Multi-Resolution Geometric Representation using Bounding
Volume Hierarchy for Ray Tracing

Sho Ikeda Paritosh Kulkarni Takahiro Harada
Advanced Micro Devices, Inc. Advanced Micro Devices, Inc. Advanced Micro Devices, Inc.
Japan Canada USA

©

Figure 1: (a) The reference path traced image of loft scene. (b) Rendered with the proposed method. (c) Difference between (a)
and (b) shows the error from the method. Rendering time and ray casting time were reduced by 6 % and 12 %, respectively,

using our method.

ABSTRACT

This paper presents a multi-resolution geometric representation
using a bounding volume hierarchy (BVH). Our method makes it
possible to lower the computational cost of ray tracing by using
an approximated geometry that is taken from the acceleration data
structure we usually build for ray tracing, i.e., the BVH. Our method
implements a level of detail (LOD) for rendering by adding small
logic to the existing BVH traversal algorithm, and does not require
any precomputation, nor does it add any additional data for geo-
metric representation. At the same time, simplifying the geometry
is not sufficient for approximation of non-shadow rays. Therefore,
we also propose methods that allow us to use a geometric approxi-
mation for all ray types. Specifically, we propose stochastic material
sampling with a small memory overhead to realize material blend-
ing, a method that enables us to use the proposed approximation
in a path tracing algorithm as shown in the paper.

KEYWORDS

Ray tracing, Global illumination

1 INTRODUCTION

Monte Carlo ray tracing is a simple and robust rendering algorithm
that has been studied for years [Kajiya 1986]. Ray casting is the
core component of ray tracing, which scales better in terms of the
number of primitives in the scene than rasterization which has
linear complexity. However, even with the logarithmic complexity
in ray tracing, the computational cost is still high for real-time ap-
plications. Therefore, developers have been attempting to minimize
the number of rays to be cast, and rely heavily on denoising in

email: { Sho.Ikeda, Paritosh.Kulkarni, Takahiro.Harada }@amd.com
Advanced Micro Devices, Inc. Technical Report No. 22-02-f322, February 28, 2022.

video games [Haines and Akenine-Méller 2019]. Hence, the use of
ray tracing is still very limited in today’s video games.

This paper describes the following two major contributions. The
first is the multi-resolution geometric representation using axis-
aligned bounding boxes (AABB) in a bounding volume hierarchy
(BVH). The second is the stochastic material sampling on any LOD
node. The multi-resolution geometric representation reduces the
computational complexity in ray casting without requiring any
additional precomputation or storage, and the geometric LOD is
implemented by adding a small change to an existing BVH traversal
algorithm. Although the use of AABBs in BVH for geometric repre-
sentation is a simple idea, it can be only used for occlusion rays as
information needed for other rays in global illumination algorithm
is not there. Specifically, we need to evaluate materials on a coarse
representation of the geometry to use the geometric approximation
for non-occlusion rays. This paper proposes a solution for this, the
stochastic material sampling for material evaluation at any LOD
level of the geometry. The algorithm works for complex materials
with a shading network and makes it possible to filter materials on
the geometries the LOD represents. The memory overhead is small
for this method. We only add two integers for each node of a BVH.
As we show in this paper, applying the geometric LOD using the
proposed method for ray casting is very straightforward and can
be added to any ray tracing engine by modifying its BVH traversal
logic. As stochastic material sampling is also simple and does not
put any restrictions on the used material, it can be easily integrated
into any existing renderer supporting a complex material system as
shown in Fig. 1. At last, we evaluate the performance quantitatively.

AMD1

GPUQGpen

Multi-Resolution Geometric Representation using Bounding Volume Hierarchy for Ray Tracing, lkeda et al.

S N e’ N’ - NS

10 W W

O O N S

Figure 2: Visualization of geometric representation from differnt locations. Left: Polygonal representation, Center and right:
The ray origin is defined at the cube on the floor on the left and center, respectively.

Figure 3: 2D illustration of ray cone and AABB.

