
GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for
Real-Time Global Illumination

Guillaume Boissé

Advanced Micro Devices, Inc.

France

Sylvain Meunier

Advanced Micro Devices, Inc.

France

Heloise de Dinechin

Advanced Micro Devices, Inc.

France

Matthew Oliver

Advanced Micro Devices, Inc.

Australia

Pieterjan Bartels

Advanced Micro Devices, Inc.

Belgium

Alexander Veselov

Advanced Micro Devices, Inc.

Germany

Kenta Eto

Advanced Micro Devices, Inc.

Japan

Takahiro Harada

Advanced Micro Devices, Inc.

USA

Figure 1: Kitchen and Sponza scenes rendered with direct and indirect lighting calculated using our GI-1.0 pipeline in 3.5ms
and 4.2ms respectively at 1080p on Radeon™ RX 6900 XT.

ABSTRACT
Real-time global illumination is key to enabling more dynamic

and physically realistic worlds in performance-critical applications

such as games or any other applications with real-time constraints.

Hardware-accelerated ray tracing in modern GPUs allows arbitrary

intersection queries against the geometry, making it possible to

evaluate indirect lighting entirely at runtime. However, only a

small number of rays can be traced at each pixel to maintain high

framerates at ever-increasing image resolutions.

Existing solutions, such as probe-based techniques, approximate

the irradiance signal at the cost of a few rays per frame but suffer

from a lack of details and slow response times to changes in lighting.

On the other hand, reservoir-based resampling techniques capture

much more details but typically suffer from poorer performance

and increased amounts of noise, making them impractical for the

current generation of hardware and gaming consoles.

To find a balance that achieves high lighting fidelity while main-

taining a low runtime cost, we propose a solution that dynamically

estimates global illumination without needing any content pre-

processing, thus enabling easy integration into existing real-time

rendering pipelines.

https://github.com/GPUOpen-LibrariesAndSDKs/Capsaicin, email: { Guillaume.Boisse,

Sylvain.Meunier, Heloise.Dupontdedinechin, Matthew.Oliver, Pieterjan.Bartels,

Kenta.Eto, Takahiro.Harada }@amd.com

Advanced Micro Devices, Inc. Technical Report No. 22-10-9831, October 18, 2022.

KEYWORDS
global illumination, ray tracing, radiance caching, spatial hashing

1 INTRODUCTION
Probe-based techniques are often used in applications where a high

framerate is required [Greger et al. 1998]. Light probes were pre-

computed in the past, but real-time hardware ray tracing makes it

possible to compute them dynamically at runtime. Majercik et al.
proposed Dynamic Diffuse Global Illumination to cache the irradi-

ance field into a set of dynamically ray-traced probes organized in

world-space grids [Majercik et al. 2019]. The per-pixel irradiance

value can then be estimated by interpolating from the eight neigh-

boring probes, taking the visibility information into account in the

form of a Chebychev inequality test [Donnelly and Lauritzen 2006].

While this reduces the light leaking issue that plagued previous

probe systems, the visuals often end up looking flat as the irradi-

ance near occluders is typically of higher frequency than what the

spatial resolution of the probe field can capture.

Techniques using resampled importance sampling have been ac-

tively explored recently [Talbot et al. 2005; Tokuyoshi and Harada

2016]. Reservoir-based Spatiotemporal Importance Resampling (Re-

STIR) heavily relies on reservoir resampling to get high-quality

samples, which results in a higher quality sampling for direct illu-

mination [Bitterli et al. 2020]. It was further extended to indirect

illumination [Boissé 2021]. ReSTIR Global Illumination (ReSTIR

GI) [Ouyang et al. 2021] and, more recently, ReSTIR Path Trac-

ing (ReSTIR PT) [Lin et al. 2022] propose to trace rays per pixel

and rely on reservoir-based resampling to efficiently share path

https://github.com/GPUOpen-LibrariesAndSDKs/Capsaicin

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

sampling information across neighboring pixels and frames. Such

approaches yield promising visual results but are too expensive

for performance-critical applications such as games or any other

applications with real-time constraints. Furthermore, tracing per

pixel as opposed to interpolating between probes introduces signif-

icant amounts of noise in the image that must be filtered [Schied

et al. 2017]. Aggressive filtering of noisy signals can lead to a loss in

quality and increased difficulty in keeping up with lighting changes.

Calculating a temporal gradient from the radiance signal [Schied

et al. 2018] can help inform the denoising in such cases, but it is not

trivial to compute, nor does it help when the input signal is overly

noisy in the first place.

Screen Space Radiance Caching (SSRC) [Wright 2021] introduces

a novel method that caches the radiance in probes spawned directly

onto primary visible surfaces. The approach has advantages simi-

lar to the probe system and shows little noise after interpolating

the lighting for every pixel. However, unlike world probes, screen

probes do not suffer from light and occlusion leaks as they are

always placed precisely on the geometry. Furthermore, they offer a

significantly higher density radiance representation, which leads

to higher-fidelity visuals.

In this paper, we build on the SSRC approach and introduce

several key contributions to improve performance and visual qual-

ity. Most importantly, we introduce a novel caching algorithm to

achieve temporally stable lighting without needing an additional

world-space structure as required in [Wright 2021]. We will show

how we connect the screen probe rays to a secondary level of ra-

diance caching based on spatial hashing [Binder et al. 2019] to

achieve fast, high-fidelity, and leak-free dynamic global illumina-

tion as shown in Figure 1.

2 GI-1.0
For real-time purposes, only a few samples can be used for each

pixel, even with today’s high-end GPUs, to remain practical. It is,

therefore, essential to try and ensure that most, if not all, samples

contribute to the lighting estimate in a meaningful way to keep

the variance to a minimum. Indeed, any ray or path not hitting a

light source can potentially severely impact the quality of the ren-

dered animation by introducing noise that would require excessive

amounts of filtering.

We design our global illumination pipeline to make the most of

every sample by reusing the lighting information across space and

time for both sampling and filtering. We do so by persisting the

scene illumination inside two distinct levels of radiance caching, as

illustrated in Figure 2:

• The screen cache caches the incoming radiance for primary

path vertices inside probes placed directly onto primary

visible surfaces, and offers a detailed lighting representation

thanks to a large number of probes.

• Theworld cache caches the outgoing radiance for secondary

path vertices and, despite being less detailed than the screen

cache, has the advantage of being stable and persistent.

We will demonstrate how this setup allows to compute high-

fidelity and temporally responsive direct and indirect lighting using

sampling rates as low as ¼ sample per pixel.

Figure 2: GI-1.0 two-level radiance caching scheme.

2.1 Screen Cache
This section describes how screen probes are spawned sparsely di-

rectly onto pixels, how we manage the integrity of the caching data

structure across frames, and how we adapt the filtering heuristics

based on depth to ensure temporally stable lighting at any distance.

Similarly to [Wright 2021], we encode the incoming radiance

across the oriented hemisphere into an 8x8 atlas using an octahedral

projection mapping [Cigolle et al. 2014].

2.1.1 Temporal Upscale. In our method, the probe grid is upscaled

to full resolution over multiple frames. The amount of upscaling

is directly related to the overall per-pixel sample count and can be

tweaked as a trade-off between performance and quality. In our

implementation, we store up to one 8x8 screen probe, encoding the

hemispherical radiance of a random pixel inside each 8x8 tile on

the screen. A consequence of this setup is that the resulting probe

grid can be stored inside a 2D texture of the size of a render target,

with dimensions aligned to the next multiple of 8. This choice is

arbitrary, and other configurations could be explored.

In this context, we define the spawn tile as a 2D region with

dimensions of 8 · (𝑢𝑝𝑠𝑐𝑎𝑙𝑒_𝑥,𝑢𝑝𝑠𝑐𝑎𝑙𝑒_𝑦), where 𝑢𝑝𝑠𝑐𝑎𝑙𝑒_𝑥 and

𝑢𝑝𝑠𝑐𝑎𝑙𝑒_𝑦 represent the amount of temporal upscaling performed

along the X and Y axis respectively. We then generate a 2D jit-

ter value inside the spawn tile using Halton’s low-discrepancy

sequence [Halton 1964] and use this value to select the pixel on

which to place our new probes for every spawn tile on the screen.

This leads to sparsely populated probe grids on first frames, which

get resolved into fully populated grids after multiple frames. Figure

3 illustrates this process: on the very first frame, ¼ of all the probes

are filled. The red regions in the figure represent the tiles that do

not have probe data. We fill another ¼ in the next frame resulting

in all probes being filled after four frames.

For each probe, we reconstruct the world-space position from

the depth buffer and retrieve the surface orientation by decoding

the normal vector from the rasterized depth and normal textures,

usually called G-buffers [Saito and Takahashi 1990]. Additionally,

our technique requires a set of motion vectors to be calculated for

every pixel to reproject the probe grid from the previous frame into

the current frame.

