
Weighted À-Trous Linear Regression (WALR) for Real-Time
Diffuse Indirect Lighting Denoising

Sylvain Meunier
Advanced Micro Devices, Inc.

France
Sylvain.Meunier@amd.com

Takahiro Harada
Advanced Micro Devices, Inc.

USA
Takahiro.Harada@amd.com

Figure 1: First line: Left image is the input diffuse indirect lighting we obtain using path tracing (1 spp), middle image is
denoised using WALR, right image is a reference path-traced image (1024 spp). Second line: left image is SSIM heat map (white
is better), right image is RMSE heat map (black is better).

ABSTRACT
We propose a new regression-based method for denoising images
obtained from path-traced global illumination with a small number
of rays per pixel. The denoising pipeline relies on temporal accumu-
lation and a new per-pixel weighted linear regression solver we use
as a spatial filter. We describe ways to maximize both performance
and quality of the new solver, and provide a complete analysis
and comparison to the only previous real-time regression-based
method. Our work gives temporally more stable results (accord-
ing to VMAF) and matches the reference images better (according
to SSIM and RMSE) when running in about 3.0 ms on a modern
graphics hardware at 1920x1080 resolution.

KEYWORDS
denoising, global illumination, path tracing, real-time, regression

1 INTRODUCTION
Although hardware-accelerated ray tracing is now widely available
in gaming desktops and consoles, even the fastest GPUs today can
still trace a small number of rays for each pixel in real-time ap-
plications. Real-time path tracing is actively researched and more
effective sampling methods are continuously developed to render

email: { Sylvain.Meunier, Takahiro.Harada }@amd.com
Advanced Micro Devices, Inc. Technical Report No. 22-12-1c2e, December 15, 2022.

images with low noise. On the other hand, real-time denoising
is developed for reconstructing more satisfying results from nois-
ier lighting scenarios. Denoising is essential to make path tracing
a practical solution for games. Although machine learning (ML)
based denoising method is actively studied, hardware-accelerated
ML approaches are still limited to high-end graphic cards, and
most proposed ML methods are barely interactive without proper
hardware-acceleration [Huo and Yoon 2021].

Real-time denoising methods are built around temporal accumu-
lation , bilateral filtering, and noise-free attributes (like positions
and normals from a G-Buffer) [Paris et al. 2009; Yang et al. 2020].
Bilateral filters are non-linear techniques that can blur an image
while respecting strong edges and they are well suited for denois-
ing images. Unfortunately, using large bilateral filters or repeating
small bilateral filters lead to piecewise constant images.

Indirect shadows and highlights typically create color gradients
near edges, and we propose to use the weighted linear regression
to preserve them (Figure 2). A denoising pipeline using a blockwise
solver is proposed by [Koskela et al. 2019], and we extend their
denoising pipeline by replacing the blockwise solver with a pix-
elwise solver. We describe solutions to accelerate computations,
and demonstrate that they can achieve higher quality and temporal
stability with comparable performance.

Our contributions are as follows:



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

Bilateral filter Weighted linear regression

Figure 2: The bilateral filter erases color gradients on the
small scooter elements, but the weighted linear regression
preserves them. Both images use the same filter size and the
same edge-stopping function. The weighted linear regres-
sion gives more freedom for using large filter sizes without
reducing quality, thus filtering noisier images effectively.

• A weighted linear regression solver designed for denoising
images;

• An edge-stopping function adapted to the solver;
• A real-time per-pixel denoising pipeline for reconstructing

diffuse indirect lighting.

2 RELATEDWORKS
Real-time path tracers are actively researched. Researchers mainly
focus on direct and indirect lighting, trying to make the most of
every sample under a low ray budget [Lin et al. 2022; Majercik et al.
2021; Ouyang et al. 2021].

Before path tracing was considered for real-time applications,
denoisers were already used for reconstructing various stochastic ef-
fects like Ambient Occlusion (AO), Screen-Space Reflections (SSR),
and soft shadows in video games [Stachowiak 2018]. Real-time
denoising pipelines share most components but makes different
tradeoffs to maximize performance and quality. Common practices
include: building edge-stopping functions for preserving features
during spatial filtering, splitting diffuse and specular interreflec-
tions, decoupling materials and lighting, adapting filter sizes for
reducing the amount of bias and increasing performance, adapting
temporal accumulation speed, and mitigating temporal reprojection
artifacts.

Path tracing typically generates more noise, and new denoising
methods were developed. Schied et al. adapted the bilateral filter
proposed by Dammertz et al. in a denoising pipeline using tempo-
ral accumulation and variance estimation [Dammertz et al. 2010;
Schied et al. 2017]. The temporal loop accumulates a slightly filtered
indirect lighting which is further denoised using the spatial filter.
They propose an adaptive filter size guided by the indirect lighting
variance. Koskela et al. demonstrated the first real-time denoising
pipeline using linear regression [Koskela et al. 2019]. They reused
the pipeline Schied et al. proposed, and they proposed [Schied et al.
2017] to replace the bilateral filter with a regression-based method
porting the most efficient ideas from offline denoising methods
[Moon et al. 2014, 2015, 2016]. Zhdan proposed an alternative de-
noising pipeline where a bilateral filter is used inside the temporal

loop [Zhdan 2020]. This is presented as an optimization for reduc-
ing the amount of blur used during reconstruction. The effective
filter size results from the temporal accumulation speed and the
bilateral filter size, and they adapt both to reduce the reconstruction
bias.

