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SYNOPSIS
Various parallel algorithms can be decomposed into pro-
gramming primitives that share similar patterns. This course
focuses on studying these programming primitives and their
applicability in computer graphics, specifically in the con-
text of massively parallel processing on GPUs. The course
begins by establishing a theoretical foundation, followed
by practical examples and real-world applications. We ex-
plain two pivotal algorithms: parallel reduction and parallel
prefix scan in detail, discussing their variants and different
implementations. Afterward, we provide a collection of more
advanced techniques and tricks applicable across various do-
mains. At the end of the course, we also briefly discuss code
optimization.

CCS CONCEPTS
•Theory of computation→ Sharedmemory algorithms;
Massively parallel algorithms.
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1 INTRODUCTION
As parallel architectures continue to advance, the demand
for parallel algorithms naturally grows. Computer scientists
have been looking for inspiration in well-studied sequential
algorithms. Surprisingly, it turned out that trivial operations
that are straightforward when performed sequentially can
become challenging when executed in parallel. This difficulty
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is particularly pronounced in massively parallel systems like
GPUs, where thousands of threads run concurrently. There
are several frequently-used patterns to address this issue. For
example, a compare and swap (CAS) instruction and shared
memory on the GPU are used for resolving data races effi-
ciently. These components often require intrusive changes
to the algorithm themselves. Thus, we organize them as a
collection of programming primitives for computer graphics
problems as design patterns on the GPU.

2 COURSE RATIONALE
Although general-purpose computing on GPUs (GPGPU) is
significantly more difficult than traditional single-threaded
programming, many existing courses cover only basic con-
cepts of parallel computing. However, mastering the design
and efficient implementation of parallel algorithms requires
years of experience. Recently, there have been no comprehen-
sive courses focusing on the algorithmic aspects of GPGPU.

3 INTENDED AUDIENCE
The course is designed for developers and researchers inter-
ested in GPGPU and computer graphics. The course assumes
basic knowledge of GPGPU APIs, such as OpenCL, HIP, or
CUDA. Although the course primarily targets an interme-
diate audience, even more experienced programmers can
acquire new knowledge and insights.

4 PEDAGOGICAL INTENTIONS AND
METHODS

Our focus is primarily on high-level concepts, prioritizing
an understanding of the underlying principles rather than
solely optimizing code performance. We start with motiva-
tion and high-level description of each technique, followed
by a minimal code snippet illustrating the key idea of the
technique. We plan to conclude the course with a Q&A ses-
sion to address any lingering questions. We also provide a
repository with a full version of the code presented in the
slides.
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5 DETAILED DESCRIPTION
5.1 Introduction
We introduce the outline and main objectives of the course.
We also provide a brief introduction to HIP (Heterogeneous-
Compute Interface for Portability), that we use for illustrating
the discussed algorithms.

5.2 Parallel Reduction and Prefix Scan
We review two important parallel programming primitives:
parallel reduction and parallel prefix scan (PPS) [Blelloch
1990]. We provide an analysis of the theoretical properties of
these algorithms, accompanied by an extensive discussion of
diverse implementations and their respective advantages and
disadvantages. We use both algorithms as building blocks
for more complex techniques in the following sections.

5.3 Programming Primitives
We present a collection of more advanced techniques that are
widely applicable. We start with a very simple yet ubiquitous
operation (e.g., how to efficiently output data in parallel.) In
computer graphics, we arrange spatial data into hierarchical
structures. During the construction, we output elementary
blocks, such as nodes or cells, in parallel. Another example
is the task queue when we have to write new tasks to the
output buffer.

The task queue itself can be considered as another primi-
tive as it is a very general concept. We introduce a waterfall
scheme that can be used to implement a simplified general
task queue, assuming a fixed number of tasks. We present
two algorithms relying on the waterfall scheme that can be
implemented in a single kernel launch: device-wise parallel
prefix scan and top-down traversal of the hierarchical struc-
ture, where we have to deal with parent-child dependencies.
To make is complete, we add bottom-up traversal [Karras
2012] as another technique, reducing the information from
leaves up to the root.

More complex algorithms require global synchronization,
which is typically realized as separate kernel launches that
are implicitly synchronized. However, it might be beneficial
to fuse multiple kernels into a single one to decrease the ker-
nel launch overhead and memory accesses. The global syn-
chronization inside the kernel can be implemented through
the concept of persistent threads [Gupta et al. 2012] that al-
lows global synchronization, which is otherwise not possible.

For some algorithms, we need a per-thread auxiliary buffer
(e.g., a buffer for the stack). Local arrays are allocated per
thread, but they cause significant register pressure. On the
other hand, allocating a global buffer for all scheduled threads
may be too costly as only a fraction of threads are executed
concurrently. One solution is to use persistent threads, but it

might be difficult to change the scheduling in complex frame-
works. We present a technique that allocates data only for
the concurrent threads and dynamically assigns the buffers
to the launched threads to address this issue.

5.4 Linear Probing
Linear probing is an algorithm to build a hash table. Since
it uses open addressing, an array is used as the storage for
elements. Insertion is done by linearly searching from the
home location that is defined by a hash function. Thanks
to the search linearity, parallel insertion can be supported
on the GPU with CAS. We first show the basic algorithm of
linear probing and introduce bidirectional linear probing as
another variant of linear probing for better performance in
case the load factor of the hash table is high [van der Vegt
2011].

5.5 Radix Sort
Radix sort is one of the efficient sorting algorithms that is
suitable to run on GPUs due to the parallel nature [Harada
and Howes 2011; Merrill and Grimshaw 2011]. Its design
leverages offset-counting instead of comparison. In this sec-
tion, we will introduce the concept of the parallel radix sort
with a working example. Specifically, we will demonstrate
how the aforementioned techniques, such as the parallel pre-
fix sum, could be applied, as well as the design considerations
in order to optimize the algorithm.

5.6 Code Optimization
We provide a couple of basic general recommendations to
improve code efficiency, irrespective of the underlying archi-
tecture. In particular, we focus on coalescedmemory accesses
to the global memory, bank conflict in the shared memory,
thread divergence, and occupancy.
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These are the notes for our course ‘GPU Programming Primitives for Computer Graphics’. 
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INTRODUCTION

 

 

In the introductory part, we briefly describe the course organization and course objectives. We 
also provide a minimal introduction to HIP that we use to illustrate the algorithms. 
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COURSE SYLLABUS

- Introduction (~15 min, Daniel)

- Parallel reduction and prefix scan (~25 min, Daniel)

- Programming primitives (~25 min, Daniel & Atsushi)

- Linear probing (~20 min, Atsushi)

- Radix sort (~15 min, Atsushi)

- Code optimization  (~10 min, Atsushi)

- Q&A (~10 min)
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Our course consists of the following six sections and discussion, taking 105 minutes in total: 
introduction, parallel reduction and prefix scan, programming primitives, linear probing, radix 
sort, code optimization, and Q&A. 
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MOTIVATION

- Thousands of threads running simultaneously on the GPU

- Trivial single-threaded operations might be non-trivial on the GPU

- Different algorithms often deal with similar problems

- How to write output in parallel?

- How to find minimum, maximum, or sum?

- How to sort elements?

- How to map data to threads/warps/blocks?

- The same patterns observed in different algorithms

4

 

 

Programming massively parallel systems such as GPUs is difficult due to running thousands of 
threads simultaneously. Many operations that are straightforward on the CPU are non-trivial on 
the GPU. We can observe that some parts of different algorithms resemble each other. In this 
course, we study these patterns and introduce how to handle the operations that are simple 
single-threaded but difficult on the GPU. 
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COURSE RESOURCES

- Course notes: 

- Presentation slide in PPT with animations

- PDF with additional notes

- Code samples: 

- Buildable code presented in the slides

- Performance comparison of different variants

5

https://gpu-primitives-course.github.io

 

 

Using this link or QR code, you can access the course webpage with course resources, including 
presentation slides, PDF, and sample code. 
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HIP (HETEROGENEOUS-COMPUTE INTERFACE FOR PORTABILITY)

HIP is a C++ API and kernel language for GPU computing

- Syntactically similar to CUDA

- Supports most of the CUDA runtime functionality

- Portable applications for AMD and CUDA devices 

- CUDA wrapper is provided

Portable C++ (HIP Syntax)

HIPCC
Runtime API

Driver API

NVCC
Runtime API

Driver API

NVIDIA GPU AMD GPU

6

CUDA wrapper

inline static hipError_t hipMalloc(void** ptr, size_t size) {
return hipCUDAErrorTohipError(cudaMalloc(ptr, size));

}

int* out;
hipMalloc(&out, sizeof(int));
...

 

 

CUDA is a widely supported GPU computing environment popular for scientific computations. A 
drawback is that CUDA is specific for Nvidia GPUs. 
 
HIP is a C++ API and kernel language designed for GPU computing. It offers a syntax that closely 
resembles CUDA and supports a majority of the CUDA runtime functionality. It enables the 
development of portable applications for both AMD and CUDA devices. For the Nvidia path, the 
HIP header is only a wrapper around the CUDA, while for the AMD path, the program is directly 
compiled into the AMD device-specific code. 
 
Therefore, we decided to use HIP/CUDA as a platform for algorithms presented in this course. 
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HIP RUNTIME API – KERNEL EXAMPLE

A counterpart to the CUDA runtime API

- Host calls are prefixed with hip instead of cuda

Kernel compatibility

- Same built-in variables

- thread index, block index, and block size

- Functions specifiers such as __global__ and
__device__

- Kernel launch via <<<…>>> specifying the grid and 
block resolutions

#include <hip/hip_runtime.h>

__device__ int threadIndex() 
{

return threadIdx.x + blockIdx.x * blockDim.x;
}

__global__ void Kernel(int* out)
{ 

int index = threadIndex(); 
if (index == 0) *out = warpSize;

}

int main() 
{

int* out;
hipMalloc(&out, sizeof(int));
Kernel<<<1, 64>>>(out);
hipFree(out);
return 0;

}

7

cudaMalloc(&out, sizeof(int));
Kernel<<<1, 64>>>(out);
cudaFree(out);

 

 

The HIP runtime API is a counterpart to the CUDA runtime API, with host calls prefixed with 
‘hip*’ instead of ‘cuda*’. The HIP device code is practically identical to the CUDA device code, 
providing the same built-in variables such as thread index, block index, or block size. Similarly, 
kernel functions are decorated with __global__ and device functions with __device__. The 
kernels functions are launched via <<<…>>>, specifying the grid and block resolutions. 
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HIP DRIVER API – KERNEL EXAMPLE

A counterpart to the CUDA driver API

- Host calls are prefixed with hip or hiprtc instead of 
cu and nvrtc

- Kernels compiled in runtime via hiprtc (similar to 
nvrtc) and launched via hipModuleLaunchKernel

8

const char* code = ...
const char* funcname = ...

hiprtcProgram prog;
hiprtcCreateProgram(

&prog, code, "", 0, nullptr, nullptr);
hiprtcCompileProgram(prog, 0, nullptr);

size_t binarySize = 0;
hiprtcGetCodeSize(prog, &binarySize);

std::vector<std::byte> binary(binarySize);
hiprtcGetCode(prog, binary.data());

hipModule_t module;
hipModuleLoadData(&module, binary.data());

hipFunction_t func;
hipModuleGetFunction(&func, module, funcname);

void* args[] = { &out };
hipModuleLaunchKernel(func, 1, 1, 1, 64, 1, 1, 0, 

0, reinterpret_cast<void**>(args), 0);

cuModuleGetFunction(&func, …

cuLaunchKernel(func, 1, 1, 1, …

nvrtcCreateProgram(&prog, …

 

 

Similarly, the HIP driver API is a counterpart to the CUDA driver API, with host calls prefixed with 
‘hip*’ or ‘hiprtc*’ instead of cu* and ‘nvrtc*’. In the example on the right, we can compile the 
kernel manually in runtime using the HIPRTC API. 
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OROCHI

CUDA/HIP software builds with each SDK

- Separate compilation for HIP and CUDA (two binaries)

- Recompiling the program to switch platforms 

Orochi

- A library loading HIP and CUDA dlls dynamically

- Switching between HIP and CUDA in runtime (one binary)

An executable 
with CUDA SDK

An executable 
with HIP SDK

Portable C++ ( HIP Syntax )

HIPCC
Runtime API

Driver API

NVCC
Runtime API

Driver API

NVIDIA GPU AMD GPU

CUDA Wrapper

Multiple 
executables…

Orochi API

An executable with Orochi

Portable C++ (Orochi syntax)

Driver APIDriver API

Single
executable ☺

 

 

The HIP code can be compiled for both Nvidia and AMD; however, it needs to be compiled for 
each platform separately. To switch the platforms, we need to recompile the code. 
 