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Sparse probe grid on 1st frame (b) Resolved grid after 4 frames

Figure 3: Temporal upscaling in probe space. (a) One out of
four probe grids are filled. Red pixels show the empty probes.
In each frame, we fill one out of four. After four frames, all
the probe grids are filled (b).

Probe reprojection is an essential step of the pipeline, as tempo-

rally reused probes are likely to persist over multiple frames, mak-

ing accurate placement of previous probes onto the new frame’s

pixels a requirement to prevent degrading the overall image qual-

ity. Algorithm 1 outlines how every lane in an 8x8 dispatch group

collaborates to find the best pixel for probe reuse. An interesting

input to the algorithm is the 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 heuristic, which controls how

much spatial error is allowed when reusing the probes information

temporally. As we will see in the later sections, this same heuristic

is also used to guide the sampling and filtering of the screen probes,

making it a key factor to get right.

__kernel reproject_screen_probes(𝑝𝑖𝑥𝑒𝑙 𝑝)
__𝑙𝑜𝑐𝑎𝑙 𝑢𝑖𝑛𝑡 𝑟𝑒𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒 ←
(𝑝𝑎𝑐𝑘_ℎ𝑎𝑙 𝑓 (65504.0) << 16) |0𝑥𝐹𝐹𝐹𝐹𝑢

𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () // sync the threads

if 𝑝 isn’t a sky pixel

𝑞 ← 𝑝 𝑖𝑛 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑓 𝑟𝑎𝑚𝑒

if 𝑝𝑟𝑜𝑏𝑒q is valid
𝑝𝑙𝑎𝑛𝑒_𝑑𝑖𝑠𝑡 ←
𝑎𝑏𝑠 (𝑑𝑜𝑡 (𝑤𝑜𝑟𝑙𝑑

probe
− 𝑤𝑜𝑟𝑙𝑑p, 𝑛𝑜𝑟𝑚𝑎𝑙p))

𝑛𝑜𝑟𝑚𝑎𝑙_𝑐ℎ𝑒𝑐𝑘 ← 𝑑𝑜𝑡 (𝑛𝑜𝑟𝑚𝑎𝑙
probe

, 𝑛𝑜𝑟𝑚𝑎𝑙p)
if 𝑝𝑙𝑎𝑛𝑒_𝑑𝑖𝑠𝑡 < 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 and

𝑛𝑜𝑟𝑚𝑎𝑙_𝑐ℎ𝑒𝑐𝑘 > 0.95

𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑤𝑜𝑟𝑙𝑑
probe

, 𝑤𝑜𝑟𝑙𝑑p)
𝑢𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑒_𝑠𝑐𝑜𝑟𝑒 ←
(𝑝𝑎𝑐𝑘_ℎ𝑎𝑙 𝑓 (𝑑𝑖𝑠𝑡) << 16) |𝑙𝑜𝑐𝑎𝑙_𝑙𝑎𝑛𝑒

𝑎𝑡𝑜𝑚_𝑚𝑖𝑛 (𝑟𝑒𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒, 𝑝𝑟𝑜𝑏𝑒_𝑠𝑐𝑜𝑟𝑒)
𝑏𝑎𝑟𝑟𝑖𝑒𝑟 () // sync the threads

// decode and use 𝑙𝑜𝑐𝑎𝑙_𝑙𝑎𝑛𝑒 as destination pixel

Algorithm 1: Screen probes reprojection.

2.1.2 Adaptive Sampling. As a result of the sparse spawning of the
screen probes, moving animations can exhibit grid regions where

information is missing, as illustrated in Figure 4. These regions,

usually called disocclusions or holes, are detrimental to the image

quality as they introduce additional noise in newly appearing parts

of the scene.

(a) Fixed probe spawning pattern (b) Stochastic ray re-balancing

Figure 4: Hole filling under motion with adaptive sampling.

One possible solution to this problem is to allocate a fixed num-

ber of additional rays to the empty tiles to "fill the holes" [Swoboda

2012]. However, such an approach requires increasing the per-pixel

ray budget, which we aim to keep low and constant throughout

an animated sequence. Instead, we propose de-allocating rays ran-

domly away from screen tiles that have succeeded the temporal

reprojection and assigning them to the frame’s empty tiles.

For this purpose, we generate two separate queues:

• The 𝑒𝑚𝑝𝑡𝑦_𝑡𝑖𝑙𝑒𝑠 buffer stores the list of tiles that have failed

reprojection and are not filled with any newly spawned

probe.

• The 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒_𝑡𝑖𝑙𝑒𝑠 buffer stores the list of newly spawned

tiles that have succeeded the temporal reprojection.

We can patch our list of spawned tiles, referred to as 𝑠𝑝𝑎𝑤𝑛_𝑡𝑖𝑙𝑒𝑠

in Algorithm 2, by iterating over the empty tiles, and picking a ran-

dom override tile to fill an empty tile with. This approach enables

significant improvements in the visual quality of disoccluded re-

gions, as shown in Figure 4, while maintaining a constant ray count

over time. In effect, we simply redistribute a fixed ray budget to

help fill our temporal holes.

__kernel patch_screen_probes(𝑢𝑖𝑛𝑡 𝑔𝑙𝑜𝑏𝑎𝑙_𝑖𝑑)
𝑡𝑖𝑙𝑒 ← 𝑒𝑚𝑝𝑡𝑦_𝑡𝑖𝑙𝑒𝑠 [𝑔𝑙𝑜𝑏𝑎𝑙_𝑖𝑑]
𝑖𝑛𝑑𝑒𝑥 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒_𝑡𝑖𝑙𝑒_𝑐𝑜𝑢𝑛𝑡 − 1)
𝑎𝑡𝑜𝑚_𝑥𝑐ℎ𝑔 (𝑠𝑝𝑎𝑤𝑛_𝑡𝑖𝑙𝑒𝑠 [𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒_𝑡𝑖𝑙𝑒𝑠 [𝑖𝑛𝑑𝑒𝑥]], 𝑡𝑖𝑙𝑒)

Algorithm 2: Temporal adaptive sampling.

2.1.3 Ray Guiding. At this point in the pipeline, we know what

probes we will be calculating. We will be using raytracing for this

but have yet to decide how to distribute our rays against the octa-

hedral cells of each probe. Multiple options are possible here, such

as assigning one ray for every cell and randomly jittering within

the cell, otherwise known as uniform sampling.

However, we can do better than this by leveraging the informa-

tion of our reprojected probe grid, when available, and guiding the

sampling of the new rays or importance sampling [Wright 2021].

We implement this efficiently by writing the luminance of the re-

projected radiance to local memory, or Local Data Share (LDS); the

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Uniform sampling (b) Temporal ray guiding

Figure 5: Using reconstructed hemisphere for sampling.

Figure 6: Parallax-corrected radiance reuse.

values are then scanned in parallel [Harris et al. 2007] and normal-

ized into a Cumulative Distribution Function (CDF). We use the

CDF to pick a random cell proportional to its estimated intensity

and recover the ray direction by generating a random 2D sample on

the selected cell. We obtain a cleaner and more temporally stable

image without increasing the ray count as illustrated in Figure 5.

Tomake the guiding precise, wewant the hemisphere reconstruc-

tion to be as faithful as possible. Reconstruction here is iterating

over the reprojected probes in a 3x3 tile neighborhood and accumu-

lating the radiance values into the best corresponding cells of the

newly spawned yet uncalculated probes. Reusing the cell indexing

across probes leads to issues with nearby light sources having a dif-

ferent parallax in relation to the shading site, degrading the quality

of the sampling. Therefore, we perform a parallax correction before

scattering the reprojected radiance estimate into the storage of the

new probe as shown in Figure 6. This is made possible by storing

the traveled ray distance in the alpha channel of the probe grid tex-

ture, allowing recovery of the hit point position while iterating the

reprojected cells. The scattering of radiance values is implemented

efficiently by allocating the 8x8 octahedral map in LDS to perform

the reconstruction and sampling. Finally, we use the same 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒

heuristic mentioned in section 2.1.1 for rejecting far away probes.

Now that all the sampled directions are generated, rays can be

intersected against the scene using a closest hit query. If a ray

misses all geometry, we consider it has reached the sky and add

the corresponding incoming environment contribution to the ray

payload. If the ray hits, however, we must calculate the lighting at

the hit point. This is the role of our hash cells data structure, and

we, therefore, defer the details of the implementation to section 2.2.

For now, we assume that, similarly to the environment lighting, we

somehow get a radiance contribution back that we add to the ray

payload.

2.1.4 Radiance Blending. Now that we have a radiance estimate

for each of our rays, we can resolve the payload into the new probes.

As multiple rays can be assigned to the same cell, we need a way

to accumulate into the destination storage efficiently. We again

leverage the LDS and allocate the 8x8 probe in local memory for

accumulating the contributions prior to normalizing.

