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Figure 1: Test scenes used to evaluate the texture streaming efficiency. These scenes are rendered at 1280 × 720 resolution by
loading only 0.9% to 6.3% of the entire texture data thanks to the texture streaming.

ABSTRACT
Although light transport simulations generate realistic images, the
realism of the synthesized images is limited by the input assets, such
as geometries, which are specific attributes of objects, and textures.
However, the memory size for the assets may not be large enough
for rendering because the assets can be enormous as their resolution
increases. Most significantly, the memory extensibility of a device
on which compute units and memory are integrated, such as a
GPU, could be low. Thus, rendering fine-detail assets with limited
memory is a critical challenge for rendering software to achieve
photo-realistic image synthesis. Radeon™ ProRender chooses on-
demand data streaming for geometries and textures where the
data transfer to the device is deferred until the rendering process
requires the data. We call this streaming architecture. We choose
this architecture because it has two benefits. First, it can reduce the
total memory allocation as the rendering process may not require
some parts of the assets. Second, it bounds the maximum memory
allocation throughout the rendering by adaptively discarding the
transferred assets.

This technical report explains the architecture and implementa-
tion of the geometry and texture streaming in Radeon™ ProRender.
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1 INTRODUCTION
Detailed scene data, such as geometries andmaterials for light trans-
port simulation, is essential for rendering a photo-realistic image.
The geometries and materials have to be detailed enough to achieve
the expected quality of the rendering. Content creation software
has achieved a maximum computationally reachable level of detail
in asset editing nowadays [Adobe 2022], [MAXON 2022]. However,
such complexity often is presented by an enormous amount of data.
The procedural process to generate assets can avoid data-size explo-
sion. However, it is often baked as a classic discrete representation
for the rendering process, such as polygons and pixels, because of
performance and data portability requirements.

Dealing with huge amounts of data has long been a challenging
task in rendering of complex images. To deal with huge assets,
the Reyes image rendering architecture applied a sophisticated
rasterization algorithm using data locality on the limited memory
[Cook et al. 1987]. Shortly after that, ray-traced global illumination
took the place of rasterization for film production because of the
evolution of processors andmemory. However, its incoherent access
to memory causes a significant issue because the memory capacity
is finite. A classical method but an effective way for dealing with
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incoherent access on limited memory is to defer data transfer to
the memory until the data is needed [Peachey 1990].

However, the data transfer to memory on the GPU is an expen-
sive operation that intercepts the tasks. Thus, the memory man-
agement has to be specialized to the GPU. The images in Fig. 1
were rendered on a GPU without storing the entire scene data on
the video memory. Such domain-specific memory management not
only maximizes software performance but increases portability.

Radeon™ ProRender, a uni-directional path tracer on the GPU,
chooses the deferred data transfer approach for geometry and tex-
ture memory management to maximize scalability against the de-
tails of the input assets [Advanced Micro Devices, Inc. 2020a]. The
data required to render the scene is streamed to the video memory,
which is kept as cache. The cached data could be evicted depending
on the eviction policy of the cache. Our streaming architecture
reduces the total allocation amount and controls the maximum
allocation size of the cache adaptively to the system. As rendering
on the GPU often requires allocating a large amount of temporal
data for parallelization [Laine et al. 2013], the allocation controlla-
bility of the streaming approach also benefits optimizing the entire
performance.

We first explain the design and implementation of the streaming
architecture of the renderer. After describing themethod, we discuss
the statistics we captured from several test scenes. At last, we show
that the streaming architecture makes it possible to render scenes
by loading just a fraction of the entire texture data.

2 RELATEDWORKS
Rendering a scene that does not fit into a system memory has al-
ways been a challenge in ray tracing and rasterization. Peachey
discussed the inefficiency of loading all the texture data from the
disk and proposed a tile-based texture caching system using a MIP
map for the Reyes rendering pipeline [Cook et al. 1987; Peachey
1990]. Since then, there have been many studies on the topic. Pharr
et al. proposed a path tracing system for loading texture and geom-
etry on-demand from disk, where scene geometries are managed
by a hierarchical grid acceleration structure, which is also used
to reduce the cache miss by reordering the ray execution [Pharr
et al. 1997]. Our work goes in the same direction but designs an
on-demand loading and streaming architecture for texture and
geometry implemented in a GPU renderer — Radeon™ ProRender.

