Fused BVH to Ray Trace Level of Detail Meshes

Paritosh Kulkarni Sho Ikeda Takahiro Harada
Advanced Micro Devices, Inc. Advanced Micro Devices,Inc. Advanced Micro Devices,Inc.
Canada Japan USA
ABSTRACT

The paper presents different strategies for fusing Bounding Volume
Hierarchies (BVHs) of varying level of detail (LODs). Our method
makes it possible to traverse BVHs of varying LODs in a cache-
friendly way for path tracing. Considering BVH of the finest level
(we call it the Base LOD BVH), the method defines a strategy to
fuse subtrees from BVH of other LODs to the Base LOD BVH. Our
method proposes a heuristic to find such subtrees in non-Base
LOD BVHs and an algorithm to find fusion or insertion points for
these subtrees in the Base LOD BVH without much increasing the
overall the volume of the Base LOD BVH and the number of nodes
traversed as a result of this fusing.

KEYWORDS

ray tracing, global illumination, Bounded Volume Hierarchies, Level
Of Detail

1 INTRODUCTION

Monte Carlo ray tracing is a simple and robust rendering algorithm
that has been studied for years [Kajiya 1986]. Ray casting is the
core component of ray tracing, which scales better in terms of the
number of primitives in the scene than rasterization which has
linear complexity. However, even with the logarithmic complexity
in ray tracing, the computational cost is still high for real-time ap-
plications. Therefore, developers have been attempting to minimize
the number of rays to be cast, and rely heavily on denoising in
video games [Akenine-Moller et al. 2019].

The level of detail (LOD) is one of the optimizations tried to
reduce the cost of ray casting. Current approaches like [Lee et al.
2019] extend the current ray tracing pipeline to enable the selection
of LOD. It assumes Bounding Volume Hierarchy (BVH) for each
LOD is present in memory so the memory overhead is large, and
when we to switch to a different LOD, we will start traversing an
entirely different tree causing a cache performance hit. Another
LOD approach [Ikeda et al. 2022] is to generate proxy geometry
using existing BVH to simulate LOD. This approach does not need
all LOD BVHs present in memory so the memory overhead is very
low, ray casting performance improvements are good but it suffers
issues like darkening bias. Our method takes user-generated LOD
meshes as input and generates a single fused LOD BVH which
results in memory compact BVH representation and cache-friendly
access when switching LOD during ray casting.

The paper describes a heuristic to find a cut in non-Base LOD
BVHs which we call the Mesh Cut, an algorithm to fuse subtrees
from a cut in the Base LOD BVH, select proper depth in the Base
LOD BVH for fusion, and handle possible collisions during fusion.

email: { Paritosh.Kulkarni, Sho.lkeda, Takahiro.Harada }@amd.com
Advanced Micro Devices, Inc. Technical Report No. 22-10-b79d, October 4, 2022.

Figure 1: Buddha model rendered with distance based LOD
selection as described in [Lee et al. 2019] for shadow and
diffuse rays.

8o 2880
a8 248

Figure 2: A mesh cut formed by subtrees from LOD 1 BVH
with a specified threshold.

2 FUSED BVH FOR LOD MESHES

Instead of storing a BVH for each LOD in memory, we propose to
store a single BVH with additional information. We start with the
Base LOD BVH and propose a generalized fusion method to find a
cut of subtrees from non-Base LOD BVHs and insert them in the
Base LOD BVH. We will now describe the method assuming we
have the two LODs: 0 and 1.

2.1 Finding a Mesh Cut

We start by finding subtrees forming a cut in LOD 1 BVH at decent
depth. For this purpose, we introduce a threshold T as a number
of child nodes. We start traversing LOD 1 BVH until we reach a
node with the number of child nodes less than or equal to T. We
add such a node to a mesh cut and continue traversal till we have
visited all the nodes as shown in Fig 2. If we want a finer mesh cut,
we can set T=1. This T will result in a mesh cut with all the triangle
primitives.

= AMD1

: GPUOpen

VADRNVAS)RVA RV, v A

VAU LN N
Figure 3: An illustration of the fusion of subtrees from a
single LOD to the Base LOD BVH. Note that the inserted
subtrees in blue do not form a cut of the tree. The terminal
nodes with the label "T" in this figure form a cut.