2 MULTI-RESOLUTION GEOMETRY
REPRESENTATION USING A BOUNDING
VOLUME HIERARCHY

2.1 Geometric Representation

Instead of explicitly modeling LOD meshes and switching them
as done in [Won-Jong Lee and Vaidyanathan 2019], we utilize the
existing data structure for ray tracing, which is the BVH. Each
node in a BVH stores its AABB, which encloses all the triangles
that we can find in its descendants. The AABB is built such that it
conservatively bounds the geometry, and we use AABBs as a coarse
approximation of the geometry similar to the work by Lacewell
[Lacewell 2008] who uses it for shadow filtering. This gives us a
multi-resolution representation of the geometry without requiring
any additional precomputation or memory overhead. When a more
accurate representation is necessary, we can descend the tree and
use the approximation at a lower level of the tree. We can use the
AABB from a node close to the root if we want a rough approxi-
mation, such as the case where the geometry is far from a shading
point.

Using the AABB in a BVH as the geometric representation has
some useful aspects. First, it provides a conservative bound, there-
fore does not introduce any holes. Secondly, a single approximation
level does not need to be defined for the entire mesh. Instead, we
can have different levels of representation in a single mesh as shown
in Fig. 2, where it transitions from the highest resolution represen-
tation (polygons), to a coarse representation as the distance from
the point of interest increases. Finally, it is also possible to select
the level for each ray at runtime, so as to give us flexibility on the
level selection, which is not possible in the existing method (Fig. 2)
[Lloyd et al. 2020].

2.2 Level of Detail Selection in Ray Tracing

During regular ray traversal, when a ray intersects an AABB, the
ray continues traversal within that AABB until it reaches a leaf node.
With our geometric approximation, we first check if the AABB of a
node is good enough to be used as the geometric proxy of all the
triangles covered by the node. When we have such an AABB, the

Triangle Index Buffer 12‘ 4 31 11 2

Figure 4: Data stored in the BVH for stochastic material sam-
pling.

ray instead uses the intersection as a hit and stops traversing its
descendants.

We compute a ray cone tracked with a ray that grows with
spread angle 0, (Fig. 3). In order to alleviate the geometric error
caused by the approximation, the 8, is dynamically changed by the
number of ray bounces and materials at shading points which we
will discuss the details in Sec. 3.2. This ray cone is different from
the ray cone used for texture filtering since it does not spread the
angle from the camera but from the first diffuse vertex. Also as
the spreading logic is different as we discuss in Sec. 3.2 from the
ray cone used for texture filtering, another ray cone tailored for
the geometric approximation is traced. When the ray intersects an
AABB, we check if the virtual sphere which encloses the AABB
is entirely overlapped by the ray cone by computing a condition
|d| < 2|c|tan (6;) + 2w,, where d is the diagonal vector of the
AABB, c is the vector from the ray origin to the center of the AABB
and w; is the width of the ray cone of previous path segment. If
the condition is true, the AABB is used as the geometric proxy.

3 EXTENSION TO PATH TRACING

Although finding the intersection point can be used for occlusion
rays, it is not sufficient for use in path tracing, which was the
limitation in [Yoon et al. 2006]. In this section, we propose methods
required to use the geometric approximation in a path tracing
algorithm.

3.1 Stochastic Material Sampling

The most important information we need to provide is the material
information for shading. Our approach does not make any assump-
tions about the material on the geometry we simplify, i.e., it can be
used for a material with a complex shading network.

An important point to consider is how to obtain the material in-
formation at a geometric proxy. Storing the material itself at a node
is not practical in production rendering, where blending of materi-
als is common. Blending cannot be done easily for cases where the

= AMD1

: GPUOpen

N s i

() (b) © (d

Figure 5: Example of the geometric approximation and sto-
chastic material sampling. (a) is the original polygonal rep-
resentation. (b), (c), (d) are approximation with 2, 4 and 8
degrees, respectively.

BSDF is used in descendants with a large variety of different mate-
rials, or where complex shading networks are involved. Another
problem with this approach is the memory overhead required to
store BSDFs with multiple parameters. We propose the stochastic
material sampling requiring only two integer values stored in each
node, which can be precomputed by doing tree traversal once. We
store the range of the triangle indices of the node’s descendants
in a node of the BVH, as shown in Fig. 4. Once we have found
the intersecting node for the ray, we sample the triangles from the
range using uniform sampling assuming the triangles are uniformly
distributed in the direction of the ray. After one triangle is selected,
we use its material for shading. This approach is similar to the
work by Cook et al., [Cook et al. 2007], but our sampling is done at
runtime for each ray.