3 STREAMING APPROACH
The streaming approach trades the scalability of the detailed in-
put assets for performance because the memory management for
streaming architecture intercepts the algorithm for the data trans-
fer. Although the algorithm achieves the best performance with
all assets stored on the GPU in most cases, streaming architecture
may compensate for the overhead by minimizing transfer due to
the memory access locality. Specifically, streaming architecture
is an appropriate choice for Interactive Preview Rendering (IPR)
in production because of a shorter time to get the first pixel by
minimizing data transfers and preprocessing. Therefore, streaming
architecture is beneficial depending on the use cases even in an
environment with sufficient memory. Thus, streaming architecture
on Radeon™ ProRender is designed to minimize the overhead and

maximize these benefits in the workflows for two data types in
domain-specific ways. The first is for geometries and Bounding
Volume Hierarchies (BVHs), and the second is for textures. Memory
access from the kernel on the GPU often has limitations, such as
memory size and inaccessibility to persistent storage. Thus, the
transfer is separately executed on the host code from the task that
needs the data streaming. In the following, we will describe the
details of our approaches.

3.1 Geometry Streaming
As geometries, including BVHs, are needed for ray casting and shad-
ing, our streaming approach manages geometries and their BVHs
in Radeon™ ProRender. Multi-level BVH is widely used to deal with
instancing and dynamic updates efficiently with a sacrifice of the
performance compared to using a single BVH for all geometries. We
use two-level BVH as we need flexibility. We choose bottom-level
BVHs and their geometries as the granularity of streaming archi-
tecture because of its independence. The bottom-level BVHs are
transferred to the memory with their geometries, such as vertices,
indices, texture coordinates, etc., when the ray-cast traversal needs
it. The top-level BVH is always stored in the memory because all
rays visit the BVH. We also do not stream light-source geometries
because it is frequently accessed for direct lighting calculation,
which is known as next-event estimation for path tracing. It con-
sumes some memory depending on the memory size taken by the
light geometries, and we empirically assume that the light geome-
tries take less memory than the others. In practice, we transfer all of
the geometries and their BVHs as a preprocess when the geometries
on a scene are small enough for the video memory to achieve the
best performance; otherwise, the streaming architecture is used.

3.1.1 Preprocess. We build BVHs for all the scene geometries and
then for its top-level BVH before we the rendering starts, to alle-
viate stalls due to interruptions for BVH constructions during ray
traversal. Subdivision and displacement are also applied as prepro-
cessing for the same reason. We keep the BVHs built on the host
memory for the streaming. The BVHs are also kept on persistent
storage to avoid redundant BVH constructions on subsequent use.
The index buffer for a mesh is also preprocessed and compressed.
These data are also kept on the host memory during the rendering.
The memory size for geometry streaming is allocated proportion-
ally to the device’s memory size. This allocation also can be limited
by users for co-operating applications on the device.

3.1.2 Streaming. A ray traversal is done by an iterative algorithm.
An iteration mainly consists of traversal and transfer of geometries
and their BVHs. Intersections against unavailable bottom-level
BVHs on the memory are skipped. Instead, Requests for those
geometries are placed on a request buffer. The requested geometries
are transferred for the next iterations accordingly, and the ray
continues the traversal with the BVHs. However, note that a ray
traversal does not exit on a hit of an object which is not available on
the video memory. It continues and intersects against geometries
that their BVHs are cached. The ray traverses the scene until the
end, and the hit distance is updated if a hit is found. Therefore,
bottom-level BVHs we already processed in the previous iterations
do not need to be intersected in the subsequent iterations. To keep
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track of the state of an object, a bit flag is set for each geometry
to mark whether we have already traversed the geometry or not.
Thus, we never transfer geometries that their BVHs more than once
in a ray cast. Fig. 2 is an illustration of the iterations. Each iteration
starts from top-level BVH traversal keeping the closest hit instead
of saving the ray state and restoring on the next kernel execution,
as done in [Harada 2016], because of the complexity and global
memory traffic coming with the approach.

A ray could intersect many geometries which are not resident
yet. In that case, it could request to transfer many geometries, which
results in unnecessary transfers as the ray may find an intersection
point at the very first geometry. Therefore, we restrict the number
of requests a ray can put in a single iteration to one. We could take
another strategy: let a single ray request more than one request
in a single intersection kernel execution. This would increase the
number of geometries we transfer but can reduce the number of
iterations we do. We set the number of requests to one to prevent
cache overflow, which would be computationally expensive.