In this pass, we blend the newly calculated radiance with the

estimate reconstructed in 2.1.3. We found that using a regular ex-

ponential moving average [Karis 2014] led to a significant loss in

visual fidelity. Indeed, the low-resolution nature of the probes leads

to cells covering a relatively large area of the oriented hemisphere,

making averaging uniformly across the whole region undesirable.

Instead, inspired by [Lottes 2015], we adapt the temporal blending

amount as a factor of the normalized difference between the newly

estimated radiance and the reconstructed one. We propose a bi-

ased temporal hysteresis detailed in Algorithm 3, which we design

to better preserve occlusion and shadows at the expense of some

image darkening.

Further to preserving shadow details, our biased temporal hys-

teresis also acts as a firefly removal technique by effectively filtering

out bright signals that are significantly smaller than the cone de-

scribed by the cell’s solid angle, making the responsible surface

unlikely to be hit often. We found this property particularly impor-

tant for ensuring the temporal stability of scenes featuring many

emissive surfaces or mesh lights.

function temporal_blend(𝑐𝑢𝑟𝑟_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 , 𝑝𝑟𝑒𝑣_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒)

𝑙1← 𝑑𝑜𝑡 (𝑐𝑢𝑟𝑟_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒, 1.0
3.0
)

𝑙2← 𝑑𝑜𝑡 (𝑝𝑟𝑒𝑣_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒, 1.0
3.0
)

𝛼 ←𝑚𝑎𝑥 (𝑙1−𝑙2−𝑚𝑖𝑛 (𝑙1, 𝑙2), 0.0)/𝑚𝑎𝑥 (𝑚𝑎𝑥 (𝑙1, 𝑙2), 1𝑒−4)
𝛼 ← 𝑐𝑙𝑎𝑚𝑝 (𝑎𝑙𝑝ℎ𝑎, 0.0, 0.95)2 // clamp and remap
return 𝑙𝑒𝑟𝑝 (𝑐𝑢𝑟𝑟_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒, 𝑝𝑟𝑒𝑣_𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒, 𝛼)

Algorithm 3: Biased shadow-preserving temporal hysteresis.

Due to our ray guiding strategy, we can end up with cells for

which no rays were traced. Reusing the results of the temporal

reconstruction aggressively in such cases leads to strong visual

artifacts, while leaving the cell’s content as black or empty leads to

undesirable over-darkening caused by the missing energy. Instead,

we average the radiance from the populated cells and distribute the

result uniformly across the untraced cells. This allows recovering

some of the energy loss through approximating the missing samples

as illustrated in Figure 7. In practice, the approximation is only

used for low-probability cells, and we have not found this to cause

objectionable visual artifacts on any of the tested content.

2.1.5 Probe Masking. As probes can be placed on any random

pixel within each of the 8x8 screen tiles, a mechanism is needed

to retrieve that sub-tile position. We therefore encode the precise

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Darkening due to empty cells (b) Fixed using radiance backup

Figure 7: Approximating empty cells with radiance average.

Figure 8: Skipping reprojection holes w/ mip-based masking.

pixel coordinates of each probe inside a 32-bit integer that we store

in a 2D texture, referred to as 𝑝𝑟𝑜𝑏𝑒_𝑚𝑎𝑠𝑘 . Empty or invalid tiles,

that is, tiles containing no probe, are flagged using a sentinel value,

shown as red in Figure 8.

As we can see in this figure, areas for which probe information

is missing, can be relatively large under motion. This is an issue as

we often need to find the closest neighbor probe to a given pixel

in a specific direction. Our solution is to generate a MIP chain of

the probe mask, keeping the first valid probe found within the 2x2

upper values for each successive level. Leveraging this structure,

we can efficiently perform large searches in screen space to retrieve

neighbor probes in any direction, as shown in Algorithm 4.

function find_closest_probe(𝑖𝑛𝑡2 𝑝𝑖𝑥𝑒𝑙 , 𝑖𝑛𝑡2 𝑜 𝑓 𝑓 𝑠𝑒𝑡)

𝑝𝑖𝑥𝑒𝑙 /= 8 // transform to probe space

foreach𝑚𝑖𝑝 ∈ 0..𝑚𝑖𝑝_𝑐𝑜𝑢𝑛𝑡 − 1 do
𝑖𝑛𝑡2 𝑝𝑜𝑠 ← 𝑝𝑖𝑥𝑒𝑙 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡
if 𝑝𝑜𝑠 𝑖𝑠 𝑜𝑢𝑡 𝑜 𝑓 𝑏𝑜𝑢𝑛𝑑𝑠

break
𝑢𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑒 ← 𝑝𝑟𝑜𝑏𝑒_𝑚𝑎𝑠𝑘.𝐿𝑜𝑎𝑑 (𝑝𝑜𝑠,𝑚𝑖𝑝)
if 𝑝𝑟𝑜𝑏𝑒 𝑖𝑠𝑛′𝑡 𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙

return 𝑝𝑟𝑜𝑏𝑒 // found a probe :)

𝑝𝑖𝑥𝑒𝑙 /= 2

return 𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 // couldn’t find any probe :(

Algorithm 4: Sparse directional search in probe space.

2.1.6 Probe Filtering. As we jitter the rays inside the cells every
frame, the resulting probes can be fairly noisy. Furthermore, the

radiance returned by our hash cells may also be noisy, especially

when discovering a new scene area.

(a) Naive probe-space filtering (b) With angle-based rejection

Figure 9: 7x7 separable sparse probe-space filtering.

We leverage our large-scale probe search function to implement

an efficient separable 7x7 sparse blur of the probes’ radiance, as

shown in Algorithm 5. The 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 heuristic is again used to

avoid filtering across far away probes and prevent light leaking.

Finally, we use a similar angle error detection to [Wright 2021] for

preserving small-scale occlusion details as illustrated in Figure 9.

__kernel filter_screen_probes(𝑔𝑙𝑜𝑏𝑎𝑙_𝑖𝑑 , 𝑙𝑜𝑐𝑎𝑙_𝑖𝑑 , 𝑔𝑟𝑜𝑢𝑝_𝑖𝑑)
𝑝 ← 𝑑𝑒𝑐𝑜𝑑𝑒_𝑝𝑟𝑜𝑏𝑒_𝑚𝑎𝑠𝑘 (𝑠𝑝𝑎𝑤𝑛_𝑡𝑖𝑙𝑒𝑠 [𝑔𝑟𝑜𝑢𝑝_𝑖𝑑])
𝑑𝑖𝑟 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑐𝑒𝑙𝑙_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝑙𝑜𝑐𝑎𝑙_𝑖𝑑, 𝑛𝑜𝑟𝑚𝑎𝑙p)
𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 ← 𝑝𝑟𝑜𝑏𝑒_𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑔𝑙𝑜𝑏𝑎𝑙_𝑖𝑑]
ℎ𝑖𝑡_𝑑𝑖𝑠𝑡 ← 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒.𝑎

𝑤𝑒𝑖𝑔ℎ𝑡 ← 1.0

foreach 𝑖 ∈ 0..5 do
𝑠𝑡𝑒𝑝 ← (((𝑖 & 1) << 1) − 1) · ((𝑖 >> 1) + 1)
𝑝𝑟𝑜𝑏𝑒 ← 𝑓 𝑖𝑛𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑟𝑜𝑏𝑒 (𝑝, 𝑠𝑡𝑒𝑝 ·𝑏𝑙𝑢𝑟_𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
if 𝑝𝑟𝑜𝑏𝑒 𝑖𝑠 𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙

continue
𝑞 ← 𝑑𝑒𝑐𝑜𝑑𝑒_𝑝𝑟𝑜𝑏𝑒_𝑚𝑎𝑠𝑘 (𝑝𝑟𝑜𝑏𝑒)
𝑝𝑙𝑎𝑛𝑒_𝑑𝑖𝑠𝑡 ← 𝑎𝑏𝑠 (𝑑𝑜𝑡 (𝑤𝑜𝑟𝑙𝑑q − 𝑤𝑜𝑟𝑙𝑑p, 𝑛𝑜𝑟𝑚𝑎𝑙p))
𝑛𝑜𝑟𝑚𝑎𝑙_𝑐ℎ𝑒𝑐𝑘 ← 𝑑𝑜𝑡 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,𝑛𝑜𝑟𝑚𝑎𝑙q)
if 𝑝𝑙𝑎𝑛𝑒_𝑑𝑖𝑠𝑡 > 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 or 𝑛𝑜𝑟𝑚𝑎𝑙_𝑐ℎ𝑒𝑐𝑘 < 0.0

continue
ℎ𝑖𝑡_𝑑𝑖𝑠𝑡_𝑐𝑙𝑎𝑚𝑝𝑒𝑑 ←𝑚𝑖𝑛 (ℎ𝑖𝑡_𝑑𝑖𝑠𝑡q, ℎ𝑖𝑡_𝑑𝑖𝑠𝑡)
ℎ𝑖𝑡_𝑝𝑜𝑖𝑛𝑡 ← 𝑤𝑜𝑟𝑙𝑑q + 𝑑𝑖𝑟 · ℎ𝑖𝑡_𝑑𝑖𝑠𝑡_𝑐𝑙𝑎𝑚𝑝𝑒𝑑

