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Figure 1: Left: Rendered image. Middle: Visualization of object IDs (color) and their coverages (brightness) that are generated using our
method for glossy reflections. Note that indirect visibility is captured on the water surface. Right: Re-coloring using the IDs and coverages
after rendering.

Abstract
Multi-fragment rendering provides additional degrees of freedom in postprocessing. It allows us to edit images rendered with
antialiasing, motion blur, depth of field, and transparency. To store multiple fragments, relationships between pixels and scene
elements are often encoded into an existing image format. Most multi-fragment rendering systems, however, take into account
only directly visible fragments on primary rays. The pixel coverage of indirectly visible fragments on reflected or refracted rays
has not been well discussed. In this paper, we extend the generation of multiple fragments to support the indirect visibility in
multiple bounces, which is often required by artists for image manipulation in productions. Our method is compatible with an
existing multi-fragment image format such as Cryptomatte, and does not need any additional ray traversals during path tracing.

CCS Concepts
• Computing methodologies → Image manipulation; Ray tracing;

1. Introduction

Multi-fragment rendering [VVP20] has been studied for a large va-
riety of applications such as order-independent transparency and
antialiasing. It is also applicable to matte generation with an ar-
bitrary combination of objects. This is achieved by storing the
pair of an object identifier (e.g., object ID and material ID) and
it’s coverage for each pixel into an image format such as Cryp-
tomatte [Psy15]. To handle multiple fragments in a single pixel,
most of the existing works focused only on directly visible frag-
ments on primary rays for antialiasing, transparency, and perfectly
specular reflections or refractions. However, a matte image for ob-
jects reflected or refracted on glossy surfaces is often required for
composition and re-coloring in productions. Without such infor-
mation of indirectly visible fragments, we cannot capture objects
through multiple glossy bounces in a post process (see Fig. 5b).

In this paper, we present an efficient method to generate frag-

ments scattered from glossy (or perfectly specular) surfaces that
fragments can be represented as multi-fragment image formats
such as Cryptomatte. To compute the coverage for each identifier
in multiple glossy bounces, we introduce a weighting function for
the coverage to attenuate the visibility according to the diffusion
of rays. We also present our GPU implementation that stores frag-
ments in a fixed-size storage considering the priority of fragments.
Using our method, we are able to obtain a matte image for glossy
reflections and refractions as shown in Fig. 1. To summarize, the
contributions of this paper are as follows.

• We introduce a computation method for fragment coverage in
multiple bounces using a weighting function (§ 3.1).

• We present a practical weighting function that penalizes the cov-
erage of a fragment with less visibility of object details (§ 3.2).

• This paper also describes the implementation details of our cov-
erage update process on the GPU (§ 4).
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2. Related Work

The seminal work regarding multiple depth fragments was A-
buffer [Car84]. Saito and Takahashi [ST90] discussed an exten-
sion of the A-buffer for reflections and refractions to render con-
tour lines in postprocessing. For a comprehensive survey of multi-
fragment rendering techniques and applications, we refer the reader
to Vasilakis et al. [VVP20]. To store generated multiple fragments
into a file, Cryptomatte represents a fragment with the pair of an
object identifier (ID) and coverage for each pixel, and then stores
these ID–coverage pairs into an arbitrary number of color compo-
nents [FJ15]. In this paper, we use this Cryptomatte format to store
our multiple fragments generated for glossy bounces.

3. Multi-fragment Rendering for Glossy Bounces

Since visual details of reflected or refracted objects can be lost by
the diffusion of rays, fragments on such scattered rays have often
been ignored in multi-fragment rendering. Instead of fully ignoring
such fragments, we store them by reducing the coverage according
to the amount of diffusion.

3.1. Our Coverage Computation

The coverage of a fragment is the percentage of rays not passing
through the surface. In this paper, we treat a glossy bounce as a
passing through while reducing the amount of the passage accord-
ing to the diffusion of rays. We propose to obtain this coverage by
a recursive form similar to the rendering equation as follows:

Ci(x,ω) =Hi(x)
(

1−
∫

Ω

W (x,ω,ω′) f (x,ω,ω′)(ω′ ·n)dω
′
)
+∫

Ω

Ći(x,ω′)W (x,ω,ω′) f (x,ω,ω′)(ω′ ·n)dω
′, (1)

where Ci(x,ω) is the output coverage for object identifier i, x is
the surface position, ω is the view direction, Hi(x) is the hit of
the object identifier: Hi(x) = 1 if the identifier at x is i otherwise
Hi(x) = 0, ω

′ is the incoming direction, n is the surface normal,
f (x,ω,ω′) is the BSDF, and W (x,ω,ω′) is a weighting function to
reduce the amount of the passing through. Ći(x,ω′) is the incoming
coverage for each identifier that is computed recursively. The first
term of Eq.1 is the percentage of rays not passing though for the ob-
ject identifier i, while the second term is the rest of the percentage
for i. We solve this equation using a Monte Carlo integration simul-
taneously with the pixel color in path tracing as we wrote Eq. 1 in
a similar form to the rendering equation. Since the number of iden-
tifiers can be large, we compute coverages only for hit identifiers
during path tracing.