Orochi is a library loading HIP and CUDA APIs dynamically, allowing the user to switch platforms 
at runtime via a single (host) binary.  
 
We decided to provide code samples written in Orochi for your convenience and simplicity of 
the sample code structure. 
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OROCHI – KERNEL EXAMPLE

The same as HIP driver API

- Host calls are prefixed with oro instead of hip or cu

10

const char* code = ...
const char* funcname = ...

orortcProgram prog;
orortcCreateProgram(

&prog, code, "", 0, nullptr, nullptr);
orortcCompileProgram(prog, 0, nullptr);

size_t binarySize = 0;
orortcGetCodeSize(prog, &binarySize);

std::vector<std::byte> binary(binarySize);
orortcGetCode(prog, binary.data());

oroModule module;
oroModuleLoadData(&module, binary.data());

oroFunction func;
oroModuleGetFunction(&func, module, funcname);

void* args[] = { &out };
oroModuleLaunchKernel(func, 1, 1, 1, 64, 1, 1, 0, 

0, reinterpret_cast<void**>(args), 0);

 

 

Orochi is practically the same as the HIP driver API; the host calls are prefixed with ‘oro*’ 
instead of ‘hip*’ / ‘cu*’.  
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HIP/CUDA – PROGRAMMING MODEL

- Multi-level hierarchy

- The thread is the smallest unit of program execution

- Threads are organized in a block

- Blocks form a grid

- Block and grid have up to three dimensions

- Threads within a block are further implicitly divided into 
warps (32 or 64 threads)

- A certain level of granularity

grid

block (0,0) block (1,0)

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

block (0,1)

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

block (1,1)

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

…

……
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thread (warp 0)
(0,0) … (31,0)

…

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

…

 

 

HIP and CUDA use three models. The first model is the programming model, which defines how 
the threads are organized into a multi-level hierarchy. The thread is the smallest unit of 
parallelism. The threads are further organized into blocks of a fixed size (e.g., 128 or 256 
threads), and blocks are organized into a grid. Both the blocks and the grid have up to three 
dimensions.  
 
Technically speaking, there is one more level between threads and blocks. Threads within a 
block are implicitly grouped into warps, where each warp contains 32 or 64 threads. The warp 
was originally defined by the execution model (see the following slides) in the context of 
scheduling, but since HIP/CUDA introduced the warp-level primitives (that we will discuss later 
as well), we can exploit a priori knowledge of warps for the algorithm design. 
 
This hierarchical model allows us to choose the appropriate level of granularity when designing 
parallel algorithms. We are going to explain how to arrange the hierarchy for several algorithms. 
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HIP/CUDA – MEMORY MODEL

- Define memory hierarchy

- Registers (VGPR, SGPR)

- Local variables per thread

- The fastest memory

- Local memory

- local variables per thread

- Slow off-chip memory (VRAM)

- Register spills if not enough registers

- Shared memory (Local data share)

- Shared between threads in a block

- Faster on-chip memory

- Global memory

- Shared with all blocks

- Largest memory

- Slow off-chip memory (VRAM)

- Texture and constant memory

- Cached differently, on off-chip memory

grid

block (0,0)

thread thread

block (n,0)

thread thread

shared memory shared memory

registers registers registers registers

local 
memory

local 
memory

local 
memory

local 
memory

global memory

constant memory

texture memory

…
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The memory model defines the memory hierarchy.  
• Registers (also known as VGPR or SGPR) is a fast per-thread on-chip memory used for storing 

local variables of the thread.  
• Local memory stores local variables that do not fit into registers (i.e., register spilling). Local 

memory is an off-chip memory, and thus it is significantly slower than registers. 
• Shared memory (also known as local data share – LDS) is a fast on-chip memory shared 

between threads in the block, providing an efficient way of communication between threads 
in the block. It is slightly slower than registers but significantly faster than off-chip memory. 

• Global memory is large memory but very slow (taking hundreds of clock cycles per IO 
operation) off-chip memory, typically stored in VRAM. 

• Constant and texture memory are off-chip types of memory optimized for read-only 
accesses. Texture memory is suitable for storing image data, exploiting 2D spatial coherency. 
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HIP/CUDA – EXECUTION MODEL

- Mapping blocks of threads to streaming 
multiprocessors (SMs)

- Streaming multiprocessors

- Streaming processors

- Registers

- Shared memory

- Single-instruction-multiple-threads (SIMT)

- Process warps (32 or 64 threads)

GPU

streaming 
multiprocessor (0) …

constant cache

texture cache

device memory

13

block (0,0)

streaming 
multiprocessor (1)

streaming 
multiprocessor (n-1)

block (1,0)

block (2,0)

…

block (16,0)

block (17,0)

block (18,0)

…

block (n-3,0)

block (n-2,0)

block (n-1,0)

…
…

Blocks for a computing task

streaming multiprocessor

streaming 
processor

shared memory

streaming 
processor

registers
… …

block (0,0)

thread (warp 0)
(0,0) (1,0) … (31,0)

thread (warp 1)
(32,0) (33,0) … (63,0)

 

 

The execution model defines how blocks of threads are mapped to streaming multiprocessors 
(SMs), i.e., the actual hardware units.  
 
Streaming multiprocessors consist of streaming processors, registers, and shared memory; all 
SMs share device memory and caches. The threads are scheduled and executed on a streaming 
multiprocessor in warps (i.e., groups of 32 or 64 threads); this model is also known as single-
instruction-multiple-data (SIMT). 
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HIP KEY COMPONENTS

- Atomic operations

- Guarantee correctness even in a highly parallel environment

- Shared memory

- Temporal memory for sharing data in the same block

- Warp-level primitives

- Low-level control of warp execution

- Inter-warp communication between threads

 

 

The algorithms we cover in this course heavily depend on three essential components provided 
by HIP/CUDA.  
• Atomic operations ensure the correctness of basic arithmetic operations within a highly 

parallel environment.  
• Shared memory acts as temporary storage for exchanging information among threads within 

the same block.  
• Warp-level primitives enable control over warp execution and facilitate communication 

between threads within a warp. 
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ATOMIC OPERATIONS

- Even a trivial operation may consist of multiple 
instructions

- Concurrent execution by multiple threads may lead 
to undesirable results (race conditions).

- X += Y

- Addition consists of three steps:

- Reading a value of X

- Adding Y to this value

- Writing the result back to X

- Atomic operations (or atomics) guarantee that the 
operation is correctly processed in parallel execution

- atomicAdd(), atomicMin(), atomicMax(), 
atomicExch(), atomicCAS(), etc.

15

__global__ void DotProductKernel(int size, float* x, 
float* y, float* out)
{ 

int index = threadIdx.x + blockIdx.x * blockDim.x; 
if (index < size) 

atomicAdd(out, x[index] * y[index]);
}

Multiple threads may process 
simultaneously

 

 

Even a trivial operation may consist of multiple instructions. Concurrent execution by multiple 
threads may lead to undesired results as the instructions of threads are executed in arbitrary 
order (i.e., race conditions). For example, addition consists of three steps: reading the original 
value, adding the value to the original value, and writing the new value.  
 
To prevent race conditions, we can employ built-in atomic operations that guarantee that the 
operation is correctly processed in parallel execution. The HIP provides a couple of atomic 
operations such as atomicAdd(), atomicMin(), atomicMax(), atomicExch(), atomicCAS(), and 
others. Atomic operations allow communication between threads of different blocks.  
 
The code on the right side calculates a dot product of two vectors (represented as two arrays). 
Each thread multiplies the corresponding vector components fetched from the arrays. To 
accumulate the sum of partial products, we employ atomicAdd() to prevent data races. Note 
that this is an illustrative example showing the capability of the operations. We will introduce 
later more efficient algorithms. 
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SHARED MEMORY

Memory shared among the threads in the same block

- Can be used for accumulators, communicating 
between threads

- __syncthreads() guarantees IO operations have been 
completed in the block by synchronizing threads

- Some threads in a block may go forward than 
others

16

__syncthreads()

write data

read data

A block

constexpr int BLOCK_SIZE = 64;

__global__ void DotProductKernel(int size, float* x, 
float* y, float* out)
{ 

int index = threadIdx.x + blockIdx.x * blockDim.x; 
__shared__ float smem[BLOCK_SIZE];

float val = 0.0f;
if (index < size) 

val = x[index] * y[index];

smem[threadIdx.x] = val;
__syncthreads();

if (threadIdx.x == 0)
{

float sum = 0.0f
for (int i = 0; i < blockDim.x; ++i)

sum += smem[i];
atomicAdd(out, sum)

}
}

Read data

Shared memory

Write & sync

 

 

The shared memory is a memory that is shared among threads in the same block, declared with 
__shared__. It is very fast, almost as fast as registers, if there are no bank conflicts (we will talk 
about them later). We typically use shared memory in combination with __syncthreads, which 
allows threads in the block to be synchronized (also known as a barrier). This is important, 
especially for memory accesses, to make sure that the data has been written before any further 
computation. 
 
On the right side, we use shared memory to compute the dot product. Each thread stores the 
corresponding partial products in the shared memory. We use __syncthreads to make sure that 
all data have been written. The first thread then sums the individual products sequentially. This 
is not the optimal way, and we will show later how to do it more efficiently. 
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__global__ void DotProductKernel (int size, float* x, 
float* y, float* out)
{ 

int index = threadIdx.x + blockIdx.x * blockDim.x;
int laneIndex = threadIdx.x & (warpSize – 1);

float val = 0.0f;
if (index < size) 

val = x[index] * y[index];

float sum = 0.0f
for (int i = 0; i < warpSize; ++i)

sum += __shfl(val, i);
if (laneIndex == 0)

atomicAdd(out, sum)
}

WARP-LEVEL PRIMITIVES

Efficient operations within a warp

- __shfl*(): Allows threads to read local registers of 
another thread in the same warp (no need for shared 
memory!)

- __ballot(): Binary voting within the warp

- __any() and __all(): Logic quantifiers for the warp
Still sequential 

work 

17

The voting results are packed as a 
bitmask and returned to threads.