The memory for geometry streaming is sequentially filled by the
geometries and their BVHs. The filled memory is flushed when it
runs out of memory. The memory size has to be larger than or equal
to the size of the largest geometry, as we use bottom-level BVHs
and their geometries as the granularity of the transfer, because the
finer granularity is computationally expensive and it is difficult to
pay off its complexity. The hardware ray intersection implemented
on RDNA2 architecture [Advanced Micro Devices, Inc. 2020b] is not
used for our geometry streaming because of the memory footprint.
Instead, we use compressed BVH node data, as done in [Ylitie et al.
2017], to reduce BVH’s memory traffic. In this work, we set a single
geometry as the data transfer unit, but we could use other chunking
strategies, e.g., split a geometry into uniform 256 MB blocks. The
latter would simplify the cache management and let us use a more
sophisticated cache eviction logic. However, it would add some
complexity to the traversal code. At present, we only set a flag value
for the offset for the bottom-level BVH if the BVH is not cached;
thus, no additional logic is added, which keeps our traversal code
easier. Exploring different chunking strategies is future work.

Usually, shading requires many attributes, such as shading nor-
mal, texture coordinates, and user-defined attributes of the geom-
etry at each shading point. These attributes are computed based
on their hit points after ray-traversal iterations because the points
are not determined during the iterations. We transfer all the data
associated with geometries during the iterations to reduce the num-
ber of kernel interruptions due to the data transfers for shading.
Accordingly, these attributes are available without data transfer
after the iterations as long as the hit geometries are not evicted.
However, we use an iterative structure similar to the ray traversal
in case the hit geometries are evicted, which does not happen often.

3.2 Texture Streaming
We use a small fixed-size chunk as the granularity of the texture
streaming because of two reasons. First, the texture buffer is trivially
split into small chunks in contrast to the BVHs of the geometres.
Second, texture access is not as random as the memory access of
BVH on traversal. We choose the set associative cache to control

cache evictions. Each entry on the cache has a time stamp to pri-
oritize the lately accessed entry because of the locality of access.
A cache entry is evicted based on the prioritization when the set
is full. In this work, we used 8 sets and 512𝐵 cache line size. The
memory for texture streaming is statically allocated proportionally
to the device memory size same as geometry streaming.

3.2.1 Preprocess. The compression, MIP map texture generation,
and color space transformation of textures are done as preprocess.
We use block compression to support random access to the texture.
The block size is 16 pixels - 4 by 4. We compress textures using pixel
similarity on the tile. The pixels are described as representative
values and differences from the values. Although it is lossy and
fixed rate compression, the compression rate is 1:2. We do not do
aggressive compression to keep the compression artifact small. This
is a variation of delta color compression [Brennan 2016]. To avoid
repeated texture processing, the pre-processed textures are saved
on the persistent storage which is read on the subsequent use.

Uploading all the textures to video memory before rendering
starts is better in terms of rendering performance when the total
texture size is smaller than because it reduces the number of inter-
cepts for streaming.When all the texture data is transferred to video
memory, the overhead of our approach is just a single indirection
using the value stored in the translation lookaside buffer.

3.2.2 Streaming. Our shader execution logic is implemented as
a stack machine as described in [Fujieda and Harada 2022]. The
required texels are determined during the evaluation process of
the shader. MIP map let us use the texels filtered with the right
footprint which avoids texture aliasing and improve the memory
access locality. The shader evaluation and texture transfer can be
alternatively repeated until all required textures for the shading
process is ready similar to geometry streaming. The evaluation
issues requests for missing texture chunks and the data is trans-
ferred based on the requests. We do not stream the coarsest level
of the MIP map but it is always kept on the memory in order to
use it as an approximated value when the required chunk is un-
available on the cache. Thus, the number of iterations can be used
as a tweakable parameter depending on the accuracy requirement.
We use smaller iterations for the interactive sessions to minimize
the streaming overhead and achieve better interactivity. Although
smaller iterations may cause an over-blurred texture mapping, the
bias gradually decreases during the interactive sessions because of
the subsequent samples after a fallback reads the texel at the right
resolution.

4 RESULTS
The methods described in this paper are implemented in Radeon™
ProRender using OpenCL™ and C++. All the evaluations are per-
formed with an AMD Ryzen™ 9 5950X CPU and a Radeon™ RX
6900XT GPU with 16 GB video memory.