We also need to obtain the texture coordinates for the hit point.
We again rely on stochastic sampling, i.e., we sample a barycentric
coordinate in the triangle we selected, and use it to interpolate the
texture coordinates of the vertices. For the shading normal, we could
also interpolate it as we do for texture coordinates, however, we
found out that using the geometric normal of the AABB is sufficient.
A scene with a procedural material network and its simplification
are shown in Fig. 5, where we can see that the materials are blended
together as we proceed to a coarser representation.

3.2 Dynamic Spread Angle

Geometric error caused by the approximation used for direct illu-
mination introduces a significant error to the rendered images. In
such a case, the approximation is not appropriate. On the other
hand, further bounces do not contribute much to the rendered im-
ages, but still have noticeable computation time due to incoherent
rays. For such paths, we can use the approximation to accelerate
ray casting. Considering those, we calculate the spread angle 6,
dynamically for each ray. We disable ray cone (6, = 0) with camera
ray and occlusion ray for direct illumination, otherwise we use
0, = max (H(bg —2)T,H (bg — 1) 65) where H (x) is heaviside
step function H (x) = 1if 0 < x and H (x) = 0if x < 0, by is the
number of diffuse bounces in a path, T is user specified spread angle
and 0 is small spread angle. We use 65 = 3° in this paper. Although
this logic increases 6, as the ray bounces more on a diffuse surface,
it does not change the angle at a reflection on a specular surface.

1
2
3
4
5

6

12

Multi-Resolution Geometric Representation using Bounding Volume Hierarchy for Ray Tracing, lkeda et al.

3.3 Implementation Details

When the geometric approximation is used on area light, it can
cause noticeable error. Specifically these error arise due to geomet-
ric approximation changing surface area of the area light. To avoid
this issue, we track emissive materials when building a BVH and set
a flag on BVH nodes containing area light in its subtree. BVH nodes
having this special flag would skip the geometric proxy check, and
thus the area lights are never approximated.

4 HARDWARE RAY TRACING EXTENSION

The geometric approximation is simple enough so it could be imple-
mented in the existing hardware ray tracing instruction. We propose

an extension to hardware ray tracing instruction image_bvh_intersect_ray

[Advanced Micro Devices, Inc. 2020]. First, we think about imple-
menting the geometric approximation into the ray traversal using
existing image_bvh_intersect_ray. Currently image_bvh_intersect_ray
returns sorted child node indices when input node is internal node,
and we do not have enough information for determining if the child
nodes can be approximated. In order to determine if we can apply
the approximation or not which we explained in Sec. 2.2, we need
to obtain ray hit distance for AABB, centroid and diagonal length of
AABB. We also need ray hit face of AABB for calculating geometric
normal for shading. However computing the geometric informa-
tion outside of image_bvh_intersect_ray is not efficient because of
redundant computation and access to the AABB data. Hence, we
propose an extension to image_bvh_intersect_ray to determine if
child nodes can be approximated.

Our proposed instruction requires additional values and returns
values for us to decide whether we can use the approximation or
not. We pass the parameter 6, for the approximation. The instruc-
tion returns values which are ray hit distances, flags to tell if the hit
distance is valid or not and hit face of AABB. These can be encoded
into 3 bits. To keep the data returned from the instruction small, we
encoded the hit distance into 29 bits so we can pack all the informa-
tion needed for a single AABB into 32 bits. Since the hit distances
for AABBs are computed in the instruction, we only need to add the
conditional check if we can apply the approximation or not after the
hit distance computation of the instruction. We show the pseudo
code of geometric approximation using the extended instruction
in Listing 1. We call image_bvh_intersect_ray with approxParams
which contains the parameters for geometric approximation, and
get the result value approxResult which is encoded hit distance, flag
and hit face (line 7 and 8). After the instruction returns, we check
the flag of the return value if we can apply the approximation or not
(line 21). The only additional logic for the user’s code is between
line 21 to 26.
MinHit minHit;
NodeStack stack; // Stack of BVH nodes which a ray will traverse

push(rootNode, stack);
while (0 < StackSize (stack))