𝑎𝑛𝑔𝑙𝑒_𝑒𝑟𝑟𝑜𝑟 ←
𝑑𝑜𝑡 (𝑑𝑖𝑟, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (ℎ𝑖𝑡_𝑝𝑜𝑖𝑛𝑡 − 𝑤𝑜𝑟𝑙𝑑p))

if 𝑎𝑛𝑔𝑙𝑒_𝑒𝑟𝑟𝑜𝑟 < 𝑐𝑜𝑠 (𝜋
50.0
)

continue
𝑑𝑒𝑝𝑡ℎ_𝑤𝑒𝑖𝑔ℎ𝑡 ←
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑑𝑒𝑝𝑡ℎ_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑑𝑒𝑝𝑡ℎp, 𝑑𝑒𝑝𝑡ℎq)

𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 + =
𝑑𝑒𝑝𝑡ℎ_𝑤𝑒𝑖𝑔ℎ𝑡 · 𝑓 𝑙𝑜𝑎𝑡4(𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒q, ℎ𝑖𝑡_𝑑𝑖𝑠𝑡_𝑐𝑙𝑎𝑚𝑝𝑒𝑑)

𝑤𝑒𝑖𝑔ℎ𝑡 + = 𝑑𝑒𝑝𝑡ℎ_𝑤𝑒𝑖𝑔ℎ𝑡

ℎ𝑖𝑡_𝑑𝑖𝑠𝑡 ← 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒.𝑎
𝑤𝑒𝑖𝑔ℎ𝑡

// store 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒
𝑤𝑒𝑖𝑔ℎ𝑡

Algorithm 5: Radiance filtering in probe space.

2.1.7 Adaptive Cell Size. Throughout the previous sections, we
have used the same heuristic referred to as 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 for guiding

the reprojection, sampling, and filtering of our screen probes. This

quantity directly relates to how permissive the radiance reuse is

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Details are captured up-close (b) Gracefully degraded far out

Figure 10: Relaxing radiance reuse heuristics at a distance.

between neighboring probes; a low value leads to better detail

preservation at the cost of degraded temporal stability, while a

high value helps maintain temporal stability but at the cost of

decreased lighting quality. Therefore, we choose to use an adaptive

value relaxed for objects located further away from the camera, as

illustrated in Figure 10.

Algorithm 6 describes the calculations for the adaptive cell size,

where 𝑓 𝑜𝑣_𝑦 corresponds to the vertical field of view in radians,

and 𝑝𝑟𝑜 𝑗_𝑠𝑖𝑧𝑒 is the targeted cell size in pixels after projection.

We choose 𝑝𝑟𝑜 𝑗_𝑠𝑖𝑧𝑒 to be set to a value of 8.0, which is roughly

the amount of pixel spacing between neighbor probes. Note that

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑎𝑙𝑒 may be precalculated on the CPU as it is constant

across the screen.

function calculate_cell_size(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑐𝑎𝑚𝑒𝑟𝑎)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑎𝑙𝑒 ←
𝑡𝑎𝑛 (𝑓 𝑜𝑣_𝑦 · 𝑝𝑟𝑜 𝑗_𝑠𝑖𝑧𝑒 ·𝑚𝑎𝑥 (1.0

𝑣𝑖𝑒𝑤_ℎ𝑒𝑖𝑔ℎ𝑡
,
𝑣𝑖𝑒𝑤_ℎ𝑒𝑖𝑔ℎ𝑡

𝑣𝑖𝑒𝑤_𝑤𝑖𝑑𝑡ℎ2
))

return 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑠𝑐𝑎𝑙𝑒 · 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑡𝑜_𝑐𝑎𝑚𝑒𝑟𝑎

Algorithm 6: Calculating an adaptive cell size.

2.1.8 Persistent Least-Recently Used (LRU) Side Cache. Thanks to
the temporal upscale, our screen cache is relatively dense across the

screen over throughout multiple frames. However, despite many

probes, we are still heavily undersampled with only one screen

probe available for each 8x8 pixel tile. This is not an issue in itself

as probes are meant to be interpolated from in a process where each

pixel locates its four closest neighbors and performs some form of

the average of the irradiance signal. We will cover the details of

our probe interpolation and irradiance estimation in section 2.4.

This section focuses on the temporal instability issues introduced

by thin geometrical features. We have mentioned that the 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒

heuristic is used to choose whether to keep or reject temporal probe

history and how we adapt this value at a distance to account for far

away regions having a lower ratio of sample count to geometrical

detail. However, there exist situations where the spatiotemporal

radiance reuse between probes keeps failing, causing temporal

wobbling in the illumination.

Figure 11 describes such a scenario:

• Probe 1 is initially spawned on the thin geometrical feature

and calculated.

Figure 11: Temporal reuse failure caused by thin geometry.

• Probe 2 is then spawned but fails to reuse the temporal

information from 1 as the 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 test fails. It is therefore

recalculated from scratch or, in other words, no ray guid-

ing nor radiance blending can be performed. It is worth

noting that, as mentioned in section 2.1.3, we perform the

reconstruction against a 3x3 tile neighborhood in probe

space rather than a single tile. However, we will ignore this

property here to simplify the explanations.

• Finally, probe 3 is spawned but cannot reuse information

from 2 as it is back on the geometrical feature.

The net result of this highlighted scenario is that our temporal

reprojection, ray guiding, and radiance blending keep failing each

frame, leading to an unstable lighting response. However, we can

note that we had valid temporal information for reconstructing

probe 3 just two frames ago. We, therefore, propose to push the

"evicted probes" onto a persistent queue so that such probes may

be reused an arbitrary number of frames later.

In this context, evicted probes are detected when newly spawned

probes fail to reuse data from the reprojected probe within the same

tile during reconstruction. The queue itself is implemented as a

simple array of probe indices, while the radiance data is stored in

another 2D texture with identical dimensions to our regular probe

grid. This choice is arbitrary, and other configurations could be

explored.

In order to use what we will call the "cached probes" as part of the

reconstruction, we need a mechanism for efficiently looking up the

nearby probes for a given pixel. We implement a lookup structure

similar to that used in tile-based deferred rendering pipelines [An-

dersson 2011] by iterating over the list of cached probes prior to the

reconstruction, projecting them onto the screen, and scattering the

probe indices into the dedicated list of the corresponding 8x8 tile.

Since cached probes can persist over many frames, we cannot rely

on the depth buffer to recover the world-space position. Instead,

we store the single-precision floating-point position and packed

world-space normal into a 128-bit integer for each cache entry.

We update our hemisphere reconstruction routine to search for

cached probes in a 3x3 tile neighborhood after completing the 3x3

tile search on the reprojected grid. All radiance contributions are

still parallax-corrected and accumulated into LDS as before. Once

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

Figure 12: Hash map with open addressing and linear probing.

the search is completed, we end up with three possible scenarios

with regard to updating our side cache:

• The previous probe is evicted by the new one, and nomatch-

ing cache entry was found; we create a new cached probe

and schedule the reprojected radiance to be written out to

the cache during the blending pass.

• The previous probe is evicted by the new one but a match-

ing cache entry could be found; we schedule that the re-

projected radiance be written out to the cache during the

blending pass and push the entry onto a most recently used

(MRU) queue.

• Regardless of whether the previous probe was evicted, we

identify the best-matching cache entry that participated in

the reconstruction, if any, and schedule the new radiance

estimate to be written out to the cache during the blending

pass. This step is essential, so the cached radiance does not

lag under changing lighting conditions.

We mentioned an MRU queue in the case of finding a match for

an evicted probe.We indeed perform a reordering pass of the indices

of the cached probes every frame, keeping the MRU elements ahead

while the LRU entries naturally fall behind. This setup allows to

avoid evicting cache entries that would be actively participating in

illuminating the current viewpoint.

Finally, it is worth mentioning that we perform an atomic com-

pare and swap operation before scheduling of the cache updates

mentioned in the above scenarios. This is to avoid a race condition

where multiple work groups may try and update the same cached

content during the radiance blending. Additionally, care must be

taken as entries scheduled for update may have been overwritten by

newly created cache entries. This can be verified trivially by check-

ing the entry’s index inside the LRU queue against the allocation

cursor for the newly created cache entries.

2.2 World Cache
We previously skipped over the details of calculating and caching

the outgoing radiance at each of the secondary path vertices. This

is the role of our world cache, stored in hash cells, where we accu-

mulate and filter the radiance being returned to the screen cache

queries. We describe in this section how we build on the work of

[Binder et al. 2019], using spatial hashing to create our data struc-

ture, which we further extend to allow fast filtering across neighbor

cells using a novel tiling approach.