1      0      0      1       0       1     0      1

= __ballot(x)
= 0x95

x
Read data from a 

specific thread

Need more parallelism 
for further optimization

 

 

HIP/CUDA provides warp-wide level primitives that facilitate efficient communication within a 
warp. The shuffle instruction allows reading registers of other threads in the warp without the 
need for shared memory. The ballot instruction returns an integer, where each bit indicates a 
predicate of each thread. The any and all instructions implement logic quantifiers. We will 
employ these instructions a lot in the following section.  
 
Note that in HIP, the warp-level primitives implicitly use the synchronized versions with a full 
mask to handle independent thread scheduling. 
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PARALLEL REDUCTION & PREFIX SCAN

 

 

We look into the details of two pivotal algorithms: parallel reduction and parallel prefix scan. 
These two algorithms are typically covered in parallel programming courses. As both algorithms 
serve as building blocks for more advanced techniques, we pay extra attention to them. 
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PARALLEL REDUCTION (PR)

- Input: An array of values                             and associative operator 

- Output:

8 1 7 4 6 3 5 2

9 11 9 7

20 16

36

add, min, max, 
..

19

            

             

 

 

The reduce operation takes a binary associative operator op and an ordered sequence of n 
elements, returning a value obtained by iteratively applying operator op on all elements in the 
sequence.  
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PARALLEL REDUCTION (PR) – TIME COMPLEXITY

- Sequential algorithm

- Parallel algorithm 

- for         processors

- for     processors and 

Depth of recursion

20

8 1 7 4 6 3 5 2

9 11 9 7

20 16

36

  

      

     

         

   

      

 

 

The sequential algorithm of the reduction is straightforward. We scan the sequence element by 
element and simultaneously update the partial result of processed elements. The time 
complexity of the sequential algorithm is O(n). 
 
The parallel algorithm is based on the divide and conquer paradigm. The sequence is recursively 
divided into halves until a single element is left. In interior nodes of a recursion tree, partial 
results are merged using the operator.  
 
The depth of the recursion tree is [log2(n)], and hence the time complexity for n/2 processors is 
O(log n). The time complexity for p processors such that p < n/2 is O([n/p]+log(p)). Each 
processor requires [n/p] time steps, and merging partial results of each processor takes another 
log2(p) steps. 
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PARALLEL REDUCTION (PR) – AXIS-ALIGNED BOUNDING BOX

Axis-aligned bounding box (AABB) 

- Defined by minimum and maximum (red dots)

- Can be computed by parallel reduction

- Minimum and maximum for each axis

- Six parallel reductions in 3D

21

 

 

Typically, the operator is addition, minimum, or maximum. In the context of computer graphics, 
it can be, for example, an axis-aligned bounding box of a triangle soup. The bounding box is 
defined by two points: minimum and maximum (the red dots). Hence, the computation can be 
decomposed into 2x3=6 parallel reductions in 3D. 
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PARALLEL REDUCTION (PR) – IMPLEMENTATION

template <typename T>
__device__ T ReduceSumBlock(T val, T* smem)
{ 

smem[threadIdx.x] = val;
__syncthreads();

for (int i = 1; i < blockDim.x; i *= 2)
{

if (threadIdx.x < (threadIdx.x ^ i))
smem[threadIdx.x] += smem[threadIdx.x ^ i];

__syncthreads();
}

return smem[0];
}

Block-wise reduction with shared memory

22

i = 100

i = 001

i = 010

[0] [1] [2] [3] [4] [5] [6] [7]

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

[0-1] [2-3] [4-5] [6-7]

[0-3] [4-7]

[0-7]

Make pairs

Any associative 
operator

Shared Memory 

- Shared memory for intermediate computations

 

 

Parallel reduction (PR) can be implemented using one parallel loop. This is a block-wise variant 
using shared memory with block-wise barriers. The figure illustrates the steps of the algorithm. 
There are several ways to do this, but we present the xor approach. 
 
The thread pairs in each iteration are determined by xor operation: each thread applies xor to 
its own index and i to determine the other thread’s index. The distance between paired items is 
given by i, and it gets doubled after each iteration. For example, for the leftmost item [0], it 
forms a pair [0,1] in the first iteration; it forms a pair with [0,3] in the second iteration; and 
finally, it forms a pair [0,7] in the last iteration. The same rule applies to other elements. Only 
the smaller thread in the pair process to avoid shared memory data race.  
 
Note that any associative operator can be used, although this example uses the plus operator 
for the sake of simplicity.  
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PARALLEL REDUCTION (PR) – IMPLEMENTATION

template <typename T>
__device__ T ReduceSumWarp(T val)
{ 

for (int i = 1; i < warpSize; i *= 2)
{

val += __shfl_xor(val, i);
}
return val;

}

Warp-wise reduction with shuffle

23

i = 100

i = 001

i = 010

[0] [1] [2] [3] [4] [5] [6] [7]

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

[0-1] [0-1] [2-3] [2-3] [4-5] [4-5] [6-7] [6-7]

[0-3] [0-3] [0-3] [0-3] [4-7] [4-7] [4-7] [4-7]

[0-7] [0-7] [0-7] [0-7] [0-7] [0-7] [0-7] [0-7]

- Directly reading registers of other threads

__shfl(val, laneIndex ^ i)

 

 

The warp-wise variant is practically the same as the block-wise one. The difference is that the 
values are directly acquired from registers of other threads via the shuffle instruction.  
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PREFIX SCAN

- Input: An array of values                             and associative operator 

- Inclusive prefix scan: 

- Exclusive prefix scan: 

- Identity element    

24

8 1 7 4 6 3 5 2

8 9 16 20 26 29 34 36

0 8 9 16 20 26 29 34

Inclusive prefix scan

Exclusive prefix scan

             

                       

                         

             

 

 

There are two types of prefix scans: inclusive and exclusive. Both types take a binary associative 
operator op and an ordered sequence of n elements. The prefix scan returns an ordered 
sequence, where the i-th element is a reduction of the input sequence up to the i-element, 
which is either included or excluded. Note that in practice, we typically use exclusive prefix scan. 
 
The exclusive prefix scan can be constructed from the inclusive prefix scan by removing the last 
element and inserting the identity element at the beginning. The inclusive prefix scan can be 
constructed from the exclusive prefix scan by removing the identity element and inserting the 
sum of the last element of the input sequence and the last element of the exclusive prefix scan 
at the end. The sequential algorithm is trivial; we scan the input sequence element by element 
and simultaneously write the partial results of the output sequence. 
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PARALLEL PREFIX SCAN (PPS) – TIME COMPLEXITY

- Sequential algorithm

- Parallel algorithm 

- for         processors

- for     processors and 

25

8 1 7 4 6 3 5 2

8 9 16 20 26 29 34 36

0 8 9 16 20 26 29 34

Inclusive prefix scan

Exclusive prefix scan

- Two parallel algorithms:

- Hillis-Steele algorithm

- Blelloch’s algorithm

  

         

        

      

 

 

The time complexity of the sequential algorithm is O(n). The time complexity of the parallel 
algorithm is the same as parallel reduction. There are two parallel prefix scan algorithms: the 
Hillis-Steele algorithm and Blelloch’s algorithm. We explain the Hillis-Steele algorithm in detail. 
You can find details of the Blelloch’s algorithm in the supplementary material. 
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HILLIS-STEELE ALGORITHM

- Inclusive prefix scan

- Computational steps

- One pass
8 1 7 4 6 3 5 2

8 8 10 89 11 9 7

8 9 16 18 1820 20 16

8 9 16 26 3420 29 3636

20 16

9 11 9 7

8 1 7 4 6 3 5 2

29

9 20

9 11 9

8 1 7 4 6 3

      

 

 

The Hillis-Steele algorithm implicitly computes inclusive prefix scan in a single pass with 
O(n*log(n)) computational steps. The algorithm works iteratively by adding preceding values to 
the succeeding ones. In each iteration, a thread adds a value located to the left by a given offset 
to its own value (if such a value exists). The offset is initially set to 1 and doubled after each 
iteration. Intuitively, the algorithm reduces the preceding elements for each entry in the output 
prefix scan. In the example above, we can reconstruct the computational tree that represents 
these reductions. Missing branches are assumed to be zero (or an identity element in general).  
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HILLIS-STEELE ALGORITHM – IMPLEMENTATION
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template <typename T>
__device__ T ScanBlock_HillisSteele(T val, T* smem)
{

smem[threadIdx.x] = val; 
__syncthreads();

for (int offset = 1; offset < blockDim.x; offset *= 2)
{

if (threadIdx.x – offset >= 0)
val += smem[threadIdx.x - offset];

__syncthreads();
smem[threadIdx.x] = val;
__syncthreads();

}

return smem[threadIdx.x];
}

Block-wise prefix scan with shared memory

8 1 7 4 6 3 5 2

8 8 10 89 11 9 7

8 9 16 18 1820 20 16

8 9 16 26 3420 29 36

offset=1

offset=2

offset=4

- Shared memory for intermediate computations

 

 

The Hillis-Steele algorithm can be implemented in one parallel loop. This is a block-wise variant 
using shared memory. The input values are initially loaded to the shared memory. Each thread 
keeps the current value of the prefix scan also in registers. In each iteration, the thread loads a 
value of another thread (given by the current offset) from shared memory and adds it to its own 
value stored in registers. Before we write the updated value back to shared memory, we use a 
block-wise barrier to prevent race conditions. The offset gets doubled after each iteration. On 
the right side, you can see a figure illustrating the offset behavior in different iterations. 
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HILLIS-STEELE ALGORITHM – IMPLEMENTATION
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8 1 7 4 6 3 5 2

8 8 10 89 11 9 7

8 9 16 18 1820 20 16

8 9 16 26 3420 29 36

offset=1

offset=2

offset=4

template <typename T>
__device__ T ScanWarp_HillisSteele (T val)
{

int laneIndex = threadIdx.x & (warpSize – 1);
for (int offset = 1; offset < warpSize; offset *= 2)
{

T paired = __shfl_up(val, offset);
if (laneIndex – offset >= 0) 

val += paired;
}
return val;

}

Warp-wise prefix scan with shuffle

- Directly reading registers of other threads

__shfl(val, laneIndex - offset)

 

 

The warp-wise variant is practically the same as the block-wise one. The difference is that the 
values are directly acquired from registers of other threads via the shuffle instruction. Note that 
the __shfl_up instruction reads the variable of a thread with the lane index lower (given by the 
offset) than the caller’s lane index. 
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0 = POPC (                                                                   )

WARP-WISE BINARY PPS – IMPLEMENTATION

__device__ int ScanWarpBinary(bool x)
{

int laneIndex = threadIdx.x & (warpSize – 1);
uint64_t ballot = __ballot(x);
return __popcll(ballot & ((1ull << laneIndex) – 1));

}

- A special case of prefix scan with binary values (0 or 1)

- __ballot: bits indicating how threads voted

- __popc: the number of bits set to one
1      0      0      1       0       1     0      1

x

ballot(x) =

[0] 1      0      0      1       0       1     0      1

1 = POPC (                                                                   )[1] 1      0      0      1       0       1     0      1

1 = POPC (                                                                   )[2] 1      0      0      1       0       1     0      1

2 = POPC (                                                                   )[3] 1      0      0      1       0       1     0      1

2 = POPC (                                                                   )[4] 1      0      0      1       0       1     0      1

…

Threads:

laneIndex=0   -> 00000000
laneIndex=1   -> 00000001
laneIndex=2   -> 00000011
laneIndex=3   -> 00000111
laneIndex=4   -> 00001111
…

[0][1][2][3][4][5][6][7]

 

 

If the values of the prefix scan are binary (0 or 1), we can implement warp-wise prefix scan 
efficiently via the ballot and popcount instructions. The ballot instruction returns an integer 
where each bit represents the vote (0 or 1) of the corresponding thread in the warp. The 
popcount instruction calculates the number of bits that are set to one. To obtain the prefix scan 
value for a specific thread, we need to first mask out the higher bits, corresponding to threads 
with higher lane indices, before we use the popcount instruction. 
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DEVICE-WISE PARALLEL PREFIX SCAN – HIERARCHICAL APPROACH
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8 1 7 4 6 3 5 2 9

8 9 16 4 10 13 5 7 16

16 13 16

16 29 450

20 26 29 34 36 45

Input

Block-wise  prefix  scans

Block sums

Prefix scan of the sums 
(block offsets)

Adding offsets to 
block prefix scans

 

 

We introduced block-wise and warp-wise prefix scan algorithms. However, the input is typically 
larger than the block or warp. There are two approaches to how we can compute the (global) 
device-wise prefix scan from (partial) block-wise prefix scans. 
 