{

node =

Store the shortest ray hit from ray origin

pop(stack);

float4 approxResult; encoded value of hit distance, a flag to
tell if the hit value is valid and hit face
uint4 result = image_bvh_intersect_ray(node, ray, approxParams,

&approxResult) ;
if (isLeafNode (node))
{

=7

// Leaf node case

process triangles

updateMinHit (...) ; // Update minHit value with shortest hit

= AMD1

: GPUOpen

}
else Internal node case
{
for(int i = 0; i < 4; i++)
{
uint hitNode = result[i];
if (hasHit (hitNode))
{
if (getFlag (approxResult[i]))
hit distance is valid
{
float4 geometricNormal = getFaceNormal(approxResult[i]);
updateMinHit (getHitDistance (approxResult[i]),
geometricNormal , ...);
}
else
{
push (hitNode ,
}
}
}
}
}

Listing 1: Geometric approximation pseudo code using
extended hardware ray tracing instruction. The extension of
image_bvh_intersect_ray takes the parameters of geometric
approximation and check the condition if we can apply the
approximation or not after the hit distance computation of
the instruction.

/ Check if the underlying

stack);

5 RESULTS

1
) \
06

—8—Bistro A
0.4

Relative time to Exact

Bistro B
02 San Miguel A

San Miguel B

Exact 4 10 20 30
Angle threshold (°)

Figure 6: Comparison of relative rendering time with differ-
ent spread angle T for Bistro A, B, San Miguel A, B.

25

~
S

.
o]

\

AQ ray cast time (ms)

5 —e— Approximation

Exact

0 2 4 6 8 10 12 14 16 18 20
AO ray length

Figure 7: Comparison of AO ray cast time with different AO
ray length for Bistro A.

Multi-Resolution Geometric Representation using Bounding Volume Hierarchy for Ray Tracing, lkeda et al.

The method is implemented using OpenCL™. All the tests were
executed at 1920x1080 resolution on a machine with an AMD
Ryzen™9 5950X CPU and an AMD Radeon™RX 6800XT GPU.

We first measured the ray casting time for ambient occlusion
(AO) rays for two scenes, each with two different views (A and
B). Obviously, as we use a larger angle for the spread angle T, the
approximation gets rough. It can be seen in Fig. 8 where (c) is
darker than (a) while we can see a drastic reduction in the number
of nodes in the BVH it traverses (up to 31% if we compare left and
right in Fig. 8). Fig. 6 shows the relative time for AO ray casting.
The improvement is smaller when the spread angle T is smaller, but
we can see that we obtain an approximate 40% speed up in the best
case. The improvement also depends on the AO ray length which
is shown in Fig. 7. We can observe that our method causes only a
negligible overhead in comparison with the exact solution.

The proposed method was integrated into an existing path tracer
to evaluate the improvement in rendering time. First, we evaluated
how our approximation affects rendering in path tracer with simple
scene (Fig. 9). The error is concentrated in the region of the reflec-
tion on the sphere which is deeper path segment in the simple scene.
In such path, a coarser representation of the sphere is used and it
causes different occlusion computation from the original sphere.
Next, we evaluated the proposed method in more practical scenes
as shown in Table 1. We can see some errors in the rendered images
which vary depending on the scene. The Steam Edo scene has the
minimum visual error as the indirect illumination in the scene does
not contribute so much. On the other hand, the Room, Hangar
scenes have larger error on some part of the images. These come
from multiple specular reflections and refraction which cannot be
represented well with our approximation. Rendering time and ray
casting time have improved up to 14 % and 12 %, respectively. As
the ray traverses deeper, we observed that the improvement is more
significant (about 2xX) since more rays use the approximation. How-
ever, the improvement in the Room scene is not as good as in other
scenes because the execution was mostly bottle-necked by other
computations such as shader execution. Therefore, improvement in
the render time is bigger for a scene where there are more longer
paths. We used T = 30° for the spread angle.

6 CONCLUSION

We have showed that the proposed method allows to use an ap-
proximated geometric representation not only for occlusion rays
but also for rays in path tracing thanks to the stochastic material
sampling from which we obtain all the information we need to
extend a path. We also evaluated the visual error and rendering
time improvement with the method under complex material and
lighting scenarios.