2.2.1 Caching Outgoing Radiance for Secondary Path Vertices. We

aim at minimizing the memory footprint while requiring little to no

preprocessing of the scene geometry. The latter is an important re-

quirement for supporting dynamic worlds as well as facilitating our

solution’s integration into an existing real-time rendering pipeline.

[Binder et al. 2019] proposes to cache the radiance into cells using

spatial hashing. Their approach provides interesting properties that

we want to build on:

• Their use of spatial hashing adapts to any geometrical input

and moving content.

• Filtering can be performed at no additional cost inside each

cell thanks to the scattering logic used when writing out

the radiance samples.

• The resulting grid is built entirely on the fly, as traversal oc-

curs, therefore only requiring to allocate memory sparsely

where information is needed.

Our world cache addresses the radiance cells by hashing a de-

scriptor for each vertex. The descriptor, which we will describe

next, is hashed using a first hash function to retrieve the index

of a "bucket" as shown in Figure 12. Then, it is hashed a second

time using another hash function to calculate a "fingerprint" which

we use to perform linear probing inside the bucket and locate our

cell in memory. Linear probing is an essential step in solving the

collisions that arise when two distinct descriptors wrongly resolve

to the same bucket after only applying the initial hashing. Finally,

we leverage the study by [Jarzynski and Olano 2020] and pick two

fast hash functions that we found to produce little to no collision

between one another.

As we want to cache the outgoing radiance inside the cells of

our structure, we define our descriptors as the world space position

of each vertex along with the ray’s direction or, in other words,

the input parameters to the rendering equation [Kajiya 1986]. In

practice, both attributes are quantized in order to enable reuse and

filtering across neighboring vertices. Additionally, similarly to the

adaptive size described in section 2.1.7, we adapt the amount of

quantization applied to the position attribute at a distance to ensure

a roughly constant number of samples per cell. The descriptor is

updated to include the quantization level, effectively creating a

radiance level of details (LODs).

Each cell is associated with a decay value, which is reset upon

access, or left to decay toward zero otherwise. As a cell’s decay

reaches zero, we deallocate the entry so its memory can be later

reused for another region of world space. The main bottleneck of a

global hash map, such as the one we are describing, is the extensive

use of atomic operations for each insertion into the cache. While

these operations remain relatively fast, we want to minimize their

use for efficiency reasons. In practice, we only perform a single

lookup for each vertex and cache the resulting index out to memory.

2.2.2 Eliminating Light Leaks. The quantization of the descriptor

attributes mentioned in the previous section allows for efficient

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

Figure 13: Two-level hash map. Each tile is a mipmapped 8x8 region of cells. Tiles and cells follow a linear layout in memory.

Figure 14: Illustrating a possible light leaking scenario.

filtering of the radiance signal across neighbor vertices, while the

adaptivity of the quantization amount ensures a roughly constant

number of samples per cell at any distance. However, this same

quantization may be responsible for light-leaking artifacts under

certain conditions. Figure 14 illustrates such a scenario. Here, the

inner "green wall" is reached by our secondary ray after bouncing

off the outer wall. The hit point belongs to an enclosed dark re-

gion of the scene, and the estimated radiance should be dark too.

However, we also see a "bright radiance" event happening on the

wall’s outer side; here, the environment is bright and sunny. In this

setup, both the bright and dark radiance events are close enough

in world space to equal their positions after quantization. However,

we have seen that our descriptors also include the ray direction,

which can help break apart two nearby vertices into different cells.

In this scenario, though, both the secondary ray and bright radiance

direction are parallel enough that their directions are equal after

quantization. Our secondary ray hit, therefore, shares the same cell

after hashing as the bright radiance event, resulting in a light leak

as illustrated in Figure 15.

We found that such light-leaking situations mainly occur when

the length of the secondary ray is less than the size of the cell being

looked up, or, in other words, the ray hasn’t traveled for more than a

cell. We, therefore, enhance our descriptor by additionally hashing

the boolean result of the (𝑟𝑎𝑦_𝑙𝑒𝑛𝑔𝑡ℎ < 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒) inequality test.

(a) Without light leak fixup (b) With light leak heuristic

Figure 15: Fixing light leaks caused by thin occluders.

This helps break the two events mentioned above into two distinct

cells fixing our leaking issue as seen in Figure 15.

2.2.3 Prefiltering Radiance. Filtering across cells requires quickly

accessing neighbors; performing additional lookups in even just

a 3x3x3 hash-space neighborhood ends up being prohibitively ex-

pensive, so we propose implementing a two-level data structure.

In this context, cells are not directly indexed by the buckets but

rather grouped into tiles, as illustrated in Figure 13. Indexing a

cell requires its tile index and relative position inside the tile. Each

tile contains a fixed number of cells that we can store in memory

using a linear layout. This layout also includes MIP levels, which we

use for prefiltering the radiance, thus enabling fast spatial filtering

across cells within a tile. Tiling doesn’t help, however, in filtering

the radiance between tiles, which remains expensive. Instead, we

rely on our screen cache to hide the resulting structured artifacts

at no additional cost.

Each tile represents a fixed volume of the scene; however, a 3D

encoding of the cells isn’t necessary for caching and filtering the

radiance. Indeed, surfaces tend to form a plane when seen at a

small enough scale. Thus, a 2D tile of cells is sufficient for faithfully

describing the radiance of a local region of space. We build our tiles

by projecting along the main axis for indexing the cell within its tile.

The largest component of the outgoing direction defines the main

axis, and the projection is made by discarding the corresponding

coordinate when computing the cell offset within its parent tile.

This 2D rather than 3D tiling approach helps maximize the tile

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Using only shadow rays (b) With radiance feedback

Figure 16: Approximate multi bounce w/ temporal feedback.

occupancy, or, in other words, the ratio of used versus unused cells.

This ultimately helps reduce the overall memory budget and keep

the filtering fast.

Reducing the variance to an acceptable level typically requires

several frames worth of contributions inside a cell. The outgoing

radiance, therefore, needs to be filtered before returning to the

screen cache queries, especially for cells that have been recently

created. Contributions are temporally accumulated into the cells

at the first MIP level using an exponential moving average [Karis

2014]. Other MIP levels are then iteratively generated using box

filtering of radiance samples from the upper level in a single pass.

In practice, we found that the best performance was achieved with

a tile size of 8x8. Finally, we accumulate the radiance into the screen

cache queries using the first finest level for which enough samples

have been accumulated.

2.2.4 Evaluating Lighting at Secondary Path Vertices. We have de-

scribed how we cached and filtered the direct lighting at secondary

path vertices inside a two-level hash grid data structure. However,

the direct lighting still needs to be evaluated. First, we reuse the

illumination from the last frame using temporal reprojection. If

the reprojection succeeds, we can reuse the radiance sample and

forego any further, potentially expensive calculations. However,

if the reprojection fails, we need a reliable way of estimating the

lighting at the vertex site. This is the role of our light sampling

implementation, which we describe in section 2.3. It is worth not-

ing that when reprojecting the last frame’s lighting, the reused

radiance sample encodes the direct lighting as well as an indirect

lighting estimate. This is an interesting property, which leads to

what we refer to as "temporal radiance feedback" and allows us to

approximate an infinite number of light bounces as seen in Figure

16. This approximative multi-bounce illumination is estimated at no

additional cost over multiple frames. Finally, it is worth noting that

the result of the reprojection is filtered, thus injecting a noise-free

radiance sample into our world cache, leading to an interesting

reduction in the variance of the resulting indirect illumination.

2.3 Light Sampling
Wehave seen that populating the radiance cache requires evaluating

the direct lighting at each of our hit points. Our implementation

supports traditional real-time visibility techniques such as shadow

maps; however, such techniques typically do not scale to large

numbers of lights. We, therefore, propose a light sampling strategy,

using raytracing, to stochastically sample the lighting distribution

and fill the radiance cache.

(a) Blotches from hash cells noise (b) Fixed w/ world-space ReSTIR

Figure 17: Using ReSTIR for efficient light sampling.

2.3.1 Reservoir-based Resampling. Sampling the direct lighting

distribution can lead to large variance when a significant proportion

of sampled shadow rays do not hit the light source, therefore, failing

to contribute meaningfully to the estimate. This can strongly impact

the world cache variance which flows through to the screen cache

and ultimately results in increased onscreen noise as illustrated in

Figure 17. Therefore, efficient importance sampling of the lighting

distribution is key to keeping the noise to a minimum while casting

as few rays as possible.

To importance sample the light candidates, we use a form of

ReSTIR but implement world-space reservoir reuse described by

Boissé instead of screen space [Boissé 2021; Ouyang et al. 2021].

Indeed, screen-space reuse is not amenable to sampling the lighting

at secondary path vertices, as neighbor vertices in world space are

not necessarily close, or even available, in screen space. We start

by generating a reservoir for each of the hit positions using Resam-

pled Importance Sampling (RIS) [Talbot et al. 2005] and Weighted

Reservoir Sampling (WRS) [Chao 1982]. We will describe in the

next section how we try and select the most important lights for a

given point to initialize the reservoirs better.