The problem is that for each block, we need to compute its offset, which is the sum of all 
previous items. The key observation is that already each block has computed the sum of its 
items, i.e., the last entry in the block-wise prefix scan. 
 
One solution is a hierarchical approach. First, we compute the prefix scan in each block, then we 
compute the prefix scan of block sums to get the offset for each block. If the number of blocks is 
larger than the block size, we have to use more than one level, requiring multiple kernel 
launches and additional buffers.  
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DEVICE-WISE PARALLEL PREFIX SCAN – PARTIALLY SEQUENTIAL APPROACH
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8 1 7 4 6 3 5 2 9Input

8 9 16 4 10 13 5 7 164 10 13 5 7 16
Block-wise prefix scans

8 9 16

+ Offset (0) + Offset (16)

20 26 29

+ Offset (16 + 13)

34 36 45

Apply the offset

Global offset calculation

Global offset += 16

Global offset += 13

Global offset += 16

 

 

Another solution is to use a partially sequential approach. As before, we compute block-wise 
prefix scans for each block. To compute the global offset for each block, we process blocks 
sequentially. Each block is waiting until the previous block updates the global offset. This 
approach can be implemented in a single kernel launch. 
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DEVICE-WISE PARALLEL PREFIX SCAN – IMPLEMENTATION 

template <typename T>
__device__ T ScanDevice (T val, T* smem, T* sum, int* 
counter)
{

val = ScanBlock(val, smem); 
__shared__ T offset;
if (threadIdx.x == blockDim.x - 1)
{

while (atomicAdd(counter, 0) < blockIdx.x);
__threadfence();

offset = *sum;
*sum += val;

__threadfence();
atomicAdd(counter, 1);

}
__syncthreads();
return offset + val;

}

Device-wise prefix scan

32

- Hierarchical approach

- Prefix scan of block sums

- Multiple kernel launches

- For large inputs we need more than two levels

- Sequential approach

- Wait for the block offset using atomic counter

- Add the block sum obtaining the block offset

- Add the block offset and block values to obtain 
the global prefix scan

- Only one kernel launch ☺

- Both approaches can be implemented as an in-place 
algorithm

Synchronization for 
sequential execution

Parallel execution

Parallel execution

 

 

Unlike parallel reduction, where we can use an atomic operation for each block to get the final 
result, the implementation of device-wise parallel prefix scan is more complicated. The 
hierarchical approach requires multiple kernel launches, and even a one-level hierarchy might 
not be enough.  
 
The sequential approach can be implemented via a waterfall scheme, which we will discuss later 
in detail. It allows us to compute the device-wise prefix scan in a single kernel launch regardless 
of the input size. We use two atomic counters: sum and counter. The last thread in each block 
spins until counter is equal to its block index, then it adds its sum to sum, obtaining the offset 
for all threads in the corresponding block. Finally, it atomically increases counter, letting the 
next block be processed.  
 
Note that as we do not have to store intermediate prefix sum results in global memory, both 
approaches can be implemented as in-place algorithms, avoiding unnecessary memory 
allocations. 
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PROGRAMMING PRIMITIVES

 

 

This section presents a collection of more advanced techniques widely applicable across 
different areas. 
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PARALLEL ENQUEUING

- Writing an output is one of the most common tasks 
in parallel computing

- Task queue, tree constructions, etc.

- Non-trivial if not all threads want to write

- Naïve solution is to use atomic add to get the offset

- Better solution is to use warp-wise with atomic add

- Device-wise prefix scan is not necessary 

- Block-wise or warp-wise are sufficient

__global__ void EnqueueNaiveKernel(const int* input, 
int* output, int* counter)
{

int value = … 

bool enqueue = /* ANY CONDITION HERE */;
if (enqueue) 

output[atomicAdd(counter, 1)] = value;
}

Naïve solution with atomic add

Input buffer

Output buffer

Per thread 

 

 

Writing output is a basic task in parallel computing, frequently encountered in various domains. 
In computer graphics, spatial data are often organized into hierarchical structures. During the 
construction, we output elementary blocks such as nodes or cells in parallel. Another example is 
a task queue, where we need to enqueue new tasks. While a naive approach using atomic add 
to determine the offset (as shown on the right side) is simple, this method can introduce 
significant overhead. A more efficient alternative is to employ the warp-wise (or block-wise) 
prefix scan with atomic add, which offers improved performance compared to a device-wise 
prefix scan that may be unnecessarily wasteful. 
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PARALLEL ENQUEUING – IMPLEMENTATION 

__global__ void EnqueueBinaryKernel(int size, const
int* input, int* output, int* counter)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;
int laneIndex = threadIdx.x & (warpSize - 1);

int val = 0;
if (index < size) val = input[index];

bool enqueue = /* ANY CONDITION HERE */;
int warpScan = ScanWarpBinary(enqueue);

int warpOffset = 0;
if (laneIndex == warpSize - 1)

warpOffset = atomicAdd(
counter, warpScan + enqueue);

warpOffset = __shfl(warpOffset, warpSize - 1);

if (index < size && enqueue) 
output[warpOffset + warpScan] = val;

}

Binary warp-wise prefix scan with atomic add and shuffle Warp-wise prefix scan with atomic add and shuffle

__global__ void EnqueueKernel(int size, const int*
input, int* output, int* counter)
{

int val0 = …, val1 = …;

bool enqueue0 = /* ANY CONDITION HERE */;
bool enqueue1 = /* ANY CONDITION HERE */;
int enqueuedCount = enqueue0 + enqueue1;

int warpScan =
ScanWarp(enqueuedCount) - enqueuedCount;

int warpOffset = 0;
if( laneIndex == warpSize - 1) warpOffset =

atomicAdd(counter, warpScan + enqueuedCount);
warpOffset = __shfl(warpOffset, warpSize - 1);

int offset = warpOffset + warpScan;
if(index0 < size && enqueue0) 

output[offset++] = val0;
if(index1 < size && enqueue1) 

output[offset] = val1;
}

Include the current 
value of the last lane

Each threads outputs 
up to two items

 

 

On the left side, you can see an implementation employing the binary warp-wise prefix scan. On 
the right side, each thread outputs up to two items. In this case, we use the (general) warp-wise 
prefix scan that can handle arbitrary values. 
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PARALLEL ENQUEUING – COMPLEMENT 

- Sometimes we want to output data to either one of 
buffer or to another one

- We can use just one prefix scan and its complement 
instead of two prefix scans

__global__ void EnqueueComplementKernel(int size, const int* 
input, int* output0, int* output1, int* counters)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;
int laneIndex = threadIdx.x & (warpSize - 1);

int val = 0;
if (index < size) val = input[index];

bool enqueue = /* ANY CONDITION HERE */;
int warpScan = ScanWarpBinary(enqueue);
int complWarpScan = laneIndex - warpScan;

int warpOffset = /* THE SAME AS BEFORE */;

int complWarpOffset = 0;
if (laneIndex == warpSize - 1) complWarpOffset = 

atomicAdd(&counters[1], complWarpScan + !enqueue);
complWarpOffset = __shfl(complWarpOffset, warpSize - 1);

if (index < size) 
{

if (enqueue) output0[warpOffset + warpScan] = val;
else output1[complWarpOffset + complWarpScan] = val;

}
}

Binary warp-wise prefix scan with its complement

Input buffer

Green output buffer

Red output buffer

     

 

   

      

 

   

int complWarpScan = ScanWarpBinary(!enqueue);

i-th element

 

 

Sometimes we want to output data either to one buffer or to another. On the left side, our goal 
is to separate green and red elements into two output buffers. We can use one prefix scan and 
its complement instead of two separate prefix scans. On the right side, you can see the 
implementation of a simple example, separating input numbers. In practice, we can employ this 
approach, for example, in the context of a hierarchical structure construction where we produce 
either leaf nodes or internal nodes. 
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BOTTOM-UP TRAVERSAL

- In computer graphics, we often arrange data into hierarchical structures

- Reduction of leaf nodes in the corresponding subtrees

- Refitting bounding boxes

- The sum of surface areas

- The number of primitives

8 1 7 4 6 3 52

9 11 9 7

20 16

36

 

 

In computer graphics, we often arrange data into hierarchical structures. A common operation is 
a reduction of leaf nodes in the corresponding subtrees for each internal node, e.g., bounding 
boxes or the sum of surface areas. This is very similar to parallel reduction; however, in this 
case, the tree structure is explicit. 
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BOTTOM-UP TRAVERSAL - IMPLEMENTATION

- Counters in interior nodes (initialized to 0) and 
parent links

- Each thread is assigned to a leaf node proceeding up 
to the root

- In internal node, the thread atomically increment the 
counter

- Allowing only the last thread processes the internal 
node

__global__ void BottomUpTraversalKernel(int size, const Node* nodes, 
const Leaf* leaves, int* sums, int* counters)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;
if (index >= size) return;

const Leaf& leaf = leaves[index];
index = leaf.m_parentAddr;

while (index >= 0 && atomicAdd(&counters[index], 1) > 0)
{

__threadfence();

const Node& node = nodes[index];

int sum = 0;
if (node.leftIsLeaf()) 

sum += leaves[node.getLeftAddr()].m_value;
else

sum += sums[node.getLeftAddr()];

if (node.rightIsLeaf()) 
sum += leaves[node.getRightAddr()].m_value;

else
sum += sums[node.getRightAddr()];

sums[index] = sum;
index = node.m_parentAddr;
__threadfence();

}
}

8 1

9

Summing up values in all the leaf nodes

 

 

To implement this, we need counters in interior nodes (initialized to 0) and parent links. Each 
thread is assigned to a leaf node proceeding up to the root. In an internal node, the thread 
atomically increments the counter. Only the last thread processes the internal node (the second 
thread in the case of binary trees). In the example on the right side, we are summing up values 
in all leaf nodes. As we modify sums, we have to use a memory fence to make sure that the 
changes are visible to threads in other blocks. 
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WATERFALL SCHEME

- “A task queue with a predefined number of tasks”

- Schedule the number of threads equal to the number of tasks

- Each thread processes a single task

- A thread can arrange new tasks and quits

- Allowing other threads to be launched

- Tasks have to be scheduled in order, to avoid deadlock

- We already used this scheme to compute the device-wise PPS

All scheduled threads

Done threads 
(processed tasks)

Active threads Threads to be launched or waiting

Active threads 
spawn new tasks Execution order

 

 

A waterfall scheme is a task queue with a predefined number of tasks. We schedule the number 
of threads equal to the number of tasks. Each thread processes a single task; the thread spawns 
new tasks and quits, allowing other threads to be launched. Note that tasks have to be 
scheduled in order to avoid deadlock.  
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template <typename T>
__device__ T ScanDevice(T val, T* smem, T* sum, int* 
counter)
{

val = ScanBlock(val, smem);
__shared__ T offset;
if (threadIdx.x == blockDim.x - 1)
{

while (atomicAdd(counter, 0) < blockIdx.x);
__threadfence();

offset = *sum;
*sum += val;

__threadfence();
atomicAdd(counter, 1);

}
__syncthreads();
return offset + val;

}

40

WATERFALL SCHEME - DEVICE-WISE PARALLEL PREFIX SCAN

- Compute the device-wise PPS from block-wise PPSs

- Waterfall scheme for the global offset calculation

- A thread in a block adds its sum the global offset 
obtaining the offset for its elements

- It increments the block counter letting the next block 
compute its offset 

Device-wise prefix scan

Waiting for 
the previous block 
to finish the task

4 5 7
Block-wise prefix scans
(parallel)

Apply the offset
(parallel)

Global Offset
(serial)

Global offset += 16

Global offset += 13

Global offset += 16

+ Offset (0) + Offset (16) + Offset (29)

Global offset 
calculation

Schedule the next block

 

 

We already used the waterfall scheme to compute device-wise prefix scan, which you can see 
on the right side. 
 