3 WEIGHTED À-TROUS LINEAR REGRESSION
Blockwise Multi-Order Feature Regression (BMFR) solver is based
on the HouseHolder QR factorization [Golub and Van Loan 1996;
Koskela et al. 2019] and existing parallel implementations focus
on solving huge least square problems on various parallel systems.
Denoising is different by nature, and we solve many least square
problems by sharing a lot of samples. Their blockwise implementa-
tion workarounds the lack of a proper parallel implementation, and
the pipeline is built to remove the solver blocky artifacts. Our solver
reuses neighbor computations between pixels, thus parallelizing
computations, and makes a per-pixel denoising pipeline possible.

WALR (Weighted À-trous Linear Regression) is a weighted linear
regression solver built on top of an edge-aware à-trous averaging
technique and edge tracing.

3.1 Weighted linear regression using averages
Linking weighted linear regression and feature averages is straight-
forward. Given 𝑛 samples containing one noisy value 𝑌𝑖 and 𝑚

noise-free features 𝑋𝑖, 𝑗 :

{𝑌𝑖 , 𝑋𝑖,1, . . . , 𝑋𝑖,𝑚}𝑛𝑖=1,

We are going to reconstruct denoised value 𝑌𝑖 as a linear combi-
nation of these noise-free features 𝑋𝑖, 𝑗 as follows:

𝑌𝑖 =

𝑚∑︁
𝑗=1

𝑋𝑖, 𝑗 𝛽 𝑗 ,

where 𝛽 𝑗 are the weights for these values. We also set 𝑋𝑖,1 = 1,
thus, the intercept is handled as these features, and later equations
are simplified. Estimating 𝛽 𝑗 parameters is achieved by solving this
optimization problem:

arg min
𝛽 𝑗

𝑛∑︁
𝑖=1

𝑤𝑖
©«𝑌𝑖 −

𝑚∑︁
𝑗=1

𝑋𝑖, 𝑗 𝛽 𝑗
ª®¬

2

,

where𝑤𝑖 is a positive weight. The problem has a unique solution
given by the normal equations:

𝜕

𝜕𝛽𝑘

𝑛∑︁
𝑖

𝑤𝑖
©«𝑌𝑖 −

𝑚∑︁
𝑗

𝑋𝑖, 𝑗 𝛽 𝑗
ª®¬

2

= 0 with 𝑘 ∈ {1, . . . ,𝑚}.

Let us take an example where 𝑚 = 3, so we can expand the
system of equations:

𝑋𝑋 1,1𝛽1 + 𝑋𝑋 1,2𝛽2 + 𝑋𝑋 1,3𝛽3 − 𝑌𝑋 1 = 0,
𝑋𝑋 1,2𝛽1 + 𝑋𝑋 2,2𝛽2 + 𝑋𝑋 2,3𝛽3 − 𝑌𝑋 2 = 0,
𝑋𝑋 1,3𝛽1 + 𝑋𝑋 2,3𝛽2 + 𝑋𝑋 3,3𝛽3 − 𝑌𝑋 3 = 0,



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

where:

𝑋𝑋𝑝,𝑞 =

∑𝑛
𝑖=1 𝑋𝑖,𝑝𝑋𝑖,𝑞𝑤𝑖

𝑛
,

𝑌𝑋𝑝 =

∑𝑛
𝑖=1 𝑋𝑖,𝑝𝑌𝑖𝑤𝑖

𝑛
,

then we rewrite the system using linear algebra:
𝑋𝑋 1,1 𝑋𝑋 1,2 𝑋𝑋 1,3
𝑋𝑋 1,2 𝑋𝑋 2,2 𝑋𝑋 2,3
𝑋𝑋 1,3 𝑋𝑋 2,3 𝑋𝑋 3,3



𝛽1
𝛽2
𝛽3

 =

𝑌𝑋 1
𝑌𝑋 2
𝑌𝑋 3

 ,
and generalize easily to:

𝑋𝑋 1,1 𝑋𝑋 1,𝑚
. . .

𝑋𝑋 1,𝑚 𝑋𝑋𝑚,𝑚




𝛽1
.
.
.

𝛽𝑚

 =


𝑌𝑋 1
.
.
.

𝑌𝑋𝑚

 .

function Cholesky(𝑋𝑋 )
𝐶 ← 0
foreach 𝑖 ∈ {1 . . .𝑚}do

𝐶𝑖,𝑖 ← 𝑋𝑋 𝑖,𝑖

foreach 𝑗 ∈ {1 . . . 𝑖 − 1}do
𝐶𝑖,𝑖 ← 𝐶𝑖,𝑖 − 𝐶𝑖,𝑗𝐶𝑖,𝑗

𝐶𝑖,𝑖 ←
√︁
𝑚𝑎𝑥 (𝐶𝑖,𝑖 , 𝜖𝑖 )

foreach 𝑗 ∈ {𝑖 + 1 . . .𝑚}do
𝐶 𝑗,𝑖 = 𝑋𝑋 𝑖,𝑗

foreach 𝑘 ∈ {1 . . . 𝑖 − 1}do
𝐶 𝑗,𝑖 ← 𝐶 𝑗,𝑖 − 𝐶𝑖,𝑘𝐶 𝑗,𝑘

𝐶 𝑗,𝑖 ← 𝐶 𝑗,𝑖/𝐶𝑖,𝑖

return𝐶

Algorithm 1: We decompose the symmetric and positive-
definite matrix 𝑋𝑋 into a triangular matrix 𝐶 satisfying 𝐶𝐶𝑡 =

𝑋𝑋 . 𝜖𝑖 should be big enough to remove precision issues.