The generated reservoirs are then stored inside a hash grid,

using a similar approach to the spatial hashing technique used

for the world cache. In this case, however, we only supply the

adaptively quantized position of the shaded vertex as input to our

hash functions. Still, we store the surface normal into an additional

data stream, which allows for bilateral thresholding during the

reuse, helping to reduce the darkening bias introduced by ReSTIR

[Boissé 2021].

To improve performance for real-time applications, our approach

deviates from a typical ReSTIR implementation and aims at reduc-

ing the number of shadow rays generated per reservoir and the

number of resampling passes. Our approach skips the visibility ray

altogether and only uses a single shadow ray after the resampling

has been completed. In effect, this reduces the required number

of shadow rays to one per reservoir, but it increases the bias in

the form of darkening, as highlighted in Figure 17. We also forego

the spatial resampling passes and rely on a single temporal reuse

pass. This approach reduces the noise within a fixed raytracing

budget, allowing the world cache to be less aggressive with how

the radiance is retained temporally. This is an essential requirement

for achieving low latency response to lighting changes.

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

2.3.2 Light Grid Lookup Structure. Reservoir resampling helps im-

prove the light sampling quality by effectively sharing the sampling

effort across neighbor vertices. However, resampling can only be

as good as the initial state it is being fed. Therefore, we look to

improve this initial state by generating a global light grid struc-

ture storing the most important lights for each spatial cell prior to

the reservoir generation. This helps produce better candidates for

the reservoir generation phase, therefore greatly improving on the

resampled output produced by our reservoir pipeline.

We generate the light grid by first determining its bounds from

the positions of every hit point. From there, we can create an axis-

aligned bounding box (AABB) around the scene extents containing

all these intersection positions. Within these bounds, we then create

a uniform voxel grid. Each grid axis dimension is calculated to

ensure grid cells remain square and no single axis has more than a

user-configurable maximum cell count. Each grid cell finally holds a

fixed-size list of the most important lights for that scene region. The

size of this list is determined to be the minimum between a user-

configurable value and the number of lights in the scene. To weight

each light’s importance to the grid cell, we calculate the relative

luminance of the total deposited light from each light source over

the cell’s total volume. The total deposited light is calculated from

the radiance 𝐿 at each point 𝑝 within the cells volume 𝑉 using:∭
𝑉

𝐿(𝑝) 𝑑𝑥 𝑑𝑦 𝑑𝑧 (1)

Equation (1) must be solved for all supported light types which

are point, spot, directional, area, and environment in our imple-

mentation. However, it is not possible to integrate this quantity

analytically. One numerical solution is to generate multiple samples

within the volume and combine them in order to approximate the

integral [Pharr and Humphreys 2010]. This has the downside of re-

quiring many samples to properly converge to the correct value and

ensure all lighting is correctly detected when lights only partially

cover the cell. For instance, a spotlight whose cone only passes

through a small volume region may be entirely skipped if none of

the generated samples fall within the light cone. Instead, we use

a fast, cheap approximation to Equation (1) by sampling the light

radiance at each corner of the grid cell and tri-linearly interpolating

across the entire volume. During this step, we ignore the cone angle

of spotlights and treat them as point lights. We then prepend an ad-

ditional step to cull lights quickly by clamping the area of effect of

each light. We then perform an intersection test between the light’s

area of effect and the grid cell and ignore lights that do not intersect.

For point and spot lights, this area of effect is based on the light’s

user-supplied maximum distance attribute. Area lights, however,

have an infinite area of effect, so we calculate a maximum distance

value by determining the range in which the light’s contribution

falls below a user-supplied threshold value. This threshold value

can thus be used to trade performance for light sampling bias. For

point lights, the area of effect becomes a sphere; for spotlights, it is

their outer cone; and for area lights, it is the hemisphere above the

surface. We further optimize this test by treating each cell’s AABB

as a bounding sphere, as this significantly simplifies the calcula-

tions while only introducing minimal error. The above algorithm

trades accuracy for performance in multiple locations, but these

Figure 18: Fixing interpolation failures using denoiser hint.

inaccuracies are hidden by the subsequent reservoir resampling

passes.

The light grid structure is finally used to feed samples as batches

into each of the generated reservoirs. Samples are selected by gen-

erating a random index into the light list of the grid cell overlapping

the shaded vertex and are then resampled into a reservoir using

the procedure described in section 2.3.1.

2.4 Irradiance Estimation
We have seen that our screen cache encodes the incoming radiance

in every direction over the primary visible surfaces. However, we

are still left to estimate the irradiance. This section describes how

to leverage our probe grid and evaluate the irradiance for every

pixel on the screen.

2.4.1 Per-Pixel Interpolation. As probes are placed sparsely across

the screen, we compute a weighted average of the radiance from

the neighbor probes to reconstruct the lighting signal. This process,

usually called interpolation, is performed for every pixel at the

target resolution. If we reflect on the rest of the pipeline presented

so far, this is the only pass running at full rate, with regards to

target resolution, along with the probe reprojection pass described

in 2.1.1.

We start out by finding the neighboring probes in all 4 directions

using the 𝑓 𝑖𝑛𝑑_𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑟𝑜𝑏𝑒 () function defined in 2.1.5. The con-

tribution for each probe is weighted using an edge-aware function

based on the surface depth and normal. In this process, we also

ensure that nearby probes, lying further away than 𝑐𝑒𝑙𝑙_𝑠𝑖𝑧𝑒 units

from the pixel’s plane, are discarded by assigning a weight of 0. If

all probes get assigned a null weight, then interpolation fails, which

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Disocclusionmask (b) Dilated blur mask (c) Filtered irradiance

Figure 19: Spatial filtering guided by dilated blur mask.

can lead to light-leaking artifacts as highlighted in Figure 18. In

such cases, we fall back to setting equal weights for all neighbor

probes, which we refer to as "relaxed interpolation". We flag pixels

calculated using relaxed interpolation in the alpha channel of the

resolved texture; this information will be used later as a hint for

the denoiser to try and discard the evaluated sample.

Finally, we jitter the pixel’s position before performing the search

for neighbor probes to break up the structured artifacts resulting

from all neighboring pixels interpolating from the exact same set of

probes. It is worth noting, however, that we cancel the jitter if the

resulting position lands outside the original pixel’s plane [Wright

2021]. This cancellation is necessary to prevent an increase in the

number of pixels relying on relaxed interpolation.

2.4.2 Spherical Harmonics. To accurately evaluate the irradiance

encoded by a given probe, we need to fetch nearly all the stored

radiance samples, that is, all the mapped directions across the ori-

ented hemisphere. We instead project the screen probes to spherical

harmonics (SH) prior to the interpolation pass.

Spherical harmonics indeed provide several key benefits to esti-

mating the irradiance:

• High-frequency noise can be filtered at no additional cost

by limiting the projection to the first three bands.

• Irradiance can be precisely estimated while reducing the

requirements on the amount of memory to be fetched.

• Finally, we update our reprojection pass also to reproject the

SH representation of each probe. We, therefore, only need

to perform the projection for the newly spawned probes,

which drastically reduces the cost of the operation.

The irradiance is then computed using the dot product of the

projected cosine lobe with the projected radiance. The projected

radiance is fetched from the cache while the cosine lobe is projected

analytically [Ramamoorthi and Hanrahan 2001].

2.4.3 Denoising. The interpolated irradiance typically exhibits low-
frequency noise from the probes and high-frequency noise caused

by the pixel jittering mentioned in 2.4.1. The low-frequency noise

manifests itself as boiling in areas where the incoming radiance is

the most noisy, while the high-frequency noise is similar to that

of a dithering pattern. These issues can be solved using a simple

denoiser based on temporal accumulation and an adaptive spatial

filter, where we compute the spatial filter radius depending on

the number of samples accumulated in history. As not all pixels

have a history, such as disoccluded pixels, we adapt the filtering

radius to the number of accumulated samples to reduce the noise

(a) GI-1.0 irradiance estimation (b) Combined w/ screen-space GI

Figure 20: Using short screen traces to recover small details.

as illustrated in Figure 19. The spatial filter uses an edge-aware

weight based on depth and normal. When interpolation fails and

no history is available, we use the relaxed irradiance interpolation

instead of outputting no irradiance.

3 SCREEN-SPACE GLOBAL ILLUMINATION
The technique described so far can typically lack details as small-

scale occlusion and color bleeding, smaller than the space between

screen probes, cannot be captured by the grid. We propose a hybrid

approach to mitigate this issue and implement short-range screen-

space ambient occlusion and global illumination to fill in themissing

details. This section explains how we combine screen-space global

illumination with the pipeline we have described so far.