To compute the device-wise Parallel Prefix Scan (PPS) from block-wise PPSs, only a in each block 
participates in the computation. Since there is only one active task at a time, the task queue can 
be represented by a single counter. The thread starts its work when the counter value is equal 
to its block index. The thread reads the offset and adds the block sum to the offset. After adding 
the sum, the thread atomically increments the counter, signalizing that the next block can be 
processed. 
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WATERFALL SCHEME – TOP-DOWN TREE BUILD

- The top-down construction of a binary tree via the 
waterfall scheme

- Each thread processes a single node

- Each thread waits until its node is ready to process

- A node marks children as ready after it is processed

__global__ void BuildTree(int nodeCount, bool* readyStates, Node* nodes)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;

bool done = index >= nodeCount;
while (!__all(done))
{

__threadfence();

bool ready = done ? false : readyStates[index];
if (!ready) continue;

Node& node = nodes[index];
if (node.isLeaf())
{

node = build a leaf
}
else
{

nodes[node.left] = build left child
nodes[node.right] = build right child

__threadfence();

readyStates[node.left] = true;
readyStates[node.right] = true;

}
done = true;

}
}

[3] [4] [5] [6]

[1] [2]

[0]

Active tasks

Done

Mark the children “ready”

Wait until the node is ready

Will be processed

 

 

Besides the bottom-up traversal of the hierarchical structure, we sometimes need the top-down 
traversal that can be implemented via the waterfall scheme. In the example above, we use this 
approach to build a binary tree in a top-down fashion.  
 
The thread index is the same as the processed node index. The task queue contains only binary 
values, indicating whether the task is ready or not yet. Other input information about a 
particular node is stored in the node structure itself. In the beginning, there is only one task 
corresponding to the root node. Each task may produce two new tasks.  
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PERSISTENT THREADS

- An algorithm can be implemented as several kernels

- Separated kernel launches are implicitly globally 
synchronized (a.k.a. global barrier) in a stream

- Easy to guarantee that all the previous tasks have 
been done

- It might be beneficial to fuse multiple kernels into 
one kernel

- Eliminate the kernel launch overhead

- Reduce memory accesses

- Fused kernel may have deadlock

- Not guaranteed that all threads are running 
simultaneously

Kernel launch 1

Kernel launch 2

All Tasks in the kernel launch 1 must be done here

Separated Kernels

Stream

Can continue with 
the previous results

Done

Active threads Non-active threads are waiting

A Fused Kernel - A deadlock case 

A Kernel Launch
Task 1

Task 2

Spin waiting…

Need all of the results from kernel 1

Task 1

Task 2

 

 

Separate kernel launches are implicitly globally synchronized (a.k.a. global barrier) in a stream. It 
might be beneficial to fuse multiple kernels into one kernel to decrease the kernel launch 
overhead and reduce memory access. Global synchronization in a single kernel typically leads to 
a deadlock, as it is not guaranteed that all threads are running simultaneously. 
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PERSISTENT THREADS

- Launch the maximum number of threads that can run 
simultaneously on the device to prevent deadlock

- The threads are persistently running

- We can use the occupancy API to determine the 
number of persistent threads

- The global barrier by spin waiting is safely used for 
already processed tasks

Just launch the maximum number of threads 
on the device

Fused kernel – Persistent threads

Kernel launch

… Task 1

if (laneIndex == 0)
{

atomicAdd(counter, 1);
while (atomicAdd(counter, 0) < numberOfTask1);

}
__syncthreads();
__threadfence();

… Task 2

Count finished warps 
and can wait properly

oroDeviceProp prop;
oroGetDeviceProperties(&prop, device);

int blockCount;
oroOccupancyMaxActiveBlocksPerMultiprocessor(&blockCount, func, BLOCK_SIZE, 0);

int nPersistentThreads = prop.multiProcessorCount * BLOCK_SIZE * blockCount;

Task 1

Task 2

 

 

The solution is to launch the maximum number of threads that can run simultaneously on the 
device. As there are no inactive tasks that we are waiting for anymore, it is possible to use active 
spinning. This concept is known as persistent threads.  

 
Determining the number of persistent threads is relatively difficult as it depends on a particular 
HW architecture and occupancy. Luckily, we can use the occupancy API to query the number of 
active blocks on a multiprocessor. The number of blocks is further multiplied by the warp size 
and the number of multiprocessors (which can also be queried) to get the number of persistent 
threads. 
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PARALLEL POOL ALLOCATOR

- In some situations, we may need a per-thread/per-block buffer

- Registers and Shared memory may not be large enough

- Stack memory, hash table, etc.

- Allocating a global buffer for all scheduled threads may be 
wasteful as only a fraction of threads are active at the time 

- Persistent threads can reduce scheduled threads, but it might 
be difficult to change scheduling in some situations

- malloc() in a kernel might be too costly 

Done

Active threads

Just waiting…Just waiting…

Buffer

Buffer for each thread

Allocate a buffer only for the active threads and assign it 

dynamically to active threads

 

 

In some situations, we need a per-thread buffer (e.g., stack). Local arrays are allocated per 
thread, but they are hard to control as they may cause significant register pressure. Allocating a 
global buffer for all scheduled threads may be wasteful as only a fraction of threads are active at 
a time. 
 
Persistent threads can reduce scheduled threads, but it might be difficult to change scheduling 
in some situations. Another option is to use dynamic allocation in the device code via malloc; 
however, depending on the implementation, it might be too costly. 
 
Instead, we can allocate a buffer only for the active threads and assign it dynamically to active 
threads. 
 
 

  



 

Slide 45 

 

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS 

45

PARALLEL POOL ALLOCATOR

Acquire a lock based on a hash of the warp index

Warps
Other warps fail to acquire

Warps

Fixed-size buffers

Try the next one

Warps

Linearly search 
for a free buffer

next

int warpIndex = ...
int laneIndex = ...
int indexOfBuffer = INVALID_INDEX;
int iterator = hash(warpIndex) % numberOfBuffers;
while (bufferIndex == INVALID_INDEX)
{

if (laneIndex == 0)
if (atomicCAS(&locks[iterator], 0, 1) == 0) 

bufferIndex = iterator; // success!
iterator = (iterator + 1) % numberOfBuffers;
bufferIndex = __shfl(bufferIndex, 0);

}
__threadfence();

int* buffer = getBufferPointer(bufferIndex);

... Do some awesome work here with the buffer ...

__threadfence();
__syncwarp();
if (laneIndex == 0) 

atomicExch(&locks[bufferIndex], 0);

Acquire a lock

Release the lock

Parallel pool allocator (warp level)

Hash (warp index)

 

 

We first allocate a pre-defined number of buffers, enough for the active threads. The number of 
buffers should be roughly the same as the number of persistent threads. It is independent of 
the total number of scheduled warps (no deadlock); however, too few buffers would make 
threads idle, and too many buffers would be wasteful.  
 
When a warp reaches a point that needs some allocation, it tries to acquire a lock of one of the 
buffers. It may fail in case the buffer is used by another warp. In that case, it tries the next one 
and so on, linearly searching for the first buffer that is free. This can be implemented as a 
spinlock with atomic compare-and-swap (atomicCAS). The first thread in the warp tries to 
acquire the lock, broadcasting the result to other threads in the warp. After the work is done, 
the buffer can be freed by releasing the lock via the atomic exchange (atomicExch). In this 
example, we assign the buffer per warp; we can also implement the assignment per block. 
 
We will discuss the spinlock and this kind of linear search in detail in the following section. 
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LINEAR PROBING

 

 

In this section, we take a look into details of another primitive known as linear probing. 
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LINEAR PROBING

- Resolving collisions in hash tables

- Open addressing

- An array as the internal representation

- Values stored directly in the table

- Use linear search to resolve hash collisions

- Similar to the parallel pool allocator

- Supports parallel insertion

- Various applications

- Duplicate removal

- Table-based compression

- Spatial hashing

- Photons in photon mapping

- Global Illumination caches ( irradiance/radiance cache, reservoir sampling, etc )

- Particles in collision detection

47

 

 

Linear probing is an algorithm for resolving collisions in hash tables that are represented by 
arrays. It is a form of open addressing, where values are directly stored in the hash table, in 
comparison with chaining that stores chains of values with the same hash that are typically 
represented as linked lists. As the name indicates, the search algorithm is linear from the 
hashed location of the key. An advantage is that insertion can be implemented in parallel thanks 
to the data structure simplicity, which is suitable for the GPU. 
 
Various applications benefit from the use of linear probing, including duplicate removal, table-
based compression, and spatial hashing. In computer graphics, techniques such as photon 
mapping, global illumination caching, and collision detection heavily rely on spatial hashing. 
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LINEAR PROBING - INSERTION

1. Allocate storage as an array with size N

2. Calculate hash for input X

3. Determine the home location based on hash(X)

- The mapping from hash value to home location is arbitrary but hash(X) % N is an option

4. Insert the value if it is empty. Or return if X is already existing

5. Otherwise, try 4. Try the next location

home = hash(X) % N

C X A

Linear search
Linear search

C B A

home = hash(X) % N

X

 

 

The core algorithm of linear probing works as follows. 
 
First, we allocate storage of N items. We stick with a fixed size for the sake of simplicity. The 
following steps are calculating a hash of the value and looking up the home location. Each value 
has a home location. The mapping from hash to home location is arbitrary, but the simplest one 
is hash(X) % N. Then, if the home location is empty, we insert the value; or if the value is already 
present, we are done. 
 
Let us assume there are already some items present in the table. On the left side, we can see 
that the home location of X is occupied by C. Thus, we try the next location. As the value is 
already present, we are done. On the right side, as in the previous case, the home location of X 
is occupied by C. The following location is occupied by B. Fortunately, the next location is empty, 
and thus we can insert X there. 
 
Notice that all search operations are done by linear search. That is why it is called linear 
probing. 
 