We can express the existing work that ignores glossy bounces as
a special case of our form by setting a step function as a weight-
ing function: W (x,ω,ω′) = 1 if f (x,ω,ω′) = ∞ due to a delta
function (e.g., transparent or perfect specular surfaces) otherwise
W (x,ω,ω′) = 0. In this paper, we introduce a new continuous
weighting function W (x,ω,ω′) ∈ [0,1] for glossy surfaces.

3.2. Weighting Function for Glossy Surfaces

The weighting function reduces the contribution of the incoming
coverage Ći as details of reflected or refracted objects are lost by

ν1

ν2

ν3

(a) Scattered rays due to BSDFs

Ray cone without the spread
due to the BSDF

Our BSDF-based spread

Glossy surface

(b) Spread of our ray cones

Figure 2: (a) Scattering of rays in multiple bounces. The variance
of rays increases due to the BSDF at every bounce. (b) Spread of
our ray cones on a glossy surface. The red-dot cone simulates a
perfect specular reflection case, while the solid-blue cone indicates
the spread of our ray cone based on the variance of the BSDF.

the BSDF. Blurring due to glossy surfaces does not depend only
on the BSDF but also the distance. Therefore, we use a weighting
function based on the spread of ray cones [ACB*21]. The growth of
the cone spread is based on the surface curvature and the variance
of the BSDF. We use a ratio with and without the BSDF variance
at the bounce to measure the loss of object details for each bounce
as shown in Fig. 2b.

The variance of rays increases according to the product of a
BSDF variance and the squared ray distance from the path vertex
of the BSDF. In multiple bounces as illustrated in Fig. 2a, a ray
variance at m-th bounce caused by a BSDF is given as ν

2
j(∑

m
k= j tk)

2

where ν
2
j is the BSDF variance at the j-th bounce, and tk is the ray

distance at the k-th bounce. Thus, the ray variance caused by all the
BSDFs σ

2
m is given by the total of them:

σ
2
m =

m

∑
j=0

ν
2
j

(
m

∑
k= j

tk

)2

. (2)

However, this variance calculation is computationally expensive.
Therefore, we first roughly approximate the square of the total
distance with the total of squared distances as follows: σ

2
m ≈

∑
m
j=0 ν

2
j ∑

m
k= j t2

k . Then, for ease of computation during path tracing,
we equivalently rewrite it in the following recursive form:

σ
2
m+1 ≈ σ

2
m + t2

m

m

∑
j=0

ν
2
j . (3)

Although the approximation error of σ
2
m can increase if the bounce

count m is high and BSDF variance at an earlier bounce ν j is high,
this error has little effect on the resulting coverage. This is because
we reduce the coverage at subsequent bounces based on the ray
variance at earlier bounces with less approximation errors. Unlike
Akenine-Möller et al. [ACB*21], we calculate the BSDF variance
ν

2
j based on the PDF p j of the BSDF to consider the directionally

varying variance. Then, we represent this variance as the angle θ

of our ray cone. Since the inverse of the PDF is a solid angle, the
cone angle θ is given by the unit spherical cap: min(1/p j,2π) =

2π(1− cosθ). Thus, we obtain the tangent-space variance ν
2
j :

2ν
2
j = tan2

θ =
1(

1−min
(

1
2πp j

,1
))2 −1. (4)

Therefore, the ratio of the cone-area spread due to the BSDF is
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∝ r̂m

∝ rm

∝ max
(
r2

m, r̂
2
m
)
+σ2

m−1 + t2
m−1 ∑

m−2
j=0 ν2

j

∝ max
(
r2

m, r̂
2
m
)
+σ2

m

Glossy concave surface

Figure 3: Four ray cones used for our weighting function. Clamp-
ing the cone radius r2

m by r̂2
m avoids artifacts caused by over shrink-

ing of r2
m due to a concave surface.