function Forward(𝐶 , 𝑌 )
foreach 𝑖 ∈ {1 . . .𝑚}do

𝐹𝑖 ← 𝑌𝑖

foreach 𝑗 ∈ {𝑖 − 1 . . . 1}do
𝐹𝑖 ← 𝐹𝑖 − 𝐶𝑖,𝑗𝐹 𝑗

𝐹𝑖 ← 𝐹𝑖/𝐶𝑖,𝑖

return 𝐹

function Backward(𝐶 , 𝐹 )
foreach 𝑗 ∈ {𝑚 . . . 1}do

𝑋 𝑗 ← 𝐹 𝑗

foreach 𝑖 ∈ {𝑚 . . . 𝑗 + 1}do
𝑋 𝑗 ← 𝑋 𝑗 − 𝐶𝑖,𝑗𝑋𝑖

𝑋 𝑗 ← 𝑋 𝑗 /𝐶 𝑗,𝑗

return 𝑋

Algorithm 2: Forward and backward substitutions are used for
computing 𝛽 from the Cholesky decomposition𝐶 and ¯𝑌𝑋 . Both
𝑌 and 𝐹 can be scalars or vectors, thus making noisy colors
cheap to support.

The average matrix 𝑋𝑋 is always symmetric, so if the matrix is
also positive-definite, we can solve this system using the Cholesky
decomposition (Algorithm 1) followed by forward and backward
substitutions (Algorithm 2). In practice, we assume 𝑋𝑋 is positive-
definite.

3.2 Edge-aware à-trous averages
The WALR solver needs to compute a lot of edge-aware averages
with large windows. This is computationally expensive, so we pro-
pose adapting the à-trous wavelet transform to compute these aver-
ages efficiently. The à-trous wavelet transform hierarchically filters
over multiple iterations. This transform decomposes any image into
a smooth base image and a set of detailed images. Reconstructing
the input image is just the summation of these images. Detailed
images hold the noise, and denoising is achieved by discarding
([Dammertz et al. 2010]) or weighting ([Hanika et al. 2011]) details.
We adopt the simpler [Dammertz et al. 2010] method:

𝑍𝑡+1 (𝑥,𝑦) =
∑
𝑢,𝑣 𝑓 (𝑥,𝑦,𝑢, 𝑣)𝑍𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)∑

𝑢,𝑣 𝑓 (𝑥,𝑦,𝑢, 𝑣)
,

with:
𝑓 (𝑥,𝑦,𝑢, 𝑣) = ℎ𝑡 (𝑢)ℎ𝑡 (𝑣)𝑤 (𝑥,𝑦, 𝑥 + 𝑢,𝑦 + 𝑣),

where 𝑍0 (𝑥,𝑦) is a noisy color image, 𝑤 is a positive edge-
stopping function, and ℎ𝑡 is a separable filter kernel. [Dammertz
et al. 2010] uses the edge-aware à-trous wavelet transform for ap-
proximating a Gaussian bilateral filter. Each iteration increases the
ℎ𝑡 kernel footprint by introducing 2𝑡−1 zeros between theℎ0 kernel
values. The method is fast because the edge-stopping function and
spatial filter evaluations are amortized between neighbor pixels.
We want to compute edge-aware averages as fast as possible, and
adapting the transform requires three modifications:

• We specialize the transform using a box filter kernel ℎ0 =

(1, 1, 1).
• We change the number of zeros the à-trous transform adds

for each iteration, so each sample is averaged once.
• We maintain the sample count of averages for computing

the weighted average of averages, so each sample is aver-
aged once iteratively (Figure 3).

The box filter kernel is defined by (only first three iterations):
ℎ0 = (1, 1, 1),

ℎ1 = (1, 0, 0, 1, 0, 0, 1),
ℎ2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1) .

The sample count of averages is given by:
𝑊0 (𝑥,𝑦) = 1,

𝑊𝑡+1 (𝑥,𝑦) =
∑︁
𝑢,𝑣

𝑓 (𝑥,𝑦,𝑢, 𝑣)𝑊𝑡 (𝑥 + 𝑢,𝑦 + 𝑣),

then 𝑋𝑋 𝑖, 𝑗 averages are iteratively computed with:

𝑋𝑋 𝑖, 𝑗,0 (𝑥,𝑦) = 𝑋𝑖 (𝑥,𝑦)𝑋 𝑗 (𝑥,𝑦),

𝑋𝑋 𝑖, 𝑗,𝑡+1 (𝑥,𝑦) =
∑
𝑢,𝑣 𝑓 (𝑥,𝑦,𝑢, 𝑣)𝑊𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)𝑋𝑋 𝑖, 𝑗,𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)∑

𝑢,𝑣 𝑓 (𝑥,𝑦,𝑢, 𝑣)𝑊𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)
,

and 𝑌𝑋 𝑖 averages with:

𝑌𝑋 𝑖,0 (𝑥,𝑦) = 𝑌 (𝑥,𝑦)𝑋𝑖 (𝑥,𝑦)



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

Figure 3: Three iterations of the edge-aware à-trous average method. Top line dots are the first iteration inputs, bottom line
dots are the third iteration results. Dashed dots are discarded by the edge-stopping function. We only plot the strictly positive
weights. The 14 dots are weighed 1/14 after three iterations, so the method computes the average.

No edge tracing Edge tracing

Figure 4: Evaluating the edge-stopping function using the
center pixel and a corner pixel generates aliasing on the
wall between suspended objects. Edge tracing and jittering
mitigate this issues.