 

  



 

Slide 49 

 

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS 

49

PARALLEL LINEAR PROBING - INSERTION 

- Insertion may cause data race in parallel execution

- Atomic CAS can handle it efficiently

hash(X) % N == 1

hash(Y) % N == 2

hash(Z) % N == 3

C B A

[0] [1] [2] [3]

hash(X) % N == 1

hash(Y) % N == 2

hash(Z) % N == 3

C B A

[0] [1] [2] [3]

Y

Occupied bit 
(1 bit)

Value bits
(31 bits)

Elements: 

Implementation

__device__ InsertionResult insert(unsigned int k)
{

int h = home(k);
for (int i = 0; i < m_table.size(); i++)
{

int location = (h + i) % m_table.size();
unsigned int r = atomicCAS(&m_table[location], 0 /* empty */, k | OCCUPIED_BIT);
if (r == 0)
{

return INSERTED;
}
else if (r == (k | OCCUPIED_BIT))
{

return FOUND;
}

}
return OUT_OF_MEMORY;

}

Only a thread can insert ☺

threads

Insertion can be done one by one

 

 

As previously mentioned, insertion in linear probing can be implemented in parallel in a GPU-
friendly way. Insertion may cause data races in parallel execution as one location can be 
accessed by multiple threads.  
 
This problem can be solved by atomic compare-and-swap (atomicCAS). This operation takes 
three arguments: address, old, and value. If the value pointed by address is equal to the old 
value, then it assigns the value to the location pointed by the address, while returning the 
original value at the address.  
 
Assuming that empty locations are marked by zeroes, we can simply use atomic CAS for the 
insertion. We use the occupied bit to be able to handle zero as an input value. If the returned 
value is zero, we know that the insertion has been successful. If the returned value is equal to 
the one we want to insert, then the value is already present. Otherwise, we know that the entry 
is occupied by another value, and we try the next entry. 
 
Notice that we already use the same approach in the parallel pool allocator. 
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LINEAR PROBING – HIGH LOAD FACTOR ISSUE

- Linear probing is simple and very fast

- What if the table is close to full?

C B H J W AG K E

hash(W) % N == 1
Too bad...

 

 

Linear probing with parallel implementation is simple and fast, making it a practical choice. 
However, what happens if the table is almost full? For example, the home location (on the left) 
is occupied by C, and there are a lot of existing elements in a line. In such a case, we have to go 
all the way here, which is expensive. This is a drawback of linear probing. 
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BIDIRECTIONAL LINEAR PROBING 

- Use the order of the hash values

       
     

          

C B D

       
               

We can keep the hash value order 
for all elements

E

        

                                               

[0] [1] [2]

      

Home locations:

 

 

To address this issue, we introduce an extension of linear probing known as bidirectional linear 
probing. In the previous example, it would be better to go to the left to find the empty location 
more efficiently. 
 
Bidirectional linear probing is based on ordering the hash values. Home value is defined by the 
equation above; the home locations are distributed based on the magnitude of the hash value: 
smaller hash values are distributed to the left while larger hash values are distributed to the 
right. In the example above, 0 to 5 are on the left, 6 to 10 are around the center, and the others 
are on the right. Moreover, we keep the order of the hash values in the storage even when 
there are some home conflicts. 
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BIDIRECTIONAL LINEAR PROBING - SEARCH

- Find an element with half of the iteration

           

Go for the right

           

Go for the left

C B HV K

     

C B HV K

     

higherlower

 

 

Thanks to the ordering, we can determine the direction of search and find an element with half 
of the iterations compared to standard (unidirectional) linear probing. 
 
The example above depicts how the direction is determined. The lower values are on the left, 
and the higher values are on the right in the storage. We want to insert H (top), but the home 
location is already occupied by V. As the hash value of H is greater than the hash value of V, H 
should be located on the right, and thus we search on the right. Similarly, we want to insert C 
(bottom); as before, the home location is occupied by V. However, in this case, the hash value of 
C is lower than the hash value of V, and thus we search on the left side. 
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BIDIRECTIONAL LINEAR PROBING - INSERTION

- Insertion

1. Search an insertion point to keep the order

2. Shift items and insert

27 29 31

C B V K

H

The insertion point is on the right.

The chunk is off-centered to the right.

Let’s move it to the left.

C B V K

       
        

[9]

Move to the left or right?

 

 

This comes at a cost of keeping the order of the values. This means that when we insert a new 
value, we have to move the values to preserve the order. 
 
That can be done in two steps. The first step is to find the insertion point. Similarly, as we did on 
the previous slide, we determine the home location and the search direction. The insertion 
point is a location such that the hash value of its element is less than the hash value of the 
inserted element and the hash value of the next location is greater than the hash value of the 
inserted element. In the example above, the home location is 9, and the search direction is 
right. The insertion point coincides with V as hash(V) < hash(H) and hash(H) < hash(K). The 
second step is to shift the elements to make an empty slot for the inserted element. We found 
an insertion point on the right. That means you took some iteration to find the item to the right. 
That means that the chunk is biased to the right, and thus we move it to the left. That is how 
bidirectional linear probing makes the search to be done in fewer iterations. 
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PARALLEL BIDIRECTIONAL LINEAR PROBING - INSERTION

- As a range of entries is affected, a single atomic CAS is not sufficient 

- However, it does not make sense to lock the whole hash table

- It would result practically in a sequential execution

- Only a fraction of the table is being modified

- Use a region-based lock instead

- Put a lock flag at both edges of the occupied sequence in a spinlock style

- Avoid the change of the sequence by other threads

- Multiple locks can be held simultaneously

C B V

Lock LockProtected

C B V J F

Avoid even concatenation of sequence

Thread 1

C B V

          

Multiple insertions should be possible in parallel

Thread 2

 

 

Unlike the standard (unidirectional) linear probing, a single atomicCAS is not sufficient as a 
range of entries might be affected. However, it does not make sense to lock the whole hash 
table globally as it would practically result in a sequential execution. It is also unnecessary as 
only a fraction of the table is being modified.  
 
Therefore, we use region-based locks instead, marking empty locations at the beginning and the 
end of the modified occupied segment with lock flags (using the spinlock). In this way, the 
segment is uniquely identified by these two locks, and the race conditions do not happen. This 
would be more complicated if we allow to lock just a part of the occupied segment, requiring 
explicitly locking all entries. The elements can be either inserted directly if the target entry is 
empty (case 1); otherwise, we have to shift the elements to make a free slot for the inserted 
element (case 2). 
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PARALLEL BIDIRECTIONAL LINEAR PROBING - INSERTION (SUMMARY)

Step 2. Acquire a range lock

C B V

       

Step 3. Shift items and insert it

C B V

       

H

Step 1. Direct Insertion

C B V

       

Unlock after 
insertion

C B V

H

Still Protected because of the right-side lock 
during the shifting & insertion process

One of the locks will 
disappear during step 3?

B

 

 

The flow of the insertion is as follows. First, we try to insert the element directly via atomicCAS. 
If the insertion succeeded, we are done (step 1). Otherwise, the location is occupied, and we 
have to perform shifting before the actual insertion. We lock the occupied segment as we 
described on the previous slide (case 2). To prevent a deadlock, if the thread acquires the first 
lock but fails to acquire the second one, it releases the first one. If both locks have been 
successfully acquired, we shift the elements to make an empty space, and we insert the input 
element (case 3). Notice that we lose a lock on one side. It is still safe because there is one more 
lock on the right. That is also another reason why to have two locks.  
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PERFORMANCE

- How faster?

- Bucket size 100,000,000

- Load factor 10% to 90%

0
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20
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40
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10% 20% 30% 40% 50% 60% 70% 80% 90%

Insertion time [ms]

Linear Probing Bidirectional Linear Probing

0

10

20

30

40

50

60

70

80

10% 20% 30% 40% 50% 60% 70% 80% 90%

Search time [ms]

Linear Probing Bidirectional Linear Probing

Faster on high 
load factor

 

 

The question is what is the performance of bidirectional linear probing in comparison with the 
standard (unidirectional) one? On this slide, you can see the times needed for insertion and 
search, respectively, in a hash table with 100 million entries for different load factors (i.e., the 
ratio between the number of items and the hash table size). As you can see, the insertion of 
bidirectional linear probing is slower, which is because the algorithm is more complex. However, 
for the search phase, you can see better performance with bidirectional linear probing when the 
load factor is higher. This is because simple linear probing needs a lot of iterations to find an 
item, while bidirectional linear probing significantly reduces it. 
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__global__ void Increment(int* counter, int* mutex)
{

while(atomicCAS(mutex, 0, 1) != 0) { }

__threadfence();

(*counter)++;

__threadfence();

atomicExch(mutex, 0);
}

57

SPINLOCK ON GPU

- Bidirectional linear probing requires exclusive locks

- Is a simple spinlock implementation sufficient?

- Independent thread scheduling is an option

- Allows such thread divergence

- Not supported on all GPUs

A critical section

No. It can produce a deadlock

Threads

0 1

Lock failed?
atomicCAS() != 0

T F T T

Continue if any of the threads fail to lock

JMP

2 3

Yes

No

A critical section
All threads try to synchronize

to avoid thread divergence on SIMT1

Threads never reach here

1Single-instruction-multiple-threads (SIMT)

 

 

Bidirectional linear probing requires exclusive locks as we saw earlier. The question is whether a 
naive spinlock implementation is sufficient. Spinlock can be implemented via atomicCAS; a 
critical section is guarded by thread fences between atomic operations. The answer is no as it 
can end up in a deadlock. 
 
In the example above, there are four threads. Only one thread acquires the mutex. However, if 
the threads in the warp are (implicitly) synchronized, the first thread is waiting for others to join 
it after the while loop, but this will never happen as they are waiting for the mutex to be 
released. Therefore, the while loop never ends.  
 
This is not an issue for architectures with independent thread scheduling (with asynchronous 
warps), but many architectures still use synchronous warps, and we should keep this problem in 
mind. 
 
Note that we already used this kind of exclusive lock in the dynamic allocation. However, as the 
spinning threads are from different warps, this issue does not occur. 
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SPINLOCK ON GPU

- Explicit warp control

- Combine atomicCAS and the critical section

Threads

0 1

done == false T F T T

JMP if __all(done) == false Loop until all items are done.

JMP

2 3

Inc

Unlock

All the critical sections have done eventually
The threads can reach here ☺

__global__ void Increment(int* counter, int* mutex)
{

bool done = false;
do
{

if (done == false && atomicCAS(mutex, 0, 1) == 0)
{

__threadfence();

(*counter)++;

__threadfence();
atomicExch(mutex, 0);

done = true;
}

}
while(__all(done) == false);

}

F

Inc

Unlock

F

Inc

Unlock

F

Inc

Unlock

This does not require Independent thread scheduling ☺

 

 

The good news is that we can fix it with relatively little effort. The trick is to let all threads in the 
warp participate in the while and postpone the exit until all threads are done. The thread that 
acquired the mutex can do its logic inside the if statement. 
 
In the following example, the code can continue the logic even if some threads fail to acquire 
the lock. In each iteration, one thread acquires the mutex, does its work, releases the mutex, 
and sets the done flag as true. Eventually, all threads will be done, and the __all warp-level 
primitive will return true, allowing the threads in the warp to exit the loop. This logic works 
correctly on any platform.  
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RADIX SORT

 

 

In the following section, we explain radix sort, one of the most popular sorting algorithms. 
Sorting is a very general operation and the computer graphics area is not an exception.  
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RADIX SORT - BASICS

- Sorting   -bit integers 

- Linear time complexity

- Comparison-based algorithms

- Counting, prefix scan, and reordering

0 2 3 6 Prefix scan

0 0 1 2 2 2 3 3 Reordering

Output locations

2 1 3 2

0 3 2 2 3 2 0 1

Counting

[0] [1] [2] [3]

      

   

 

The three-step algorithm is also known as counting sort

 

 

The radix sort algorithm is a widely used sorting method that takes advantage of the binary 
representation of integers. Unlike comparison-based sorting algorithms, which have a time 
complexity of O(n*log n), radix sort has a time complexity of O(k*n), where k represents the 
number of bits. 
 
