm 2).
Due to the higher algorithmic complexity and higher GPU shader
register pressure, our approach is ∼ 2.3−2.5× slower

8. Conclusion and Future Work

Our proposed approach removes geometric and lighting artefacts
for animated DMMs by interpolating (vertex-based) transformation
matrices first and using the result to transform DMM vertex and
normal data. This retains the main benefits of DMMs in the context
of animation: their compact representation and low BVH construc-
tion complexity. Our current implementation of the ray DMM in-
tersection algorithm (see Algorithm 1) is ∼ 2.3−2.5× slower than
a similar implementation for static DMMs (see Algorithm 2).

Skinned objects can have regions that deform mostly rigidly. For
these regions it may be beneficial to only animate (skin) base mesh
vertices and normals and to use Algorithm 2 to test for ray inter-
sections. In the future we would like to investigate how to best
handle animated objects that are ray traced by a combination of
Algorithm 1 and Algorithm 2 depending on how different regions
deform during animation. Note that static level of detail across an
object comprised of DMMs is supported by Algorithm 1 and 2. Wa-
tertightness between DMMs with non-uniform subdivision levels is
currently not supported and is planned as future work. Along with
support for non-uniform subdivision we’d further investigate how
to tailor mesh simplification during DMM construction to gener-
ate a DMM base mesh with a higher triangle count in regions that
undergo strong deformations in a given animation sequence.
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Algorithm 1 Tessellation-free ray tracing of animated DMMs
1: function CREATEDMMORIENTEDBOUNDINGBOX(base_vertices[3], base_normals[3], accum_matrices[3], i[0..4], level)
2: minD,maxD← getMinMaxDisplacements(level, i[0..4]) ▷ get min/max displ. from the top of the hierarchy
3: pmins, pmaxs← computeMinMaxControlPoints(base_vertices,base_normals,accum_matrices,minD,maxD) ▷ Equation 13
4: return CreateOrientedBoundingBox(pmins, pmaxs)
5: end function
6: function RAYTRACESUBPATCH(ray, bbox, TopLevelPositionPatch, TopLevelNormalPatch, accum_matrices[3], level, i[0..4])
7: if intersects(ray,bbox) then
8: i[level]← 0
9: while i[level] ̸= 4 do

10: minD,maxD← getMinMaxDispl(level, i[0..4]) ▷ get displ. from min/max hierarchy
11: PositionPatch← computeSubPatch(TopLevelPosPatch, level, i[0..4]) ▷ Figure 9
12: NormalPatch← computeSubPatch(TopLevelNormalPatch, level, i[0..4]) ▷ Figure 9
13: pmin[0..11]← computePatchControlPoints(PositionPatch.vs,NormalPatch.vs,accum_matrices,minD) ▷ Equation 11
14: pmax[0..11]← computePatchControlPoints(PositionPatch.vs,NormalPatch.vs,accum_matrices,maxD) ▷ Equation 11
15: bbox[i]← createOrientedBoundingBox(pmin, pmax)
16: i[level]← i[level]+1
17: end while
18: idx[0..3]← sortBoxes(ray,bbox[0..3]) ▷ sort e.g., by distance from ray origin
19: i[level]← 0
20: while i[level] ̸= 4 do
21: if level ≥MAX_SUB_DIV then
22: raytraceSubPatch(ray,bbox[idx[i]],TopLevelPPatch,TopLevelNPatch,accum_matrices[0..2], level +1, i[0..4])
23: else
24: raytraceAnimatedMicroTriangle(ray,accum_matrices[0..2], i[0..4],TopLevelPositionPatch,TopLevelNormalPatch) ▷ Algorithm 3
25: end if
26: i[level]← i[level]+1
27: end while
28: end if
29: end function
30: function RAYTRACEANIMATEDDMM(ray, base_verts[0..2], base_normals[0..2], accum_matrices[0..2] )
31: i[0..4]← 0
32: level← 0
33: TopLevelPositionPatch← computeTopLevelPatchControlPoints(base_verts,accum_matrices) ▷ Equation 11
34: TopLevelNormalPatch← computeTopLevelPatchControlPoints(base_normals,accum_matrices) ▷ Equation 11
35: bbox = createDMMOrientedBoundingBox(TopLevelPositionPatch,TopLevelNormalPatch)
36: if intersects(ray,bbox) then
37: while i[0] ̸= 4 do
38: minD,maxD← getMinMaxDispl(l, i[0..4]) ▷ get min/max displ. from hierarchy
39: PositionPatch← computeSubPatch(TopLevelPositionPatch, i[0..4],0) ▷ Figure 9
40: NormalPatch← computeSubPatch(TopLevelNormalPatch, i[0..4],0) ▷ Figure 9
41: pmin[0..11]← computePatchControlPoints(PositionPatch,NormalPatch,matrices,minD) ▷ Equation 11
42: pmax[0..11]← computePatchControlPoints(PositionPatch,NormalPatch,matrices,maxD) ▷ Equation 11
43: bbox[i]← createBoundingOrientedBoundingBox(pmin[0..11], pmax[0..11])
44: i← i+1
45: end while
46: idx[0..3]← sortBoxes(ray,bbox[0..3]) ▷ sort e.g., by distance from ray origin
47: i← 0
48: while i ̸= 4 do
49: raytraceSubPatch(ray,bbox[idx[i]],TopLevelPositionPatch,TopLevelNormalPatch,accum_matrices[0..2], level +1, i[0..4])
50: i← i+1
51: end while
52: end if
53: end function
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Algorithm 2 Tessellation-free ray tracing of static DMMs
1: function CREATETOPMOSTPRISM(skinned_base_vertices, skinned_base_normals)
2: i[0..4]← 0
3: minD,maxD← getMinMaxDisplacements(0, i[0..4]) ▷ min/max displ. from hierarchy
4: vmax[0..2]← computeDisplacedTriangle(skinned_base_vertices, skinned_base_normals,maxD) ▷ top of prism
5: vmin[0..2]← computeDisplacedTriangle(skinned_base_vertices, skinned_base_normals,minD) ▷ bottom of prism
6: return prism( vmin,vmax )
7: end function
8: function RAYTRACESUBPRISM(ray, skinned_base_verts, skinned_base_normals, prism, level, i[0..4])
9: minD,maxD← getMinMaxDisplacements(level, i[0..4]) ▷ min/max displ. from hierarchy