2.2 Fusing Mesh Cut in the Base LOD BVH

As briefly described already, the method starts with finding a mesh
cut in a non-Base LOD BVH. Our method does not put any as-
sumption about the BVH building method so any method can be
used. We go through all nodes in a mesh cut and it is inserted at an
appropriate internal node in the Base LOD BVH by traversing the
Base LOD BVH from the root node. At each node in the Base LOD
BVH, if the node overlaps a node in a mesh cut we move down
the Base LOD BVH. We also check the termination criteria at each
node for which we use the surface area of an AABB of the node.
We terminate at the first Base LOD BVH node for which a node
in the mesh cut when merged is increasing the surface area of the
node in the Base LOD BVH.

We only allow inserting a single node in a mesh cut to a single
node in Base LOD BVH. This simplifies the data structure and the
traversal logic. But, the logic can report the same node from the
Base LOD BVH as the insertion point for multiple nodes in the
mesh cut. This results in a conflict of insertion. When a conflict
happens, we descend the conflicted node in the Base LOD BVH
choosing the child that has the maximum overlapped surface area
with a node in mesh cut and report it as the insertion point.

After all nodes in a mesh cut are inserted, we set a flag for
a terminator of a LOD. This is necessary to avoid unnecessary
traversal as shown in Fig 3. Think of a case where we traverse the
Base LOD BVH to find an intersection for LOD 1 BVH. Then after
testing a LOD 1 fused node, we do need to descend the Base LOD
BVH if there is another node containing a LOD 1 fused node in the
descendants. However, if there is no node containing a LOD 1 fused
node in the descendants, we do not need to descend the Base LOD
BVH. Therefore, we tag the very last fused node withaLOD 1 as a
terminator. This fused node can be found by a bottom-up traversal
of the tree.

However, there is no guarantee that nodes with LOD 1 primi-
tives form a cut of the BVH as shown in Fig 3. as the fused node
insertion is arbitrary. When there is a part of the tree where no
fused node exists for LOD 1, we traverse the Base LOD BVH to
the leaf node which is not necessary if we are only interested in
intersecting against LOD 1 primitives. Therefore, we also need to
insert a terminator flag to a node in the Base LOD BVH where we
can say there is no need to descend the tree anymore. The node
we need to flag can be found by another traversal of the Base LOD
BVH. The condition is if a node does not have a descendant with a
terminal flag and the sibling of the node has a descendant with a
terminal flag, the node needs to be flagged as a terminal.

Fused BVH to Ray Trace Level of Detail Meshes, Kulkarni et al.

The last thing we need to do is refit the AABBs in the Base LOD
BVH. The AABBs computed for the Base LOD BVH do not always
enclose the subtree fused. Thus, we need to refit the AABBs by a
bottom-up traversal of the Base LOD BVH. When we encounter
a node having a fused LOD 1 subtree, the AABB of the node is
adjusted to enclose the fused subtree.

2.3 Optimal Fusing Based on Node Cost

After a mesh cut is formed we will be fusing these subtrees from
the mesh cut in the Base LOD BVH. However, the order of the root
nodes of the subtree in the mesh cut is significant. Let’s assume the
root nodes of the subtrees in a mesh cut are present in descending
order of efficiency cost such that the first node is the most efficient
node. Efficiency cost deals with many scenarios and tries to find the
surface area-wise compact node. So when we fuse these subtrees
from the mesh cut, the subtree with the most efficient root node
will be fused first. The inefficient root nodes will be fused later
on so they will be fused at a depth higher than previously fused
efficient root nodes. After every subtree is fused, we will have to
adjust the volume of the Base LOD BVH and fusing subtrees with
the inefficient root node at higher depth will increase the volume
of the Base LOD BVH a lot. This results in visiting more nodes in
the traversal of the Base LOD BVH.

To avoid this problem we define a cost model in section 2.4 to
calculate the inefficiency cost of a node. While forming mesh cut
we also calculate the inefficiency cost of a node being added to a
cut and then sort the cut based on this cost. We observed that if we
use ascending order of efficiency cost for insertion the number of
nodes visited per pixel increased by 16% while descending order
increased it by 8% as compared to the baseline.

2.4 Cost Model for Selecting Nodes in Mesh Cut

In order to find the optimal mesh cut in LOD 1 BVH we should first
choose the nodes with lowest cost overhead (surface area increase)
in the tree. To achieve this, we need a node inefficiency measure.

The first inefficiency measure Mgyrps for a node corresponds to
a component of the cost model used by [Lauterbach et al. 2006] and
is evaluated as:

SA(N)

M N) =
SUMN) = 4 G ildren of N | - Sxe chdeen o v SACX)

1)

This measure estimates the relative increase of the surface area
of the node with respect to average surface areas of the children.
Thus, if there is a lot of empty space inside the node, this measure
will be large.