3.1 Combining Near and Far Fields
As the screen cache captures the low-frequency global illumina-

tion well, we only add global illumination from screen-space tech-

niques where the high-frequency information is missing. Following

[Jimenez et al. 2016] and [Mayaux 2018], we create a mask using

a bent cone, which is a cone centered on the bent normal with

an aperture angle derived from the ambient occlusion. Instead of

integrating the clamped cosine lobe with the incoming radiance, we

multiply the bent cone and the clamped cosine lobe, then integrate

the product with the incoming radiance. Ringing artifacts can occur

in darker areas. This issue can be mitigated by using windowing

with a small factor, as done in [Sloan 2008].

3.2 Horizon-Based Occlusion
While most screen-space methods could be used or extended, we fo-

cus on horizon-based methods [Jimenez et al. 2016] [Mayaux 2018],

which offer a good trade-off between performance and quality for

global near-field illumination (i.e., using a short radius). We use

temporal accumulation for removing interpolation artifacts after

the irradiance integration, so we only compute one slice per frame

using a few steps. The bent normal and ambient occlusion estima-

tion leads to a noisy mask approximation, which we denoise using

the spatiotemporal loop described in 2.4.3.

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

Table 1: GI-1.0 performance results (in ms)

Raytracing

(DXR-1.1)

Caching

& sampling

Interpolate

& denoise

Total
time

AMD

Radeon™

RX 6900 XT

NVIDIA

GeForce

RTX™ 3080

AMD

Radeon™

RX 6900 XT

NVIDIA

GeForce

RTX™ 3080

AMD

Radeon™

RX 6900 XT

NVIDIA

GeForce

RTX™ 3080

AMD

Radeon™

RX 6900 XT

NVIDIA

GeForce

RTX™ 3080

Gas station

(99k triangles)

0.235 0.132 1.032 1.220 0.665 0.554 1.932 1.906

Flying world

(267k triangles)

0.532 0.292 1.226 1.460 0.705 0.574 2.463 2.326

Kitchen #1

(1.4M triangles)

0.336 0.198 1.633 2.122 0.765 0.656 2.734 2.976

Kitchen #2

(9.0M triangles)

0.676 0.343 1.693 2.327 0.755 0.756 3.124 3.426

4 RAY TRAVERSAL
The method described in this paper requires ray casting operations

which we implement with hardware-accelerated ray tracing using

a traditional Bounding Volume Hierarchy (BVH) to accelerate in-

tersection calculations. However, the global illumination algorithm

can use other methods for ray casting as long as the method returns

the hit point of a ray. We also implemented ray casting using a

hybrid of hardware-accelerated BVH ray tracing and distance field

tracing [Bartels and Harada 2022]. We improved the ray tracing

quality by using BVH ray tracing at the place where distance field

tracing only produces a large error. Although it was implemented,

the speed-up we observed was not big enough to employ it as the

default option, as our technique is already optimized to trace a

reduced number of rays. The method would pay off if the algorithm

requires more ray casting.

5 IMPLEMENTATION AND RESULTS
We implemented our GI-1.0 pipeline inside our Direct3D12 research

framework using DXR-1.1 for accelerating the ray intersection

queries. We prepared some test scenes shown in Figure 22 and

used them to evaluate the runtime performance of our technique,

estimating both the direct and indirect lighting at ¼ samples per

pixel at 1080p.

We have broken down the timings into 3 categories:

• Raytracing represents approximately the time spent in ray

traversal. We mention approximately here as other bits of

logic are run in both the closest-hit kernel (i.e., screen cache

rays) and any-hit kernel (i.e., world cache rays). However,

the cost is vastly dominated by ray traversal.

• Caching & sampling represents the time spent maintain-

ing the screen cache and world cache representations. This

includes all guiding, sampling, reconstruction, filtering, pre-

filtering, reprojection, etc.

• Interpolate & denoise represents the time spent in the per-

pixel interpolation pass followed by the spatiotemporal de-

noiser. This includes projecting the screen probes to spheri-

cal harmonics and estimating the disocclusionmask, further

dilated into a blur mask for filtering.

Table 1 shows the breakdown and the total time spent executing

our GI-1.0 pipeline
1
. We can see that the total time ranges from

1.932ms to 3.124ms on an AMD Radeon™ RX 6900 XT GPU. We

achieve this performance with small amounts of noise and at a low

raytracing cost thanks to our caching scheme. A recorded video of

our technique is also available at GPUOpen.com.

We also implemented our global illumination pipeline as a plugin

for Unreal Engine 5 (UE5). This allowed us to validate our technique

and choices across a wider variety of environments and lighting sce-

narios. It further enabled the ability to switch between our solution

and UE5’s Lumen renderer for performance and quality compar-

isons. We present this comparison, considering only the indirect

lighting signal, using the sample UE5 Archviz scene in Figure 21.

These images are screen captures of the UE5 engine running Lumen

and GI-1.0.

It is worth noting, however, that our UE5 integration remains

incomplete, resulting in materials being approximated in our plugin.

This is not a limitation of our GI-1.0 pipeline but a consequence of

the important engineering effort required to evaluate UE5’s material

system accurately.

6 LIMITATIONS AND FUTUREWORK
Wehave presented a complete raytraced global illumination pipeline

aimed primarily at estimating the indirect diffuse lighting of a scene

dynamically at runtime. Direct lighting from environment maps

and emissive surfaces is also supported, at no additional cost, thanks

to the robustness of our ray guiding implementation.

6.1 Limitations
We have mentioned in section 2.2.4 that we could estimate an

infinite number of light bounces over multiple frames thanks to

our radiance feedback mechanism. While this technique provides

some interesting performance advantages, on top of the visual

improvements, it only really works when the contributing reflector

is visible inside the previous frame. This can be detrimental to visual

fidelity, particularly in interior scenes, where bounced lighting

dominates. In some future work, we want to look at efficient ways of

directly approximating path continuation in hash space to achieve

fast and reliable multi-bounced lighting everywhere in world space.

6.2 Glossy Reflections
Glossy reflections can be rendered with stochastic methods similar

to [Stachowiak 2015]. Although our implementation of glossy re-

flections is still in progress, here we briefly describe the algorithm

we are implementing. We generate importance-sampled directions

1
Based on AMD internal testing, September 2022, using a desktop system configured

with a Radeon™ RX 6900 XT GPU, Ryzen™ 7 5800X CPU, 32GB RAM, and Windows

10 vs. a similarly configured system with an NVIDIA RTX™ 3080 GPU to measure

the performance results (in ms) of both systems in DXR-1.1 raytracing, caching &

sampling, and interpolation & denoising. Results will vary.

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

(a) Lumen’s output using SW traversal (2.6ms) (b) GI-1.0’s output using HW traversal (2.4ms)

Figure 21: Running our GI-1.0 pipeline inside Unreal Engine 5.

(a) Gas Station (b) Flying world

(c) Kitchen #1 (d) Kitchen #2

Figure 22: Test scenes.

from the GGX lobe [Heitz 2018] and evaluate the reflected radi-

ance using our screen and world caches. As screen probes store

low-frequency illumination, directly using this representation for

low-roughness surfaces gives an overly blurry result. In such situa-

tions, we instead cast a ray in the sampled direction and evaluate

the incoming radiance by accessing the environment map if the

ray misses or the world cache at the hit position. One advantage of

using our caching hierarchy for reflections is that we can account

for multi-bounce lighting solely by looking up our cached radiance

in memory.

6.3 Future Work
The current light grid sampling approach provides a list of impor-

tant lights for a given scene area; it is interesting to note that this

also includes the visible region of the view frustum. As such, it

may be helpful to leverage this structure to sample the lighting at

primary path vertices and enable general direct lighting support

from many light sources. The metric used in calculating the light

grid importance adds bias to the rendering as we clamp the light

intensity. Adding a non-biased approach is future work [Tokuyoshi

and Harada 2016].

GI-1.0: A Fast Scalable Two-Level Radiance Caching Scheme for Real-Time Global Illumination, Boissé et al.

ACKNOWLEDGMENTS
We would like to thank Bruno Stefanizzi and Prashanth Kannan

for their support of the research, as well as Holger Gruen and

Oleksandr Kupriyanchuk for their help in reviewing this paper.

Gas station and Flying world were created by John Constantine

and burunduk, respectively. AMD, AMD Radeon and the AMD

Arrow logo, and combinations thereof are trademarks of Advanced

Micro Devices, Inc. Other product names used in this publication

are for identification purposes only and may be trademarks of their

respective companies.

REFERENCES
Johan Andersson. 2011. DirectX 11 Rendering in Battlefield 3. https://www.ea.com/

frostbite/news/directx-11-rendering-in-battlefield-3

Pieterjan Bartels and Takahiro Harada. 2022. Combining GPU Tracing Methods within

a Single Ray Query. In SIGGRAPHAsia 2022 Technical Communications, to appear

(SA ’22 Technical Communications). Association for Computing Machinery, New

York, NY, USA.

Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2019. Massively Parallel Path

Space Filtering. https://doi.org/10.48550/ARXIV.1902.05942

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, andWojciech

Jarosz. 2020. Spatiotemporal Reservoir Resampling for Real-Time Ray Tracing with

Dynamic Direct Lighting. ACM Trans. Graph. 39, 4, Article 148 (jul 2020), 17 pages.

https://doi.org/10.1145/3386569.3392481

Guillaume Boissé. 2021. WORLD-SPACE SPATIOTEMPORAL RESERVOIR REUSE

FOR RAY-TRACED GLOBAL ILLUMINATION. In SIGGRAPH Asia 2021 Technical

Communications (Tokyo, Japan) (SA ’21 Technical Communications). Association

for Computing Machinery, New York, NY, USA, Article 22, 4 pages. https://doi.

org/10.1145/3478512.3488613

Min-Te Chao. 1982. A General Purpose Unequal Probability Sampling Plan. Biometrika

69, 3 (Dec 1982), 653–656.

Zina H. Cigolle, Sam Donow, Daniel Evangelakos, Michael Mara, Morgan McGuire,

and Quirin Meyer. 2014. A Survey of Efficient Representations for Independent

Unit Vectors. Journal of Computer Graphics Techniques (JCGT) 3, 2 (17 April 2014),

1–30. http://jcgt.org/published/0003/02/01/

William Donnelly and Andrew Lauritzen. 2006. Variance ShadowMaps. In Proceedings

of the 2006 Symposium on Interactive 3D Graphics and Games (Redwood City,

California) (I3D ’06). Association for Computing Machinery, New York, NY, USA,

161–165. https://doi.org/10.1145/1111411.1111440

Gene Greger, Peter Shirley, Philip M. Hubbard, and Donald P. Greenberg. 1998. The

Irradiance Volume. IEEE Comput. Graph. Appl. 18, 2 (mar 1998), 32–43. https:

//doi.org/10.1109/38.656788

J. H. Halton. 1964. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence.

Commun. ACM 7, 12 (dec 1964), 701–702. https://doi.org/10.1145/355588.365104

Mark Harris, Shubhabrata Sengupta, and John D. Owens. 2007. Parallel Prefix Sum

(Scan) with CUDA. In GPU Gems 3, Hubert Nguyen (Ed.). Addison Wesley, Chap-

ter 39, 851–876.

Eric Heitz. 2018. Sampling the GGX Distribution of Visible Normals. Journal of

Computer Graphics Techniques (JCGT) 7, 4 (30 November 2018), 1–13. http://jcgt.

org/published/0007/04/01/

Mark Jarzynski and Marc Olano. 2020. Hash Functions for GPU Rendering. Journal

of Computer Graphics Techniques (JCGT) 9, 3 (17 October 2020), 20–38. http:

//jcgt.org/published/0009/03/02/

Jorge Jimenez, Xian-Chun Wu, Angelo Pesce, and Adrián Jarabo. 2016. Practical

Real-Time Strategies for Accurate Indirect Occlusion. Technical Report.

James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4

(aug 1986), 143–150. https://doi.org/10.1145/15886.15902

Brian Karis. 2014. HIGH-QUALITY TEMPORAL SUPERSAMPLING.

http://advances.realtimerendering.com/s2014/#_HIGH-QUALITY_TEMPORAL_

SUPERSAMPLING

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and

Chris Wyman. 2022. Generalized Resampled Importance Sampling: Foundations of

ReSTIR. ACM Trans. Graph. 41, 4, Article 75 (jul 2022), 23 pages. https://doi.org/

10.1145/3528223.3530158

Timothy Lottes. 2015. GPU Unchained. https://www.youtube.com/watch?v=

WzpLWzGvFK4

Zander Majercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, and Morgan McGuire.

2019. Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields.

Journal of Computer Graphics Techniques (JCGT) 8, 2 (5 June 2019), 1–30. http:

//jcgt.org/published/0008/02/01/

Benoît Mayaux. 2018. Horizon Based Indirect Lighting (HBIL). Technical Report.

Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni.

2021. ReSTIR GI: Path Resampling for Real-Time Path Tracing. Computer Graphics

Forum (2021).

Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering, Second Edition:

From Theory To Implementation (2nd ed.). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

Ravi Ramamoorthi and Pat Hanrahan. 2001. An Efficient Representation for Irradiance

Environment Maps. In Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH ’01). Association for Computing

Machinery, New York, NY, USA, 497–500. https://doi.org/10.1145/383259.383317

Takafumi Saito and Tokiichiro Takahashi. 1990. Comprehensible Rendering of 3-

D Shapes. In Proceedings of the 17th Annual Conference on Computer Graphics

and Interactive Techniques (Dallas, TX, USA) (SIGGRAPH ’90). Association for

Computing Machinery, New York, NY, USA, 197–206. https://doi.org/10.1145/

97879.97901

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla

Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, and

Marco Salvi. 2017. Spatiotemporal Variance-Guided Filtering: Real-Time Recon-

struction for Path-Traced Global Illumination. In Proceedings of High Performance

Graphics (Los Angeles, California) (HPG ’17). Association for Computing Machin-

ery, New York, NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3105762.

3105770

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Esti-

mation for Real-Time Adaptive Temporal Filtering. Proc. ACM Comput. Graph.

Interact. Tech. 1, 2, Article 24 (aug 2018), 16 pages. https://doi.org/10.1145/3233301

Peter-Pike Sloan. 2008. Stupid Spherical Harmonics (SH) Tricks. Game Developers

Conference (01 2008).

Tomasz Stachowiak. 2015. Stochastic screen-space reflections. In ACM SIGGRAPH

Courses 2015: Advances in Real-Time Rendering in Games.

Matt Swoboda. 2012. Advanced Procedural Rendering with DirectX 11. https://www.

gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-DirectX

Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global

Illumination. In Eurographics Symposium on Rendering (2005), Kavita Bala and

Philip Dutre (Eds.). The Eurographics Association. https://doi.org/10.2312/EGWR/

EGSR05/139-146

Yusuke Tokuyoshi and Takahiro Harada. 2016. Stochastic Light Culling. Journal

of Computer Graphics Techniques (JCGT) 5, 1 (2016), 35–60. https://jcgt.org/

published/0005/01/02/

Daniel Wright. 2021. Radiance Caching for Real-Time Global Illumination. https:

//advances.realtimerendering.com/s2021/index.html#_mrnver3hf0ag

https://sketchfab.com/3d-models/gas-stations-fixed-b6e9be9f475a4930865e281e02539dc6
https://sketchfab.com/3d-models/flying-world-battle-of-the-trash-god-350a9b2fac4c4430b883898e7d3c431f
https://www.ea.com/frostbite/news/directx-11-rendering-in-battlefield-3
https://www.ea.com/frostbite/news/directx-11-rendering-in-battlefield-3
https://doi.org/10.48550/ARXIV.1902.05942
https://doi.org/10.1145/3386569.3392481
https://doi.org/10.1145/3478512.3488613
https://doi.org/10.1145/3478512.3488613
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1145/1111411.1111440
https://doi.org/10.1109/38.656788
https://doi.org/10.1109/38.656788
https://doi.org/10.1145/355588.365104
http://jcgt.org/published/0007/04/01/
http://jcgt.org/published/0007/04/01/
http://jcgt.org/published/0009/03/02/
http://jcgt.org/published/0009/03/02/
https://doi.org/10.1145/15886.15902
http://advances.realtimerendering.com/s2014/#_HIGH-QUALITY_TEMPORAL_SUPERSAMPLING
http://advances.realtimerendering.com/s2014/#_HIGH-QUALITY_TEMPORAL_SUPERSAMPLING
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158
https://www.youtube.com/watch?v=WzpLWzGvFK4
https://www.youtube.com/watch?v=WzpLWzGvFK4
http://jcgt.org/published/0008/02/01/
http://jcgt.org/published/0008/02/01/
https://doi.org/10.1145/383259.383317
https://doi.org/10.1145/97879.97901
https://doi.org/10.1145/97879.97901
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3233301
https://www.gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-DirectX
https://www.gdcvault.com/play/1015455/Advanced-Procedural-Rendering-with-DirectX
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://doi.org/10.2312/EGWR/EGSR05/139-146
https://jcgt.org/published/0005/01/02/
https://jcgt.org/published/0005/01/02/
https://advances.realtimerendering.com/s2021/index.html#_mrnver3hf0ag
https://advances.realtimerendering.com/s2021/index.html#_mrnver3hf0ag

	Abstract
	1 Introduction
	2 GI-1.0
	2.1 Screen Cache
	2.2 World Cache
	2.3 Light Sampling
	2.4 Irradiance Estimation

	3 Screen-Space Global Illumination
	3.1 Combining Near and Far Fields
	3.2 Horizon-Based Occlusion

	4 Ray Traversal
	5 Implementation and Results
	6 Limitations and Future Work
	6.1 Limitations
	6.2 Glossy Reflections
	6.3 Future Work

	Acknowledgments
	References