𝑌𝑋 𝑖,𝑡+1 (𝑥,𝑦) =
∑
𝑢,𝑣 𝑓 (𝑥,𝑦,𝑢, 𝑣)𝑊𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)𝑌𝑋 𝑖,𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)∑

𝑢,𝑣 𝑓 (𝑥,𝑦,𝑢, 𝑣)𝑊𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)
.

3.3 Edge tracing
Although the edge-aware à-trous transform improves the perfor-
mance of computing averages, it can bring artifacts, as shown in
Figure 4. We analyze issues creating these artifacts and propose a
solution for both.

The first issue is the edge-stopping function𝑤 being evaluated
between pixels (𝑥,𝑦) and (𝑥 + 𝑢,𝑦 + 𝑣). ℎ𝑡 kernel generates a set
of 3x3 positions centered on the filtered pixel for each iteration.
ℎ0 covers a 3x3 pixel area while ℎ1, ℎ2 and ℎ3 cover respectively
7x7, 19x19 and 55x55 areas. If we compare positions and normals
for detecting edges, small objects might be ignored, and lighting
from unrelated surfaces might be denoised together. We propose
to mitigate this issue by using edge tracing. Edge tracing evaluates
the edge-stopping function along the segment between (𝑥,𝑦) and
(𝑥+𝑢,𝑦+𝑣), and returns its smallest value; thus, no object is ignored.

The second issue happens when the edge-stopping function
changes abruptly between two filtered pixels, thus discarding dif-
ferent averages. Averages computed for these two pixels might be
different, and seams might be created, thus revealing the à-trous
grids. We propose to replace these seams with soft transitions by re-
placing each discarded average with another one picked randomly
on its segment near the edge (so no average is discarded). The re-
placement average weight is also evaluated again. This method
introduces small errors in computed averages near object edges.

Noisy
Indirect Lighting

Filtered
Indirect Lighting

Noise Free
Normals
Positions

Noise Free
Motion Vectors

SPATIAL FILTERING

Per Block
Linear Regression

Per Pixel
Reconstruction

PREPROCESSING

Temporal
Accumulation

POSTPROCESSING

Temporal
Accumulation

Temporal
Antialiasing

Figure 5: BMFR pipeline includes a specific temporal accu-
mulation phase for removing blocky artifacts.

Noisy
Indirect Lighting

Filtered
Indirect Lighting

Noise Free
Normals
Positions

Noise Free
Motion Vectors

SPATIAL FILTERING

Per Pixel
Atrous Averages

Iteration 0

Per Pixel
Reconstruction

Per Pixel
Atrous Averages

Iteration 1

Per Pixel
Atrous Averages

Iteration 2

PREPROCESSING

Temporal
Accumulation

POSTPROCESSING

Temporal
Antialiasing

Figure 6:WALR pipeline includes an iterative spatial filtering
phase. Adding iterations expands the filter size.

4 DENOISING PIPELINE
We slightly adjusted the BMFR pipeline (Figure 5) proposed by
[Koskela et al. 2019] for easily comparing performance and quality.
TheWALR pipeline (Figure 6) can be divided into three main phases:
preprocessing, spatial filtering, and postprocessing. Both prepro-
cessing and postprocessing phases rely on temporal accumulation
for reducing noise and artifacts, while the spatial filtering phase
uses WALR.

4.1 Inputs
The inputs consist of a noisy path-traced indirect lighting image and
its accompanying noise-free motion vectors, view space positions,
and normals. Global frame jittering is important for postprocessing,
as it helps remove aliasing and small artifacts.

We want to preserve the quality of materials and textures while
we try to maximize the number of samples we average together.
Thus, we remove material evaluation on first vertices and delegate
the materials and direct lighting composition to the renderer.

4.2 Preprocessing
The preprocessing phase reduces the indirect lighting noise using
temporal accumulation. Temporal accumulation introduces less



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

bias than spatial filtering for removing noise, but it adds temporal
lag, so we need to find a good tradeoff between lag and bias, and
the proposed pipeline offers enough flexibility to cover most en-
vironments. Scenes with fast-moving lights and occluders would
require a shorter temporal loop and a larger spatial filter, while
almost static scenes could use a longer temporal loop and a smaller
spatial filter.

The preprocessing temporal accumulation uses three compo-
nents: temporal reprojection, history rejection, and moving average.
The temporal reprojection uses motion vector dilation and bicubic
texture sampling for resampling both the preprocessing history
and the postprocessing history as described in Sec. 4.4. If a global
frame jittering is enabled, we remove it from motion vectors before
reprojecting histories. The preprocessing history rejection is done
by comparing the current and reprojected depth. The reprojected
depth uses the depth offset (third coordinate of the motion vector)
for accurately comparing depths. We need to consider edges when
using depth rejection. If jittering is used for rendering geometry
buffers, depth rejection will cancel accumulation and limit denois-
ing on edges. In practice, edges are slightly noisier, and we rely on
the spatial filtering phase to mitigate this issue.

We do not use the exponential moving average because it lowers
denoising speed by weighing the first frame more than the later
ones. We slightly adjust ([Koskela et al. 2019]) technique and start
by computing a cumulative moving average of the samples, storing
the sample count, and using an accumulation weight proportional
to the sample count. After a fixed number of samples, we return
to an exponential moving average by clamping the accumulation
weight, so older history samples vanish.