We first evaluated the amount of data transfer and its perfor-
mance with the geometry streaming using a scene we callW (we
cannot describe the details as this is the customer’s data). The
scene is an outdoor scene where there are buildings and trees. The
scene is rendered with and without the geometry streaming. Fig. 4
shows the GPU memory consumption during a frame rendering.
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(a) Initial status (b) First iteration (c) Second Iteration

Figure 2: Iterations of geometry streaming. (a) All geometries A, B, C, and D are not loaded at the very first iteration. (b) A
and C are loaded and traversed as the rays hit their bounding boxes first. Then, A and C are marked as done. (c) B is loaded
and traversed if the blue ray goes through A. A and C are skipped as these geometries are already marked as done. D is not
processed but iterations are finished because there is no more hit by any rays.

(a) Restaurant

(b) Plants

Figure 3: Test scenes used to evaluate the texture streaming
efficiency. These scenes are rendered at 1280 × 720 resolution
with only 0.9 to 6.3% of the entire texture data thanks to the
texture streaming architecture.

The rendering starts with a small amount of GPU memory usage
for the geometries (316 MB) at 0% as the geometries are almost
not transferred until needed. The amount increases and saturates

Texture size Texture count Used cache size
Loft 2257 MB 304 43.17 MB
Hanger 1440 MB 143 9.86 MB
Living room 99 MB 213 10.93 MB
Classroom 206 MB 69 13.43 MB
Oasis 621 MB 874 6.53 MB
Reading room 2139 MB 145 20.00 MB
Restaurant 730 MB 116 25.12 MB
Plants 1948 MB 51 38.89 MB

Table 1: Statistics on the test scenes. The amount of texture
size we needed to allocate if they are uploaded to the GPU
when the streaming approach is not taken. Number of tex-
tures for each scene, and the actual texture data paged in to
render these scenes.

around 2.7 GB during the rendering. If we turn off the geometry
streaming and upload all the data on the GPU, it consumes 3.4 GB.
Thus we can see that we could render the scene with 79% of the
memory compared to the case where geometry streaming is not
used. However, it comes with a cost. It adds complexity to the ren-
dering pipeline and starts many sessions of GPU synchronization
and GPU memory writing and reading. This rendering finished in
34 s without streaming but took 55 s with streaming. Thus, the
runtime overhead is not negligible.

Next, we tested texture streaming. Test scenes shown in Fig. 1
and Fig. 3 were rendered with 1 GB texture cache on the video
memory. The entire texture data size of these scenes ranges from
206 MB to 2.3 GB, as shown in Table. 1. The texture data size paged
into the cache is also shown in the table. Even for the Loft scene,
which has 2.3 GB texture data, it did render with only 43.17 MB
cache usage, which is 1.9% of the entire data. This is because it
computes the appropriate MIP level and only requested data is
transferred to video memory. From these experiments, we can see
that texture streaming effectively reduces memory usage for the
texture.
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Figure 4: Memory consumption during the rendering with
and without streaming. Rendering times were 55 s and 34 s
respectively, 1.59x longer than with streaming on Radeon™
RX 6900XT.

Figure 5: Stress test with a synthetic scene that contains 962
unique 2048x2048 textures.

We also evaluated the relationship between the rendering reso-
lution and the cache usage by rendering the same scene in differ-
ent resolutions. As the resolution of the rendering increases, the
memory traffic gets larger as a finer MIP level is used. We used a
synthetic scene with 3592 MB for textures by 962 unique 2048x2048
textures from Pixar One Twenty Eight texture pack, as shown in
Fig. 5. The texture cache usage with three resolutions is shown in
Fig. 6. Although the memory traffic adaptively increases depending
on the resolution, almost all the transfer is avoided thanks to the
streaming architecture, even on the 2160 p resolution. This result
emphasizes the benefits of our streaming architecture.

5 CONCLUSION
We introduced our streaming architecture for geometry and tex-
tures in Radeon™ ProRender.

The streaming architecture optimized in a domain-specific way
effectively reduces memory traffic. Despite the overhead, its scala-
bility for the memory size constraint benefits production. However,
a non-negligible overhead is observed with geometry streaming
on our measurement. We use the two types of workflow for ge-
ometry — with and without streaming architecture — because of
the performance requirements. A more significant reduction of the

Figure 6: Texture cache usage to render the scene shown in Fig.
5 with rendering resolution of 1280x720 (720 p), 1920x1080
(1080 p), and 3840x2160 (2160 p). The cache usage is saturated
at around 20 samples in this example.

overhead on streaming architecture is still ongoing research, and
we possibly need more fine-grained communication between the
host and GPU. Also, preprocessing, such as MIP-map building and
BVH construction, could be deferred, similarly to the data transfer.
We would like to further investigate lazy and adaptive streaming
architecture.
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