The algorithm consists of three operations: counting, prefix sum, and reordering. In the example 
above, we assume sorting keys with 2 bits (4 digits in [0,3]): 
• We count the occurrence of digits in the input values (a histogram with 4 bins). In particular, 

0 occurs 2 times, 1 occurs 1 time, 2 occurs 3 times, and 3 is 2 times.  
• We calculate the offset by performing the exclusive prefix scan on the histogram. The result 

is the sum of all values in preceding locations in the sequence (the offset for each digit). 
• We reorder the sorting keys to the new locations indicated by these offsets. Once the 

sorting key is placed a new location, we increment the offset by one to provide the location 
for the next sorting key with the digit (in the case of duplicities). 

 
This approach is also known as a counting sort. 
 
 

  



 

Slide 61 

 

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS 

61

RADIX SORT - BASICS

- The size of the histogram exponentially grows with the number of bits 

- 32-bit sorting keys require    bins

- Least-significant-digit (LSD) radix sort

- The three-step counting sort can preserve the order from the previous passes (stable sort) 

- Use multiple passes proceeding from lower bits to higher bits

- 32-bit sorting keys and 8 bits at a time → 4 passes

01, 22, 04, 13, 06, 15

01, 22, 13, 04, 15, 06 01, 04, 06, 13, 15, 22,

Pass 1: 

01, 22, 13, 04, 15, 06

1st digit sort 2nd digit sort

Pass 2: 

A decimal example for multiple passes

Preserving the order

 

 

The previous example assumes only 2-bit sorting keys; however, in practice, we need to sort 
keys with significantly more bits (32 or 64 bits). The problem is that the number of bins in the 
histogram grows exponentially with the number of bits. For example, 32-bit sorting keys require 
a histogram with 2^32 bins, which becomes practically inapplicable. 
 
The idea of radix sort is to employ counting sort multiple times, processing only a fixed number 
of bits in each pass. For instance, assuming 32-bit sorting keys, if we process 8 bits at a time, it 
takes 4 passes in total.  
 
The algorithm proceeds from the least significant digits (lower bits) to more significant ones 
(higher bits). This approach is also known as the least-significant-digit (LSD) radix sort in 
contrast to the most-significant-digit (MSD). Note that the MSD radix sort is not suitable for GPU 
processing, and we do not discuss it in this course. To preserve the order from the previous 
passes, the important is that the counting sort itself must be stable. 
 
In the example above, we sort sorting keys with decimal digits in two passes. In the first pass (on 
the left side), we sort the keys according to the first digit (lower one). In the second pass (on the 
right side), we sort the keys according to the second digit (higher one), preserving the order 
from the first pass thanks to the stability of the counting sort. 
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RADIX SORT - GPU-FRIENDLY IMPLEMENTATION (OVERVIEW)

Input elements

...  
   

   
   

   
   ...    

     
     

     
     

   ...

...  
   

   
   

   
   

1.Count

2.Prefix scan

0 10 1

3.Reorder

0 0

      
     

      
     

    
     

     
   ...

1 1

0 00 0 0 0 0 ... 0... 1 1 1 1 ...

Block 0 Block 1 Block 2 Block 3 Block N-1 Block 0 Block 1

  Number of blocks

- Splitting the input into independent blocks

Split Split

 

 

In the following example, unless stated otherwise, we assume 32-bit sorting keys processing 8 
bits in each pass. What is challenging is how to split the work into tasks that can be processed 
independently by each block (similarly to parallel prefix scan) and how to reconstruct the final 
result from these partial results. 
 
As we already mentioned, the algorithm works iteratively, processing a fixed number of bits in 
each iteration, where each iteration consists of the following three steps: 
• Count: We split the data into individual blocks and count the occurrences of digits in the 

input values in each block separately. 
• Prefix scan: We compute offsets in the output buffer for all digits for each block via a single 

prefix scan. 
• Reorder: We use the offsets from the previous step to determine output indices for 

individual sorting keys in each block. 
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RADIX SORT – COUNT

Counting the number of occurrences of digits within each block

__shared__ int histogram[BIN_SIZE]; // BIN_SIZE = 256

... Zero clear histogram here

for (int i = threadIdx.x; i < itemsPerBlock; i += blockDim.x)
{

int indexOfItem = blockIdx.x * itemsPerBlock + i;
if (indexOfItem < size)
{

int binIndex = (input[indexOfItem] >> START_BIT) & RADIX_MASK;
atomicInc(&histogram[binIndex], 0xFFFFFFFF);

}
}

Block-wise counting with shared memory

Input buffer

...

Number of bins in histogram:       (8-bit) 

  
   

   
   

   
   ...    

     
     

     
     

   

  Number of blocks

...
      

     

Block 1 
histogram

Block N-1 
histogram

01

+1+1

...

 

 

Let us check the details of each step. 
 
In the count step, we count occurrences of digits of the input values, which are derived from the 
sorting keys by masking the relevant bits. In the figure above, each block computes its own 
histogram (with 2^8=256 bins) individually. Shared memory and atomics fit well for this 
histogram calculation as shown in the code example. The atomic addition prevents race 
conditions in the case of duplicities (i.e., two threads want to update the same counter). 
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RADIX SORT – PREFIX SCAN

Calculating the appropriate offset for all digits in each block 

...  
   

   
   

 

Input elements

...

Number of bins in histogram:       (8-bit) 

  
   

   
   

   
   ...    

     
     

     
     

   

  Number of blocks

...      
     

Block 0 
histogram

Block N-1 
histogram

Desired offsets
How they should be

...    
     

     
     

 

...  
   

   
   

   
   

Block 1 
histogram

  
   ...  

   
   

   
   

   
    

   ...

0 0 0 0

Block 0

0

  
 

0 0

Block 1

0

  
 

0 00 ... 0...

Block 2 Block 3 Block N-1

  
   

     
 

1 1 1

Block 0

1

  
 

1 1 1

Block 1

1

  
 

... 255...

Block N-1

255255

    
       

   

Apply prefix scan on the reordered counters

 

 

After each block processes its input and counts the occurrence of the digits, we utilize this result 
and calculate the offsets for all counts in the block.  
 
Imagine how the layout of the final result should be: all 0s must be placed before all 1s, and all 
1s before all 2s, and so on. We need to calculate how many 0s there are in total to determine 
the offset for 1s. Similarly, we need to calculate how many 0s and 1s there are in total to 
determine the offset for 2s. Furthermore, we want to determine the offsets of individual 0s (and 
similarly other digits): 0s of block 0 must be placed before 0s of block 1, and so on.  
 
The question is how we can compute the offsets efficiently and in parallel. 
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RADIX SORT – PREFIX SCAN

Transpose the counters before performing device-wise prefix scan

...  
   

   
   

   

    
     

     
 ...

  
   

   
 ...

    
   

Block 0

Block 1

Block N-1

Digit major

Digit 0

  
   

  
   

   
 ...Block 2   

   

  
   

 
  

   
   

    
     

 
    

 

  
   

   
 

    
   

Block 0

Block 1

Block N-1

  
   

  
   

   
 Block 2   

   

Digit 1 Digit 2 Digit 255

...

...

Block major

...

...

...

...

Device-wise prefix scan just once☺

Digit 0 Digit 1 Digit 2 Digit 255

 

 

To compute these offsets, we rearrange the count results such that we group the counts of 0s 
for all blocks followed by counts of 1s for all blocks, and so on. Note that this can be considered 
as a matrix transposition (i.e., switching the superscript and subscript). After rearranging, we 
apply the prefix scan to obtain the desired offsets that we use in the last step. The device-wise 
prefix scan here is calculated only once. 
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RADIX SORT - REORDER

Reordering

A chunk of input data in block 0

Local sorting

(Counting, prefix sum, reordering)

in shared memory

Sorted Input data

      
     

Outputs

255 1 0

25510

0 1 255

Another chunk of input data in block 1

3 1 0

...

Sorted input data

310

0 1

1

1

1

Local sorting

(Counting, prefix sum, reordering)

in shared memory

  
   

     
 ...  

   
 ...   

   
   

   
   

   ...

3

Block 0 Block 1 Block N-1

The last chunk of input data in block N-1

8 2 17

Sorted input data

1782

    
     

     
   ...

...

82

    
 

Output memory access is coherent.
Thanks to the local sorting ☺

 

 

After we get the results from the previous prefix scan kernel, we reorder the input elements 
accordingly. The reordering process is conceptually straightforward, processing the input data 
one by one and putting them in new positions based on the corresponding offset while 
incrementing the offset. While this is true, we have to process values with the same digit 
sequentially to preserve the relative order, which limits parallelism. Furthermore, the output 
destination might be scattered, and thus memory accesses might be very incoherent, causing 
high memory latency. 
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RADIX SORT - REORDER / HOW TO GUARANTEE STABLE SORT

- The input order have to be preserved

- Output locations are determined based on the global offsets and the local offsets

522 4 5 5

       
 

Locally sorted 
data (stable)

22 4 5 5 5

+1

+1

+2

      
       

       
 Local Offsets

       
        

 

                
 

                
 

From local sorting
(counting – prefix scan)

 

 

To address this issue, we compute the local index for each input element by sorting the input 
elements locally (using a stable sorting algorithm) in the shared memory before applying the 
global offset from the previous kernel. After local sorting, we have a local offset (i.e., a prefix 
scan of the histogram of the block) for each digit along with sorted data. We also have the 
global offset from the previous slides.  
 
We have all information needed to determine the output location. The global offset tells us 
where to start outputting elements with the same digit within a given block. We need to 
preserve the relative order of the values with the same digit. The values are already locally 
sorted in a stable way, and thus preserving the order. Therefore, we can output values with the 
same digit as they are sorted; we have to drop all preceding digits. In other words, the final 
output location is global offset (for each digit and each block) plus sort index (the block-wise 
stable sorting) minus local offset (dropping the previous digits). 
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CODE OPTIMIZATION

 

 

In this section, we provide a couple of basic recommendations for the code optimization. 
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COALESCED MEMORY ACCESS TO GLOBAL MEMORY

- Sequential and dense memory accesses in a warp can be combined into a single transaction

- Lower latency and higher throughput can be expected

- Worth considering when the memory access is the bottleneck

- E.g. Local sorting on reorder for radix sort

GPU Threads

Data in Global Memory

__device__ void copySomething(float* input, float* output)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
output[index] = input[index];

}

...

...

Coalesced memory access

 

 

Access to the global memory is very expensive in general. Memory coalescing is an access 
pattern allowing threads within a half-warp to combine their memory accesses into a single 
transaction. To achieve that, the consecutive threads have to access the elements consecutively. 
The size of data elements must be 4B, 8B, or 16B with proper alignment (128B). Otherwise, the 
access is split into individual transactions. Local sorting on reorder step in radix sort is strongly 
encouraged as it imposes memory coalescing. 
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COALESCED MEMORY ACCESS TO GLOBAL MEMORY

- Coalesced memory access is often fragile

- Strided memory access 

GPU Threads
struct Vector2
{

float x;
float y;

};

__device__ void copySomething(Vector2* output, Vector2* input)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
output[index].x = input[index].x;

}

...

X Y X Y YX ...