4.3 Spatial filtering
WALR is used to filter the remaining noise out of the preprocessed
indirect lighting. We propose an edge-stopping function for diffuse
indirect lighting. The function uses normals and positions. We form
a plane using the center position and normal, then we remap the
distance between the plane and the traced positions in [0, 1] with
user parameters and use this value as a weight. The edge-tracing
algorithm can create some star-shaped artifacts with temporal accu-
mulation ghosting, and we rely on global frame jittering for fixing
these issues during the postprocessing phase.

4.4 Postprocessing
The postprocessing phase uses temporal accumulation to remove
small aliasing and remaining instability problems using global frame
jittering. It also uses three components: temporal reprojection, his-
tory rectification, and moving average. The temporal reprojection
of the postprocessing history is done during the preprocessing
phase using the same resampling technique. We use variance clip-
ping instead of depth rejection because the filtered indirect lighting
noise is low, and variance clipping is a good tradeoff between anti-
aliasing and ghosting for history rectification. We also reuse the
preprocessing cumulative moving average technique.

The processing phase is almost a standard Temporal Anti-Aliasing
(TAA) implementation and could be removed if the renderer already
uses TAA or another temporal upsampling method.

Figure 7: Edge tracing is computed between the center (bot-
tom left dot) and a corner (top right dot). Step sizes (arrows)
are chosen using the last iteration SDF.We plot the SDF along
the traced edge (numbers in dots). Once an edge is found
(dashed dots), edge tracing is stopped.

5 IMPLEMENTATION
We already described all the components of the WALR pipeline.
This section presents the implementation we used for generating
quality and performance results.

5.1 Features selection
Before discussing feature selection, we assume diffuse indirect light-
ing, and we need to understand how weights and features work
together. Applying a null weight to a sample simply discards it
from the reconstruction, while using a weight from 1 to 0 offers a
fade-out transition. Features distribute noisy colors in the feature
space when optimizing the linear model. During reconstruction,
we interpolate or extrapolate the denoised pixel colors from the
linear model, its parameters, and the denoised pixel features.

The BMFR solver does not use weights. Edges and details are
preserved by selecting a set of features computed from attributes.
They proposed to use world space normals, normalized world space
positions, and normalized squared world space positions. Each
feature preserves an interesting property of indirect light during
filtering. Positions are used to preserve object edge, so color samples
lying on different surfaces are not blended. Normals are used to
preserve irradiance directionality. Squared positions are used for
preserving indirect shadows, so the estimated model looks like
a plane with a hole or a bump (typically, shadows over a bright
surface).

The WALR solver can use the BMFR features if we set 𝑤 = 1,
but the tradeoff between performance and quality is not great. The
performance cost of adding features is higher for WALR than BMFR.
This is due to reading and writing a lot of data to global memory
for computing averages over several iterations. Using weights for
preserving object edges is less expensive, so we remove positions
from features. Squared positions are mandatory for BMFR blocks,



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

but WALR per pixel processing could use an adaptive filter size
for preserving indirect shadows and highlights. Using an adaptive
radius would also increase performance. We keep normals as fea-
tures because we want to interpolate the indirect lighting between
normals.

5.2 Performance improvements
The main WALR bottlenecks are bandwidth and requests used for
reading and writing data to the global memory, so we need to write
a minimal amount of data and pack it carefully to achieve the best
performance. Some presented optimizations are approximations,
trading small quality losses for large performance gains.

View space normals target the camera, so we use octahedral
mapping ([Cigolle et al. 2014]) for transforming normals into two
features instead of three. When normal mapping creates degenerate
normals, we flip them. There are no visible seams during recon-
struction because mapped normals do not wrap around in front of
the camera.

In Section 3, we set 𝑋𝑖,0 = 1 for simplifying equations; thus, the
first average is 𝑋𝑋 0,0 = 1. We do not need to store or compute
𝑋𝑋 0,0 and use 1 during reconstruction. We also simplify equations
by removing𝑊 from computations, and this approximation gives
more weight to samples near edges.

Features include indirect lighting and remapped normals, so
the range of all averages is proportional to the indirect lighting
range. If the renderer stores lighting using RGBA16_FLOAT texture
format, averages should use RGBA16_FLOAT too. If the renderer
uses R11G11B10_FLOAT instead, averages can use this format too,
but we need to take care of the normal signs. Octahedral mapping
outputs in [−1, +1], and we propose to remap it to [0, 1]. The error
will not be the same for negative and positive features, but we
find this preferable to storing signs in an additional texture. The
texture format used for storing averages also affects the Cholesky
decomposition, and epsilons must be chosen accordingly. All the
presented results used FP16 data formats.

Packed FP16 instructions could be used for computing averages
and edge tracing. They increased the occupancy of all kernels, but
we did not observe any performance gain and did keep FP32 for
computations.

When samples are made of one noisy color and a remapped
normal, we need to store 14 values for averages. If we use the
RGBA16_FLOAT texture format, averages are packed with three
textures with formats RGBA32_UINT, RG32_UINT, and R32_UINT.
If we use R11G11B10_FLOAT instead, averages are packed with
two textures with formats RGBA32_UINT and R32_UINT.

During each WALR iteration, edge tracing is used to evaluate
weights. We implement edge tracing extending DDA (Digital Dif-
ferential Analyzer) with an SDF (Signed Distance Field) for better
performance (Figure 7). The SDF stores the closer edge distance
found during the last WALR iteration. This distance is computed
using an edge-stopping function centered on the traced position
instead of the actual filtered position; therefore, we might overesti-
mate the distance to the edge. We propose to use a percentage of the
distance instead for being more conservative and slightly slower.
The SDF is updated during each iteration of WALR by storing the
closer edge distance amongst eight traced edges. The edge-tracing

algorithm uses the SDF for stepping by a conservative number of
pixels. The SDF stores the closer edge of the last iteration for all
samples Edge tracing access both positions and the SDF, so we pack
positions and distances together using a unique RGBA16_FLOAT
texture. If the renderer uses a pinhole camera model, we could pack
depth and SDF using R32_UINT and reduce bandwidth pressure
further.