The second inefficiency measure for a node used by [Bittner et al.
2013] is evaluated as:

SA(N)

MmIN(N) = —
Miny ¢ children of N SA (X)

@

This measure aims to handle the situation when the node con-
tains child nodes of significantly different sizes (e.g. one large node
representing the whole terrain and a small node representing a
particular object on the terrain). Then the first measure equation (1)
defined above might not identify such a node as problematic as it
takes the average surface area of the children which in this example

= AMD1

: GPUOpen

L L) A N v A

VAVRRU VADWA PADWAN

Figure 4: An illustration of multiple LODs fused in the Base
LOD BVH.

Base BVH Base BVH
Nodes ... Node0

Fused
Subtree 0

. Fused nodes...

Base BVH Nodes Subtree 1

Figure 5: Memory layout of fused BVH. The subtrees from
the LOD 1 BVH fused in with the Base BVH.

will still be large. On the contrary, the equation (2) measure will
detect such a situation.

The third measure is the surface area of the node itself. This will
help us determine the contribution by the node itself

Marea(N) = SA(N) ©)

As observed by [Bittner et al. 2013] we combine the above three
measures to obtain the final inefficiency measure for a node.

Mcomp(N) = Msyp (N) - Mpyn (N) - Magrga(N) 4

2.5 Building Fused BVH with Many LOD Meshes

Inserting more LODs is an extension of the method described in sec-
tion 2.2. Instead of simply inserting a single level, we loop through
all the levels and keep inserting subtrees from a mesh cut to the
Base LOD BVH. After that, we set terminal flags. Note that terminal
flags need to be set for each level. Fig 4 shows an example of where
we store 3 levels, 2 levels are inserted into the Base LOD BVH. Note
that there is a node that has terminator flags for both levels.

We added single 32-bit data for each node in the Base LOD BVH
to store this information. More specifically, our implementation
stores up to 6 levels for an instance. We allocated 3, 5, and 24 bits
to store level, terminal flag (1 bit per level), and root node index of
the subtree from a mesh cut.

2.6 Traversal of Fused BVH

The traversal of a fused BVH is similar to a traversal of a regular
BVH but with an additional conditional execution at each node in
the Base LOD BVH. When we visit a node, we check the additional
data as described in section 2.5 and perform an intersection if the
node has the level we are interested in. From this point on we
will continue traversing the LOD subtree that is fused at this node.
After that, we check the terminal flag of the level in the node. If the
node is a terminal of the level, we skip the traversal of its children.
Otherwise, we execute the traversal as usual.

If we want to traverse for LOD 1, we will always start from the
Base LOD BVH. The fused LOD 1 subtrees are stored with the Base
LOD BVH in continuous memory as you can see from Fig 5. This
will result in cache-friendly access patterns. As we find the subtrees

Fused BVH to Ray Trace Level of Detail Meshes, Kulkarni et al.

to fuse from LOD 1 BVH at a certain decent depth hence, we are
avoiding traversal of all the nodes above that depth in LOD 1 BVH
and the subtrees are compact in memory. In absence of fusing the
traversal of the LOD, BVHs are random as they are not packed in
continuous memory.

3 CONCLUSIONS AND FUTURE WORK

We proposed a generalized framework for fusing the LODs which
will result in a memory compact single BVH. The reduction in the
memory overhead as a result of fusing outweighs the additional
cost added by an overall increase in the volume of the Base BVH.
However, We need better strategies for a case where many collisions
occur and we reach the leaf node of the Base LOD BVH without
finding the fusing point. Also, we would like to investigate the
efficient GPU implementation for fused BVH. The fused BVH is
definitely appealing for the GPU where reduction in the memory
overhead is a big win. Lastly, we would like to investigate different
BVH traversal logic for fused BVH. One of the directions is to sort
rays with the same LOD in batches and do ray stream traversal.

4 RESULTS

The process of fusing LOD BVH does increase the overall volume
of the Base LOD BVH but this increase is very well compensated
by the reduction in the memory overhead. To quantify the memory
overhead reduction we used Buddha, Dragon, and Erato models. The
result of the fusing is the BVH with a very compact memory layout.
The LODs other than the Base BVH are reduced in memory as
seen from Table 1. We achieve 60.73%, 60.74%, and 60.73% reduction
in the memory overhead for Buddha, Dragon, and Erato models,
respectively. The resulting reduction in the memory overhead will
eventually reduce the memory traffic leading to better performance
in ray casting.