8 bytes stride ( 4 bytes gap ) It causes extra latency

 

 

For example, memory coalescing is often not achieved due to the memory accesses with a 
stride. Array-of-structure (AoS) is a typical example of this, introducing extra latency. In the 
figure, despite the sequential access to the array, the memory access is not coalesced.  
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COALESCED MEMORY ACCESS TO GLOBAL MEMORY

- Coalesced memory access is often fragile

- Memory access with stride 

- Structure-of-Arrays data layout helps to achieve memory coalescing

- Guarantee proper sequentiality and data type (4, 8, or 16 bytes)

struct Matrix
{

float a;
float b;
float c;
float d;
…

};

int index = blockIdx.x * blockDim.x + threadIdx.x;
data[index].a = …;

struct Matrices
{

float a[N];
float b[N];
float c[N];
float d[N];
…

};

int index = blockIdx.x * blockDim.x + threadIdx.x;
data.a[index] = …;

Array-of-Structures (AoS) Structure-of-Arrays (SoA)

a a a a aa ...

b b b b bb ...

..
.

 

 

Memory coalescing can be achieved by reordering the data beforehand, such as converting the 
data into the structure-of-arrays (SoA) layout that organizes individual members into separate 
arrays. On the right, the sequential access to the members of the Matrices struct is coalesced. 
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BANK CONFLICTS IN SHARED MEMORY

- The shared memory is fast, but bank conflicts might hinder its performance 

- Multiple memory addresses are assigned at a bank

31302928…109876543210Bank

124-

127

120-

123

116-

119

112-

115

..40-4336-3932-3528-3124-2720-2316-1912-158-114-70-3

Address
252-

255

248-

251

244-

247

240-

243

…168-

171

164-

167

160-

163

156-

159

152-

155

148-

151

144-

147

140-

143

136-

139

132-

135

128-

131

Conflicted memory accesses are serialized
Even the addresses are different 

 

 

The shared memory has a significantly shorter latency compared to the global memory, but 
bank conflicts might hinder its performance. The shared memory banks are organized such that 
successive 4-byte words are assigned to successive banks (and the bandwidth is 4-byte per bank 
per clock cycle). The bank conflict occurs if two or more threads access the same bank. The 
exception is if all threads access the same bank (so-called broadcast). If bank conflicts occur, the 
memory accesses are serialized. In the example above, you can see memory is split into 32 
banks. When two threads access against addresses in the same bank, their memory accesses 
are conflicted and serialized. 
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BANK CONFLICTS IN SHARED MEMORY

- The shared memory is fast, but bank conflicts might hinder its performance. 

- Multiple memory addresses are assigned at a bank

31302928…109876543210Bank

124-

127

120-

123

116-

119

112-

115

..40-4336-3932-3528-3124-2720-2316-1912-158-114-70-3

Address
252-

255

248-

251

244-

247

240-

243

…168-

171

164-

167

160-

163

156-

159

152-

155

148-

151

144-

147

140-

143

136-

139

132-

135

128-

131

struct Vector
{

float x;
float y;

};
__shared__ Vector vectors[N];
objects[threadIdx.x].x = 42.0f;

Only half of the banks are utilized 
Conflicted memory accesses are serialized

Array-of-Structures (AoS)

 

 

A typical bank conflict scenario is due to the array-of-structures (AoS) layout. The highlighted 
banks have conflicted memory accesses due to the stride. 
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BANK CONFLICTS IN SHARED MEMORY

- The shared memory is fast, but bank conflicts might hinder its performance. 

- Multiple memory addresses are assigned at a bank

- Structure-of-Arrays data layout may help

struct Vectors
{

float x[N];
float y[N];

};
__shared__ Vectors vectors;
objects.x[threadIdx.x] = 42.0f;

Structure-of-Arrays (SoA)

31302928…109876543210Bank

124-

127

120-

123

116-

119

112-

115

..40-4336-3932-3528-3124-2720-2316-1912-158-114-70-3

Address
252-

255

248-

251

244-

247

240-

243

…168-

171

164-

167

160-

163

156-

159

152-

155

148-

151

144-

147

140-

143

136-

139

132-

135

128-

131

All banks are utilized ☺

 

 

The bank conflicts can be avoided by using a different access pattern, e.g., structure-of-
arrays (SoA). In the example above, all threads access the member x sequentially, and thus the 
access is conflict-free. 
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OCCUPANCY

- Streaming Multiprocessor (SM) can schedule multiple warps

- Hiding latency to maximize throughput

- Occupancy is a ratio of the number of active warps per SM to the maximum number of possible active warps

- Depending on the register pressure, shared memory size, block size, and device capability

- Not a silver bullet, using vendor-provided profilers is recommended to analyze the latency or other bottlenecks

Single warp

Read Request

Obtain data
DRAM

Multiple warps

Read Request

Obtain data DRAM

zzz

Maximum number of warps on the HW

The number of active warps
Occupancy =

 

 

Latency hiding is a technique to substantially increase throughput by queuing a massive number 
of requests or tasks while waiting on expensive resources. 
  
The streaming multiprocessor (SM) can schedule multiple warps to hide latency to maximize 
throughput. Specifically, the SM can schedule the warp that is ready to run and stalls the one 
that requires data. In general, we cannot fully utilize the hardware if there are not enough 
warps to be scheduled. However, it cannot hide latency if there is not enough concurrent warps. 
 
For example, a single warp on the left needs to stall to obtain data from the memory. On the 
other hand, if you have multiple warps like the figure on the right, other warps can be 
scheduled while the warp requests data is waiting. 
 
Occupancy is a ratio of the number of active warps with respect to the maximum number of 
possible active warps. This number is affected by the register pressure, shared memory size, and 
device capability; it is statically or dynamically measured. Since hardware resources (registers 
and shared memory) are allocated separately for each warp, we may need to reduce the usage 
to increase occupancy and improve the overall throughput.  
 
Keep in mind that it is not a silver bullet. Relying on vendor-provided profilers is always 
recommended. 
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SUPPLEMENTARY MATERIAL

 

 

In this section, we provide a couple of additional slides that we left out due the time constrains 
of the course. 
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BLELLOCH’S ALGORITHM

- Exclusive prefix scan

- Computational steps

- Two passes

- Up-sweep

- Parallel reduction

- Down-sweep

8 1 7 4 6 3 5 2

9 9

20 16

Up-sweep phase
  

 

 

Blelloch’s algorithm implicitly computes exclusive prefix scan in two passes (up-sweep and 
down-sweep) with O(n) computational steps.  
 
The up-sweep phase is practically a parallel reduction. A caveat is that Blelloch’s algorithm uses 
not just the resulting sum but also intermediate results. The parallel reduction can be computed 
thanks to the associativity of the operator in any order, resulting in different partial sums. 
Therefore, we have to make sure that the up-sweep computation scheme corresponds to the 
down-sweep one. 
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BLELLOCH’S ALGORITHM

- Exclusive prefix scan

- Computational steps

- Two passes

- Up-sweep

- Down-sweep

- Root ← identity element

- Right child ← parent and left child

- Left child ← parent

8 1 7 4 6 3 5 2

9 9

20 16

0

0 20

0 20

0 9 20 2916 26 348

Down-sweep phase
  

 

 

The down-sweep phase proceeds from the root of the reduction computational tree, using the 
partial sums from the previous phase to reconstruct the prefix scan. The goal is to modify the 
tree such that each interior node contains the sum of all leaves preceding the node in the 
preorder traversal. The root value is set to the identity element because there are no leaves 
preceding the root. Each left child node has the same number of preceding leaves as its parent 
node; hence each left child node has the same value as its parent node. The value of each right 
child node is the sum of the parent value and the left sibling value. 
 
 

  



 

Slide 80 

 

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS 

BLELLOCH’S ALGORITHM – IMPLEMENTATION

template<typename T>
__device__ void ReduceUpSweep(T val, T* smem)
{

smem[threadIdx.x] = val;
__syncthreads();
int active = blockDim.x << 1;
for (int i = 1; i < blockDim.x; I <<= 1)
{

if (threadIdx.x < active)
{

int L = i * (2 * threadIdx.x + 1) - 1;
int R = i * (2 * threadIdx.x + 2) - 1;
smem[R] += smem[L];

}
active >>= 1;
__syncthreads();

}
}

Up-sweep phase

80

8 1 7 4 6 3 5 2

[0] [1] [2] [3] [4] [5] [6] [7]

9 11

L R

9 7

i = 1

i = 2

20

L R

16

36

L R
i = 4

Threads 
= {0, 1, 2, 3}

Threads 
= {0, 1}

Threads 
= {0}

Keep the intermediate results

 

 

For standard parallel reduction, only what is important is the final result (e.g., the sum). In the 
implementation that we presented, eventually, all entries will contain the final sum as we let all 
threads participate in each iteration. In the up-sweep phase, we have to be careful not to 
overwrite the intermediate results that are important for the down-sweep phase.  
 
Therefore, we let participate only threads they are contributing to a single computation tree 
(depicted above). We use sequential addressing with variable active, indicating how many 
threads are active in a particular iteration. The active threads are mapped to appropriate entries 
in the computational tree. The values are fetched from shared memory, subsequently added, 
and assigned back to shared memory. 
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template<typename T>
__device__ T ScanBlock_Blelloch(T val, T* smem)
{

ReduceUpSweep(val, smem);
if (threadIdx.x == 0)

smem[blockDim.x - 1] = static_cast<T>(0);
__syncthreads();
int active = 1;
for (int i = blockDim.x >> 1; i >= 1; i >>= 1)
{

if (threadIdx.x < active)
{

int L = i * (2 * threadIdx.x + 1) - 1;
int R = i * (2 * threadIdx.x + 2) - 1;
T parent = smem[R];
T Lvalue = smem[L];

smem[R] = parent + Lvalue;
smem[L] = parent;

}
active <<= 1;
__syncthreads();

}
return smem[threadIdx.x] + val;

}

Down-sweep phase

8 1 7 4 6 3 5 2

[0] [1] [2] [3] [4] [5] [6] [7]

9 11

L R

9

20

L R

0

L R

i = 1

i = 2

i = 4
Set 0

Threads 
= {0, 1, 2, 3}

Threads 
= {0, 1}

Threads 
= {0}

0 + 200

0 0 + 9 20 9 + 20

0 9

Original 
value

20 298+1 7+9 6+20 5+29

Right ← Parent + Left child
Left   ← Parent

Add val for inclusive scan

 

 

In the down-sweep phase, we proceed from the root back to the leaves, using the values from 
the up-sweep phase (stored in shared memory). First, we replace the root value with the 
identity element (zero in the case of addition). In the main loop, we proceed in exactly opposite 
order than in the up-sweep phase. In each iteration, we assign the sum of the parent and the 
left child to the right child and the original value of the parent to the left child. 
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PREFIX SCAN – COMPLEMENT

- Prefix scan of                                                 for arbitrary    

- Can be easily extracted from the prefix scan of                             as

1 0 1 1 0 0 1 0

1 1 2 3 3 3 4 4Inclusive prefix scan

1 2 3 4 5 6 7 8

0 1 1 1 2 3 3 4

0 1 0 0 1 1 0 1

Compl. prefix scan

Similarly for 
exclusive PPS

We don’t need 
two PPSs

                  

   

                 

 

   

       

 

   

 

  

   

 

   

  

 

   

   

    

 

 

 

We define a prefix scan complement of a given sequence for arbitrary k as a prefix scan of a 
sequence where each element is the difference between k and the corresponding element of 
the original sequence. We can simply extract the prefix scan complement from the prefix of the 
original sequence without the necessity to compute it from scratch. Here you can see an 
example with binary values and k=1. This property might be handy for some practical 
applications.  
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