All shaders can be inlined. No loop is necessary for edge tracing
because we know the maximum length of segments at compilation
time. In practice, we do four iterations, and the maximum length is
27 pixels, so the shader disassembly stays small.

6 RESULTS
[Koskela et al. 2019] demonstrated BMFR denoising pipeline was
competitive with real-time state-of-the-art pipelines. We show
WALR pipeline provides higher quality for similar execution tim-
ings. We believe WALR denoising pipeline is also competitive
with others, but we focus on comparing the solvers instead of the
pipelines. An accurate comparison with other denoising pipelines
would require further developments (see Section 7).

The proposed method has been implemented using DirectX, and
the experiments were performed on a PC with an AMD Radeon™
PRO W6800 GPU, an AMD Ryzen™ Threadripper™ 3960X CPU,
128GB RAM, Windows 10, and AMD Software PRO Edition 22.6.1.
Following [Koskela et al. 2019], we use these quality metrics for
comparing reference path-traced image sequences and denoised
image sequences:

• Root Mean Square Error (RMSE).
• Structural SIMilarity (SSIM) [Wang et al. 2004].
• Video Multi-Method Assessment Fusion (VMAF) [Aaron

et al. 2015].
All image sequences are exposed and tonemapped before metrics

are computed. These metrics are commonly used for providing
objective (RMSE, SSIM) and subjective (VMAF) ratings to denoised
image sequences. VMAF also rates temporal stability. We provide
heat maps for locating main quality issues easily. White spots are
the worst issues in RMSE heat maps, while black spots are for SSIM
heat maps.

We used AMD Radeon™ ProRender to generate a sequence of
1080 p images, including diffuse indirect lighting and accompanying
attributes [Advanced Micro Devices, Inc. 2020]. Motion vectors we
reconstruct from these sequences have up to 1-pixel errors for the
target resolution. This issue coupled with global frame jittering
creates problems on object edges during temporal accumulation, so
we disabled global frame jittering instead of dealing with additional
artifacts in the denoising pipelines.

We also developed REFerence Weighted Linear Regression (RE-
FWLR). This solver shares the filter size, the edge-stopping function,
and other heuristics with WALR, but it uses no à-trous transform,
with edge tracing between the center and all other pixels in the
filter window, and we don’t replace discarded samples (like we did
for averages). This reference method almost always delivers better
quality but is barely interactive. We use it to quantify the error we
introduce with WALR optimizations and average replacement.

Denoising pipeline results depend heavily on the input color
noise, so we picked four scenes with different noise profiles. All



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

WALR SSIM heat map WALR RMSE heat map

WALR (1 spp) RMSE

Ground truth (1024 spp) SSIM

BMFR (1 spp) VMAF

Figure 8: The Modern Living Room. Noise is very low, and
quality is very high. BMFR blocky artifacts are only visible in
the first frames. REFWLR (green curve) and WALR (orange
curve) are close, and WALR outperforms BMFR (blue curve).
The main source of errors is the carpet on the ground. An
interesting point is that the RMSE heat map gives an idea of
the small errors that edge tracing and average replacement
add around suspended objects.

scenes include an animated camera moving quickly enough for
reviewing disocclusions:

• The Modern Living Room (TMLR) is an indoor scene where
the only light source is a spot. Figure 8.

• Bistro Exterior (BE) is an outdoor scene with a sun and a
sky. Figure 9.

• The Grey White Room (TGWR) is an indoor scene with a
sun and a sky. Figure 10.

• The Dining Room Again (TDRA) is an indoor scene where
the sun and the sky are behind window shutters, two spot
lights add color bleeding on the table. Figure 11.

Tables 1 and 2 show the timings by phase and the total time
spent executing both denoising pipelines. We can see that the total
time ranges are close between both pipelines, so comparing quality
metrics makes more sense. There are still differences we can explain.
BMFR preprocessing is slightly slower because its implementation
uses larger texture formats than WALR implementation for storing
motion vectors, history, and attributes. BMFR postprocessing is

WALR SSIM heat map WALR RMSE heat map

WALR (1 spp) RMSE

Ground truth (1024 spp) SSIM

BMFR (1 spp) VMAF

Figure 9: Bistro Exterior. Noise ismoderate, and all the denois-
ers provide acceptable quality. BMFR outputs a few artifacts.
REFWLR (green curve) and WALR (orange curve) are close,
andWALR outperforms BMFR (blue curve). The main source
of error is the foliage shadows in the background.

Preprocess Spatial Filter Postprocess Total
TMLR 0.702 1.611 0.492 2.806
BE 0.613 1.557 0.433 2.604
TGWR 0.666 1.728 0.451 2.846
TDRA 0.677 1.531 0.456 2.665

Table 1: BMFR averaged timings (in ms) over multiple runs
and various sampling rates.

Preprocess Spatial Filter Postprocess Total
TMLR 0.363 2.442 0.082 2.887
BE 0.357 2.707 0.078 3.144
TGWR 0.364 2.483 0.081 2.929
TDRA 0.360 2.529 0.079 2.969

Table 2: WALR averaged timings (in ms) over multiple runs
and various sampling rates.