given as follows:

s2
m =

r2
m +σ

2
m−1 + t2

m−1 ∑
m−2
j=0 ν

2
j

r2
m +σ2

m
, (5)

where rm is the radius of the cone before spreading by the BSDF,
and the numerator is proportional to the cone area that the previous
BSDF is replaced with a perfectly specular surface. This sm indi-
cates a ratio of how cone radius is spread due to the glossy BSDF
on the previous shading point. However, we observed that Eq. 5
produces noticeable artifacts when rm is close to zero due to a neg-
ative cone-spread angle produced by concave surfaces. To alleviate
these artifacts, we use another radius r̂m = r0 + tanθ0 ∑

m−1
j=0 t j that

is spread from the initial cone radius r0 with the initial cone-spread
angle θ0 at a camera. We clamp the cone radius rm by this r̂m to
avoid using over-shrunk rm as follows:

ŝ2
m =

max
(

r2
m, r̂

2
m

)
+σ

2
m−1 + t2

m−1 ∑
m−2
j=0 ν

2
j

max
(
r2

m, r̂2
m
)
+σ2

m
. (6)

Fig. 3 shows the ray cones that we trace for our method. Fig. 4b
visualizes the indirect coverage of the floor with W (x,ω,ω′) = ŝm.
Although ŝm represents the ratio of the blurred pixels due to the
BSDF, it may not be perceptually proportional to object details for
artists. Therefore, we use a tweakable map from ŝm to the percep-
tual weight as follows:

W (x,ω,ω′) = ŝα
m , (7)

where α is a user-specified parameter to control the perceptual
weight for artists. Fig. 4c shows the coverage for the reflection of
the floor at the second bounce using this weighting function with
our default parameter α = 0.1. The area on the curved planes that
has the less detailed reflection of the floor is assigned less weight
and the stronger weights are kept against sharp reflection. Fig. 4d
shows artifacts from Eq. 5 while they are avoided by Eq. 6.

3.3. Another Option for Coverage Computation

Our coverage computation shown in Eq. 1 reduces the coverage at
the current fragment, and then redistributes the remaining coverage
to the subsequent reflected/refracted fragments. However, artists
may require a non-reduced coverage for opaque surfaces. Although
this coverage can be computed by summing all the coverages of

(a) color

(b) W (x,ω,ω′) = ŝm

(c) W (x,ω,ω′) = ŝ0.1
m

(d) W (x,ω,ω′) = s0.1
m

closeup

Figure 4: (a) Curved planes with various roughnesses (rough-
ness range: 0.0–0.7 with a 0.1 stride). (b–d) Visualization of in-
direct coverages for the floor using different weighting functions. A
weighting function without radius clamping (d) produces artifacts
on the concave surface, while the proposed method (c) does not.

subsequent scattered fragments, we do not store the path of frag-
ments (represented with a tree structure) because of the storage cost
and image formats (e.g., Cryptomatte does not support the path of
fragments). For the case where artists require the non-reduced cov-
erage for opaque surfaces, we provide an option that reduces the
coverage only for transparent surfaces as follows:

Ci(x,ω) =Hi(x)(1−T (x))+∫
Ω

Ći(x,ω′)W (x,ω,ω′) f (x,ω,ω′)(ω′ ·n)dω
′, (8)

where T (x) is the transparency of the BSDF. Unlike Eq. 1, the sum
of all the coverages in a pixel can exceed 100% in this form. There-
fore, artists have to do image manipulation considering this limi-
tation. Since 1− T (x) contains all the subsequent coverages after
the reflection/refraction, Hi(x) in this form should be zero if the ID
i is found in previous bounces. This can be done by keeping IDs
found in all previous bounces, however, this is computationally ex-
pensive. Instead, we set Hi(x) zero only when the previous bounce
has the same ID as a cheap practical approximation to handle inter-
reflections on a single object in our implementation.

4. Our ID–Coverage Update on the GPU

GPU path tracing can assign multiple threads for different samples
in a pixel. To update the pair of an ID and coverage for each pixel,
we use a lock-free algorithm that avoids data races by using a com-
pare and swap (CAS) instruction and linear probing. Algorithm 1
shows our coverage accumulation algorithm using CAS. For this
CAS instruction, an ID–coverage pair is packed as a 32-bit or 64-
bit variable. Although the memory usage for multiple fragments in
complex scenes is typically unknown before the rendering process,
we use a fixed per-pixel storage size for the GPU efficiency, similar
to the k-buffer [CICS05]. Accordingly, our implementation cannot
store all the fragments when the fragment count is larger than the
storage size. In this case, we prioritize directly visible fragments,
since they are more visually noticeable than indirectly visible frag-
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Algorithm 1: Update of a pair of ID and coverage on the GPU.
Inputs : ID: an object identifier at a shading point. contribution: a
value adding to the coverage of the object identifier. This value is set
to negative when the object is indirectly visible. idCoverages: array
for ID–coverage pairs. N: array size of the idCoverages.