10: vmin[0..2]← computeDisplacedTriangle(prism,minD) ▷ top of prism
11: vmax[0..2]← computeDisplacedTriangle(prism,maxD) ▷ bottom of prism
12: bbox← createBoundingBox(vmin,vmax) ▷ AABB or OBB
13: if intersects(ray,bbox) then
14: SubPrisms[0..3]← splitPrism(prism) ▷ 4 sub-prisms
15: SubPrisms[0..3]← sortPrisms(ray,SubPrisms[0..3]) ▷ sort by distance from ray origin
16: i[level]← 0
17: while i[level] ̸= 4 do
18: if level ≥MAX_SUB_DIV then
19: raytraceSubPrism(ray, skinned_base_verts, skinned_base_normals,SubPrisms[i], level +1, i[0..4])
20: else
21: raytraceMicroTriangle(ray, skinned_base_verts, skinned_base_normals, i[0..4]) ▷ Algorithm 4
22: end if
23: i[level]← i[level]+1
24: end while
25: end if
26: end function
27: function RAYTRACESTATICDMM(ray, skinned_base_verts, skinned_base_normals )
28: i[0..4]← 0
29: level← 0
30: prism← createTopMostPrism(skinned_base_verts, skinned_base_normals)
31: bbox = createBoundingBox(prism) ▷ AABB or OBB
32: if intersects(ray,bbox) then
33: SubPrism[0..3]← splitPrism(prism)

34: SubPrism[0..3]← sortPrisms(ray,SubPrisms[0..3]) ▷ sort by distance from ray origin
35: i[0..4]← 0
36: while i[0] ̸= 4 do
37: raytraceSubPrism(ray,SubPrism[i], level, i[0..4])
38: i[0]← i[0]+1
39: end while
40: end if
41: end function
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Algorithm 3 Ray-trace an animated micro-triangle
1: function RAYTRACEANIMATEDMICROTRIANGLE(ray, i[0..4], TopLevelPositionPatch, TopLevelNormalPatch )
2: uv[0..2],displacements[0..2]← computeMicroTriangleUV sandDisplacements(i[0..4])
3: micro_triangles_vert0← computeInterpolatedPosition(TopLevelPositionPatch,uv[0])
4: micro_triangles_vert1← computeInterpolatedPosition(TopLevelPositionPatch,uv[1])
5: micro_triangles_vert2← computeInterpolatedPosition(TopLevelPositionPatch,uv[2])
6: micro_triangles_normal0← computeInterpolatedNormal(TopLevelNormalPatch,uv[0])
7: micro_triangles_normal1← computeInterpolatedNormal(TopLevelNormalPatch,uv[1])
8: micro_triangles_normal2← computeInterpolatedNormal(TopLevelNormalPatch,uv[2])
9: micro_triangles_vert0← micro_triangles_vert0+displacement[0]∗micro_triangles_normal0

10: micro_triangles_vert1← micro_triangles_vert1+displacement[1]∗micro_triangles_normal1
11: micro_triangles_vert2← micro_triangles_vert2+displacement[2]∗micro_triangles_normal2
12: matrix0← computeInterpolatedMatrix(accum_matrices[0..2],uv[0])
13: matrix1← computeInterpolatedMatrix(accum_matrices[0..2],uv[1])
14: matrix2← computeInterpolatedMatrix(accum_matrices[0..2],uv[2])
15: micro_triangles_vert0← micro_triangles_vert0∗matrix[0]
16: micro_triangles_vert1← micro_triangles_vert1∗matrix[1]
17: micro_triangles_vert2← micro_triangles_vert2∗matrix[2]
18: return raytraceTriangle(ray, micro_triangles_vert0, micro_triangles_vert1, micro_triangles_vert2)
19: end function

Algorithm 4 Ray-trace a micro-triangle
1: function RAYTRACEMICROTRIANGLE(ray, skinned_base_verts[0..2], skinned_base_normals[0..2], i[0..4] )
2: uv[0..2],displacements[0..2]← computeMicroTriangleUV sandDisplacements(i[0..4])
3: micro_triangles_vert0← computeInterpolatedPosition(skinned_base_verts[0..2],uv[0])
4: micro_triangles_vert1← computeInterpolatedPosition(skinned_base_verts[0..2],uv[1])
5: micro_triangles_vert2← computeInterpolatedPosition(skinned_base_verts[0..2],uv[2])
6: micro_triangles_normal0← computeInterpolatedNormal(skinned_base_normals[0..2],uv[0])
7: micro_triangles_normal1← computeInterpolatedNormal(skinned_base_normals[0..2],uv[1])
8: micro_triangles_normal2← computeInterpolatedNormal(skinned_base_normals[0..2],uv[2])
9: micro_triangles_vert0← micro_triangles_vert0+micro_triangles_normal0∗displacement[0]

10: micro_triangles_vert1← micro_triangles_vert1+micro_triangles_normal1∗displacement[1]
11: micro_triangles_vert2← micro_triangles_vert2+micro_triangles_normal2∗displacement[2]
12: return raytraceTriangle(ray, micro_triangles_vert0, micro_triangles_vert1, micro_triangles_vert2)
13: end function
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