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

WALR SSIM heat map WALR RMSE heat map

WALR (1 spp) RMSE

Ground truth (1024 spp) SSIM

BMFR (1 spp) VMAF

Figure 10: The Grey White Room. Noise is significant, and
BMFR outputs a lot of artifacts. REFWLR (green curve) and
WALR (orange curve) are close, and WALR outperforms
BMFR (blue curve). The main sources of errors are the plant
shadows and a blue lighting leak near the chimney (due to
edge tracing boosting a ghosting issue).

also slower because the pipeline requires an extra temporal loop for
cleaning the blocky artifacts introduced by the solver. WALR spatial
filtering is slightly slower because we use four iterations instead of
three, so timings are close for both pipelines. Using three iterations
would make WALR way faster. We can note that BMFR uses a filter
area of 32x32 pixels (a limitation of the provided implementation),
whereas WALR uses a filter area of 80x80 pixels.

7 GOING FURTHER
We proposed a denoising pipeline for comparing WALR and BMFR,
and there are improvement opportunities:

• We could use an adaptive filter size based on the actual
indirect lighting variance, distance, or another heuristic.
This would bring greater performance and also increase
quality (Figure 12).

• The à-trous transform constrains the filter size heavily. An-
other technique might be used ([Gwosdek et al. 2011]).

• With more freedom to choose the filter size, anisotropic
filtering (computing averages over projected circles) could
be used for grazing angles.

WALR SSIM heat map WALR RMSE heat map

WALR (1 spp) RMSE

Ground truth (1024 spp) SSIM

BMFR (1 spp) VMAF

Figure 11: The Dining Room Again. Noise is very high, and
overall quality is low for all the denoisers. REFWLR and
WALR output a few artifacts, while BMFR outputs a lot. RE-
FWLR (green curve) and WALR (orange curve) are close, and
WALR outperforms BMFR (blue curve). The main source of
errors is the tablecloth.

1 spp 2 spp

4 spp 8 spp

Figure 12: WALR SSIM for three iterations (orange curve)
and four iterations (blue curve). The space between curves
gives insights about the used filter size. Close curves signify
that the filter size is too large, while distant curves indicate
a larger filter could further reduce the noise.



Weighted À-Trous Linear Regression (WALR) for Real-Time Diffuse Indirect Lighting Denoising, Meunier and Harada

• Edge tracing cannot walk over edges, so we cannot average
similar surfaces behind occluders, such as grids or fences.
We could build a statistical profile of averages and merge
them to reduce noise further.

• Some heuristics (edge-stopping function, feature selection...)
are valid because we assume diffuse indirect lighting. De-
noising specular interreflections could be explored.

• After optimization, the main bottleneck is still reading and
storing averages at the target resolution. Decoupling aver-
ages’ resolution from attribute resolution seems a promis-
ing way to increase performance.

8 CONCLUSION
In this paper, we presentedWALR, a newweighted linear regression
solver built on top of an edge-aware à-trous averaging technique.
This pixelwise solver efficiently replaces the blockwise solver pro-
posed by [Koskela et al. 2019] and makes weighted linear regression
a practical solution for real-time denoising.

ACKNOWLEDGMENTS
We thank Bruno Stefanizzi and Prashanth Kannan for the support
of the research, as well as Aaryaman Vasishta, Artem Kharytoniuk,
Fabio Camaiora, Guillaume Boissé, andOleksandr Kupriyanchuk for
their help in reviewing this paper.We also thank the blendswap.com
artists, especially Wig42, for providing most scenes we used and
modified for developing WALR. The Amazon Bistro scene is part of
ORCA (Open Research Content Archive) [Lumberyard 2017]. AMD,
AMD Radeon, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies.

REFERENCES
Anne Aaron, Zhi Li, MeghaManohara, Joe Yuchieh Lin, Eddy Chi-HaoWu, and C.-C Jay

Kuo. 2015. Challenges in cloud based ingest and encoding for high quality streaming
media. In 2015 IEEE International Conference on Image Processing (ICIP). 1732–
1736. https://doi.org/10.1109/ICIP.2015.7351097

Advanced Micro Devices, Inc. 2020. Radeon™ ProRender 2.0. https://gpuopen.com/
radeon-pro-render/

Zina H. Cigolle, Sam Donow, Daniel Evangelakos, Michael Mara, Morgan McGuire,
and Quirin Meyer. 2014. A Survey of Efficient Representations for Independent
Unit Vectors. Journal of Computer Graphics Techniques (JCGT) 3, 2 (17 April 2014),
1–30. http://jcgt.org/published/0003/02/01/

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010.
Edge-Avoiding À-Trous Wavelet Transform for Fast Global Illumination Filtering.
In Proceedings of the Conference on High Performance Graphics (Saarbrucken,
Germany) (HPG ’10). Eurographics Association, Goslar, DEU, 67–75.

Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, USA.

Pascal Gwosdek, Sven Grewenig, Andrés Bruhn, and JoachimWeickert. 2011. Theoreti-
cal Foundations of Gaussian Convolution by Extended Box Filtering. In Proceedings
of the Third International Conference on Scale Space and Variational Methods in
Computer Vision (Ein-Gedi, Israel) (SSVM’11). Springer-Verlag, Berlin, Heidelberg,
447–458. https://doi.org/10.1007/978-3-642-24785-9_38

Johannes Hanika, Holger Dammertz, and Hendrik Lensch. 2011. Edge-Optimized
À-Trous Wavelets for Local Contrast Enhancement with Robust Denoising.
Computer Graphics Forum 30, 7 (2011), 1879–1886. https://doi.org/10.1111/j.1467-
8659.2011.02054.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659.2011.02054.x

Yuchi Huo and Sung-eui Yoon. 2021. A survey on deep learning-based Monte Carlo
denoising. COMPUTATIONAL VISUAL MEDIA 7, 2 (2021), 169–185.