Future work includes extension to transmissive surfaces, use of
hardware ray tracing, and application to the animation. There is a
room for improving the condition of the approximation application
where it produces a large error (for example a light is coming from
the hole of a torus and the torus is approximated as a box without
the hole). Another point of improvement would be for the stochastic
material sampling where uniform sampling is not always a good
sampling strategy when the distribution of the triangles is not
uniform. Taking triangle area and directionality into consideration

El EMBE‘JOpen

M!, e
i
gl

,"
P
grdll

Multi-Resolution Geometric Representation using Bounding Volume Hierarchy for Ray Tracing, Ikeda et al.

Figure 8: Bistro A, rendering images and visualizations of number of nodes traversed in the AO ray cast. Left is exact. Center
and right are approximation with T = 10 and 20 degrees respectively. Bottom row shows the number of nodes each AO ray
traverses to find intersection. Blue (min) is 0 and red (max) is 400. Average number of nodes each AO ray traverses in pixels are

317, 240 and 218 respectively.

(b) with our method (c) absolute difference

(a) exact

Figure 9: Simple scene showing the difference our method
produces.

with low memory overhead is another possible extension left for
future work.

ACKNOWLEDGEMENT

The loft scene was created by ACCA software. The Junk Shop
was created by Alex Trevifio. Steam Edo was created by Shunsuke
Nakajo. AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies.

REFERENCES

Advanced Micro Devices, Inc. 2020. "RDNA 2" Instruction Set Architecture Reference
Guide. https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_
November2020.pdf.

Robert L. Cook, John Halstead, Maxwell Planck, and David Ryu. 2007. Stochastic
simplification of aggregate detail. ACM Trans. Graph. 26, 3 (2007), 79. https:
//doi.org/10.1145/1276377.1276476

Eric Haines and Tomas Akenine-Moéller (Eds.). 2019. Ray Tracing Gems. Apress.
http://raytracinggems.com.

James T. Kajiya. 1986. The rendering equation. In Computer Graphics. 143-150.

Dylan Lacewell. 2008. Raytracing prefiltered occlusion for aggregate geometry. In
Proceedings of the IEEE Symposium on Interactive Raytracing.

Brandon Lloyd, Oliver Klehm, and Martin Stich. 2020. Implementing Stochastic Levels
of Detail with Microsoft DirectX Raytracing. https://developer.nvidia.com/blog/
implementing-stochastic-lod- with- microsoft-dxr/.

Gabor Liktor Won-Jong Lee and Karthik Vaidyanathan. 2019. Flexible Ray Traversal
with an Extended Programming Model. In Proceedings of ACM SIGGRAPH Asia
2019, Technical Brief. 17-20.

Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. 2006. R-LODs: fast LOD-
based ray tracing of massive models. The Visual Computer 22, 9 (2006), 772-784.

https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_November2020.pdf
https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_November2020.pdf
https://doi.org/10.1145/1276377.1276476
https://doi.org/10.1145/1276377.1276476
http://raytracinggems.com
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/
https://developer.nvidia.com/blog/implementing-stochastic-lod-with-microsoft-dxr/

AMD1

GPUQGpen

i Multi-Resolution Geometric Representation using Bounding Volume Hierarchy for Ray Tracing, lkeda et al.

l l l Exact Approximation Difference
]
<
o0
=]
<
s
1799.17 1588.66
74.08 67.57
=}
o)
251
g
3
]
5]
2116.12 1812.74
84.78 82.97
g
S
=}
~
&=
S
|
448.93 421.49
163.75 144.49

Table 1: Comparison of images rendered using path tracing and modified path tracing with our approximation. Top number in
the first and second columns is rendering time for one sample per pixel (spp) in milliseconds. Bottom number is a sum of all
ray casting times for one spp in milliseconds.

	Abstract
	1 Introduction
	2 Multi-resolution Geometry Representation using A Bounding Volume Hierarchy
	2.1 Geometric Representation
	2.2 Level of Detail Selection in Ray Tracing

	3 Extension to Path tracing
	3.1 Stochastic Material Sampling
	3.2 Dynamic Spread Angle
	3.3 Implementation Details

	4 Hardware Ray Tracing Extension
	5 Results
	6 Conclusion
	References