function Update(ID, contribution, idCoverages, N)
base← Hash(ID)%N;
k← 0;
minIdx←−1;
minIdCvg← {NULL,−∞};
while k < N do

index← (base+ k)%N;
current← idCoverages[index];
if current.id = ID ∪ current.id = NULL then

sign← (current.coverage > 0∪ contribution > 0) ? 1 : -1;
newCoverage← |contribution|+ |current.coverage|;
new← {ID, sign∗ newCoverage};
old← CAS(idCoverages[index], current, new);
if old = current then break ;
else k← k− 1 ;

else if current.coverage < 0∩ current.coverage > minIdCvg.coverage then
minIdx← k;
minIdCvg← current;

end
if contribution > 0 ∩ k + 1 = N ∩ minIdx≥ 0 then

new← {ID, contribution};
old← CAS(idCoverages[minIdx], minIdCvg, new);
if old ̸= minIdCvg then

minIdx←−1;
minIdCvg← {NULL,−∞};
k←−1;

end
end
k← k + 1;

end
end

ments. For this prioritization, we store whether the fragment is di-
rectly visible or indirectly visible into the sign bit of the coverage.
When the per-pixel storage is full, we evict an indirectly visible
fragment with the smallest coverage. We use this approach for the
simplicity and less memory consumption. Our approach, however,
cannot prioritize fragments based on the true coverage because the
stored coverage has variance due to Monte Carlo estimation. The
bias due to the eviction of fragments may be reduced by using a
stochastic approach such as reservoir sampling [Cha82]. We would
like to study such stochastic update in the future.

5. Results

We implemented an existing approach [FJ15] focusing only on di-
rect visibility and our approach extending it to glossy surfaces us-
ing OpenCL™. All the images in this paper are rendered using an
AMD Radeon™ Pro W6800 GPU. Fig. 1 is the visualization of
coverages and an example of re-coloring. The indirect visibility of
several objects on the water surface was used for re-coloring in the
right image. Fig. 5b shows a matte of plants with the existing ap-
proach while 5c shows a matte of the plants with our approach.
Fig. 5b contains only direct visibility of the plants but 5c contains
indirect visibility by complex indirect light transport effects in ad-
dition. Fig. 5d shows an image by hue adjusting against 5a by using
5c which is not possible with capturing only from direct visibility.
Fig. 6 visualizes object coverages computed by our approach. The
overhead of our method with storing fragments as Cryptomatte is
less than 11% for these test scenes as shown in Fig. 6c.

6. Conclusions and Future Work

We have presented multi-fragment rendering with a weighting
function considering the diffusion of rays based on ray cones. This
makes it possible to capture indirectly visible fragments in multiple
bounces as shown in our experimental results. We also presented an
update method for a fixed-size multi-fragment storage on the GPU
alleviating noticeable loss of fragments. Our current implementa-
tion stores only object identifiers unlike typical A-buffers that store
an additional information such as depth. Thus, the granularity of
our matte generation is limited to object identifiers. Our implemen-
tation does not separate the matte with depth and bounce types. For
future work, we would like to extend the granularity of matte by
encoding an additional information such as whether reflection or
refraction into the ID. Although this approach does not require an
additional element such as a depth channel for the image format,
it can increase the fragment count in the storage and may cause
more evictions of fragments. This is because fragments with differ-
ent IDs are separately stored. Studies to maximize the benefits of
these additional information under limited storage size are left for
future work.
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(a) Rendered image (b) Previous matte [FJ15] (c) Our matte (d) Re-colored image using our matte

Figure 5: Re-coloring of the rendered image using a matte in a postprocess image editing software. Some plants are hidden by the glass
object in the matte generated considering only direct visibility (b). On the other hand, our matte (c) takes into account indirect visibility
reflected and refracted from the glass object. Using our matte, we can easily change the color of plants (d) after rendering.

(a) Rendered image (b) Coverage (c) Time ratio

106.2%

106.9%

110.5%

Figure 6: Rendered images (a) and coverage visualizations (b) of our approach (1920×1080 pixels, 12 elements per pixel, 1024 samples per
pixel). The right most column (c) is the ratio of the rendering time with and without Cryptomatte generation.
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