Matias Koskela, Kalle Immonen, Markku Mäkitalo, Alessandro Foi, Timo Viitanen,
Pekka Jääskeläinen, Heikki Kultala, and Jarmo Takala. 2019. Blockwise Multi-Order
Feature Regression for Real-Time Path-Tracing Reconstruction. ACM Trans. Graph.
38, 5, Article 138 (jun 2019), 14 pages. https://doi.org/10.1145/3269978

Daqi Lin, Markus Kettunen, Benedikt Bitterli, Jacopo Pantaleoni, Cem Yuksel, and
Chris Wyman. 2022. Generalized Resampled Importance Sampling: Foundations of
ReSTIR. ACM Trans. Graph. 41, 4, Article 75 (jul 2022), 23 pages. https://doi.org/
10.1145/3528223.3530158

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content
Archive (ORCA). http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro.

Zander Majercik, ThomasMueller, Alexander Keller, Derek Nowrouzezahrai,
and Morgan McGuire. 2021. Dynamic Diffuse Global Illumination
Resampling. In ACM SIGGRAPH 2021 Talks (Virtual Event, USA)
(SIGGRAPH ’21). Association for Computing Machinery, New York, NY,
USA, Article 24, 2 pages. https://doi.org/10.1145/3450623.3464635

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering
Based on Weighted Local Regression. ACM Trans. Graph. 33, 5, Article
170 (sep 2014), 14 pages. https://doi.org/10.1145/2641762

BochangMoon, Jose A. Iglesias-Guitian, Sung-Eui Yoon, and KennyMitchell.
2015. Adaptive Rendering with Linear Predictions. ACM Trans. Graph.
34, 4, Article 121 (jul 2015), 11 pages. https://doi.org/10.1145/2766992

BochangMoon, StevenMcDonagh, KennyMitchell, and Markus Gross. 2016.
Adaptive Polynomial Rendering. ACM Trans. Graph. 35, 4, Article 40
(jul 2016), 10 pages. https://doi.org/10.1145/2897824.2925936

Y. Ouyang, S. Liu, M. Kettunen, M. Pharr, and J. Pantaleoni. 2021. Re-
STIR GI: Path Resampling for Real-Time Path Tracing. Computer
Graphics Forum 40, 8 (2021), 17–29. https://doi.org/10.1111/cgf.14378
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14378

Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand. 2009. .
Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney,

Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachs-
bacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-
Guided Filtering: Real-Time Reconstruction for Path-Traced Global Illu-
mination. In Proceedings of High Performance Graphics (Los Angeles,
California) (HPG ’17). Association for Computing Machinery, New York,
NY, USA, Article 2, 12 pages. https://doi.org/10.1145/3105762.3105770

Tomasz Stachowiak. 2018. Stochastic All The Things: Raytracing in Hy-
brid Real-Time Rendering. https://www.ea.com/seed/news/seed-dd18-
presentation-slides-raytracing.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 4 (2004), 600–612. https://doi.org/
10.1109/TIP.2003.819861

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A Survey of Tem-
poral Antialiasing Techniques. Computer Graphics Forum
39, 2 (2020), 607–621. https://doi.org/10.1111/cgf.14018
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018

Dmitry Zhdan. 2020. Fast Denoising with Self Stabilizing Recurrent Blurs.
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/
presentations/s22699-fast-denoising-with-self-stabilizing-recurrent-
blurs.pdf.

https://doi.org/10.1109/ICIP.2015.7351097
https://gpuopen.com/radeon-pro-render/
https://gpuopen.com/radeon-pro-render/
http://jcgt.org/published/0003/02/01/
https://doi.org/10.1007/978-3-642-24785-9_38
https://doi.org/10.1111/j.1467-8659.2011.02054.x
https://doi.org/10.1111/j.1467-8659.2011.02054.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02054.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2011.02054.x
https://doi.org/10.1145/3269978
https://doi.org/10.1145/3528223.3530158
https://doi.org/10.1145/3528223.3530158
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://doi.org/10.1145/3450623.3464635
https://doi.org/10.1145/2641762
https://doi.org/10.1145/2766992
https://doi.org/10.1145/2897824.2925936
https://doi.org/10.1111/cgf.14378
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14378
https://doi.org/10.1145/3105762.3105770
https://www.ea.com/seed/news/seed-dd18-presentation-slides-raytracing
https://www.ea.com/seed/news/seed-dd18-presentation-slides-raytracing
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1111/cgf.14018
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22699-fast-denoising-with-self-stabilizing-recurrent-blurs.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22699-fast-denoising-with-self-stabilizing-recurrent-blurs.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s22699-fast-denoising-with-self-stabilizing-recurrent-blurs.pdf

	Abstract
	1 Introduction
	2 Related Works
	3 Weighted À-Trous Linear Regression
	3.1 Weighted linear regression using averages
	3.2 Edge-aware à-trous averages
	3.3 Edge tracing

	4 Denoising pipeline
	4.1 Inputs
	4.2 Preprocessing
	4.3 Spatial filtering
	4.4 Postprocessing

	5 Implementation
	5.1 Features selection
	5.2 Performance improvements

	6 Results
	7 Going further
	8 Conclusion
	Acknowledgments
	References