To quantify the number of nodes visited per pixel we prepared
a scene with 100 instances of the Buddha model, 4 LODs fused
in the Base LOD BVH with different values of T and compare it
with [Lee et al. 2019] method (we consider it baseline) using our
in-house path tracer. As we fuse more LODs or use smaller values
for T the number of subtrees to be fused increases resulting in more
collisions and causing the subtrees to be fused at higher depth.
This will increase the overall volume of the Base BVH; hence, the
number of nodes visited per pixel is increased from 9% to 13% as
we can see in Fig 6a, 6b, 6¢c and Table 2. We observed with T = 256
we got an optimal trade-off between memory compaction and an
increase in the number of nodes visited.

To quantify the effect of the cost model described in 2.4 on the
number of nodes visited per pixel we used the buddha scene with
100 instances, 4 LODs fused in the Base LOD BVH with T=256,
1280x720 resolution, 64 samples per pixel, and 10 recursion depths
as parameters. We observed that for the baseline method on average
1876 nodes/pixel were visited, while with fused BVH we visited 2040
nodes/pixel. If we do not use the optimal fusing strategy explained
in the supplementary document, the node visited per pixel count
goes to 2176 nodes/pixel. So, if we use ascending order of efficiency
cost for insertion the number of nodes visited per pixel increased
by 16% while descending order increased it by 8% as compared to
the baseline.

= AMD1

: GPUOpen

(2) LODO + LOD1

(b) LODO + LOD1 + LOD2

i i

(¢) LODO + LOD1 + LOD2 + LOD3

Figure 6: Zoomed view of Fig 1. Shows a heat map of the number of nodes visited per pixel during ray cast for primary rays
with the fused BVH. We set 1280 x 720 resolution and T=256. As we can see with the fused BVH the number of nodes visited are
increased as we add LODs.

Figure 7: Rendered scene with Dragon and Erato Models.

LOD| Buddha | Buddha] Dragon | Dragon | Erato Erato
Base- Fused | Base- Fused Base- Fused
line(kb) | T=256 | line T=256 line T=256

1 11135.29 | 6927.6 | 25651.13 | 15957.82 | 24815.80 | 15439.39

2 1391.68 | 865.74 | 10260.41 | 6383.61 | 10031.80 | 6240.60

3 389.44 242.27 | 2565.05 | 1595.64 | 2639.80 | 1642.43

Table 1: LODs and size of the BVHs in Kb for the Baseline vs
the Fused BVH. Buddha model LOD 0, 1, 2, 3 with 200K, 80K,
10K, 3K primitives respectively. Dragon and Erato models
LOD 0, 1, 2, 3 with 400K, 200K, 80K, 10K primitives respec-
tively. LOD 0 BVH or the Base BVH is not affected by fusion
hence its sizes are not provided.

number of nodes visited per pixel nodes/pixel
LOD levels Baseline| Fused | Fused | Fused
BVH BVH | BVH
T=128 | T=256 | T=512
0+1 480.18 | 584.82 | 559.05| 552.13
0+1+2 479.96 | 603.02 | 570.16 | 559.05
0+1+2+3 479.89 | 617.90 | 579.75| 560.99

Table 2: Measurement of nodes/pixel visited with multiple
LODs with Buddha scene.

REFERENCES

Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. 2019. Real-time rendering.
AK Peters/crc Press.

Jii Bittner, Michal Hapala, and Vlastimil Havran. 2013. Fast insertion-based optimiza-
tion of bounding volume hierarchies. In Computer Graphics Forum, Vol. 32. Wiley

Online Library, 85-100.

Sho Ikeda, Paritosh Kulkarni, and Takahiro Harada. 2022. Multi-Resolution Geometric
Representation using Bounding Volume Hierarchy for Ray Tracing. GPUOpen
technical report 22-02-f322 (2022).

James T. Kajiya. 1986. The rendering equation. In Computer Graphics. 143-150.

Christian Lauterbach, Sung-Eui Yoon, Dinesh Manocha, and David Tuft. 2006. RT-
DEFORM: Interactive ray tracing of dynamic scenes using BVHs. In 2006 IEEE
Symposium on Interactive Ray Tracing. IEEE, 39-46.

Won-Jong Lee, Gabor Liktor, and Karthik Vaidyanathan. 2019. Flexible Ray Traversal
with an Extended Programming Model. In SIGGRAPH Asia 2019 Technical Briefs.
17-20.

	Abstract
	1 Introduction
	2 Fused BVH for LOD Meshes
	2.1 Finding a Mesh Cut
	2.2 Fusing Mesh Cut in the Base LOD BVH
	2.3 Optimal Fusing Based on Node Cost
	2.4 Cost Model for Selecting Nodes in Mesh Cut
	2.5 Building Fused BVH with Many LOD Meshes
	2.6 Traversal of Fused BVH

	3 Conclusions and Future Work
	4 Results
	References

