
GPU Programming Primitives for Computer Graphics
Daniel Meister

daniel.meister@amd.com
Advanced Micro Devices, Inc.

Japan

Atsushi Yoshimura
atsushi.yoshimura@amd.com
Advanced Micro Devices, Inc.

Japan

Chih-Chen Kao
chihchen.kao@amd.com

Advanced Micro Devices, Inc.
Germany

SYNOPSIS
Various parallel algorithms can be decomposed into pro-
gramming primitives that share similar patterns. This course
focuses on studying these programming primitives and their
applicability in computer graphics, specifically in the con-
text of massively parallel processing on GPUs. The course
begins by establishing a theoretical foundation, followed
by practical examples and real-world applications. We ex-
plain two pivotal algorithms: parallel reduction and parallel
prefix scan in detail, discussing their variants and different
implementations. Afterward, we provide a collection of more
advanced techniques and tricks applicable across various do-
mains. At the end of the course, we also briefly discuss code
optimization.

CCS CONCEPTS
•Theory of computation→ Sharedmemory algorithms;
Massively parallel algorithms.

KEYWORDS
Computer graphics, GPGPU, parallel computing
ACM Reference Format:
Daniel Meister, Atsushi Yoshimura, and Chih-Chen Kao. 2023. GPU
Programming Primitives for Computer Graphics. In SIGGRAPH
Asia 2023 Courses (SA Courses ’23), December 12-15, 2023. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3610538.3614632

1 INTRODUCTION
As parallel architectures continue to advance, the demand
for parallel algorithms naturally grows. Computer scientists
have been looking for inspiration in well-studied sequential
algorithms. Surprisingly, it turned out that trivial operations
that are straightforward when performed sequentially can
become challenging when executed in parallel. This difficulty

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGGRAPH Asia 2023 Courses (SA Courses ’23), December 12-15, 2023, 2023.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0309-6/23/12.
https://doi.org/10.1145/3610538.3614632

is particularly pronounced in massively parallel systems like
GPUs, where thousands of threads run concurrently. There
are several frequently-used patterns to address this issue. For
example, a compare and swap (CAS) instruction and shared
memory on the GPU are used for resolving data races effi-
ciently. These components often require intrusive changes
to the algorithm themselves. Thus, we organize them as a
collection of programming primitives for computer graphics
problems as design patterns on the GPU.

2 COURSE RATIONALE
Although general-purpose computing on GPUs (GPGPU) is
significantly more difficult than traditional single-threaded
programming, many existing courses cover only basic con-
cepts of parallel computing. However, mastering the design
and efficient implementation of parallel algorithms requires
years of experience. Recently, there have been no comprehen-
sive courses focusing on the algorithmic aspects of GPGPU.

3 INTENDED AUDIENCE
The course is designed for developers and researchers inter-
ested in GPGPU and computer graphics. The course assumes
basic knowledge of GPGPU APIs, such as OpenCL, HIP, or
CUDA. Although the course primarily targets an interme-
diate audience, even more experienced programmers can
acquire new knowledge and insights.

4 PEDAGOGICAL INTENTIONS AND
METHODS

Our focus is primarily on high-level concepts, prioritizing
an understanding of the underlying principles rather than
solely optimizing code performance. We start with motiva-
tion and high-level description of each technique, followed
by a minimal code snippet illustrating the key idea of the
technique. We plan to conclude the course with a Q&A ses-
sion to address any lingering questions. We also provide a
repository with a full version of the code presented in the
slides.

https://orcid.org/0000-0002-3149-1442
https://orcid.org/0009-0002-7458-8540
https://orcid.org/0000-0002-7631-2284
https://doi.org/10.1145/3610538.3614632
https://doi.org/10.1145/3610538.3614632

SA Courses ’23, December 12-15, 2023, Sydney, NSW, Australia Daniel Meister, Atsushi Yoshimura, and Chih-Chen Kao

5 DETAILED DESCRIPTION
5.1 Introduction
We introduce the outline and main objectives of the course.
We also provide a brief introduction to HIP (Heterogeneous-
Compute Interface for Portability), that we use for illustrating
the discussed algorithms.

5.2 Parallel Reduction and Prefix Scan
We review two important parallel programming primitives:
parallel reduction and parallel prefix scan (PPS) [Blelloch
1990]. We provide an analysis of the theoretical properties of
these algorithms, accompanied by an extensive discussion of
diverse implementations and their respective advantages and
disadvantages. We use both algorithms as building blocks
for more complex techniques in the following sections.

5.3 Programming Primitives
We present a collection of more advanced techniques that are
widely applicable. We start with a very simple yet ubiquitous
operation (e.g., how to efficiently output data in parallel.) In
computer graphics, we arrange spatial data into hierarchical
structures. During the construction, we output elementary
blocks, such as nodes or cells, in parallel. Another example
is the task queue when we have to write new tasks to the
output buffer.

The task queue itself can be considered as another primi-
tive as it is a very general concept. We introduce a waterfall
scheme that can be used to implement a simplified general
task queue, assuming a fixed number of tasks. We present
two algorithms relying on the waterfall scheme that can be
implemented in a single kernel launch: device-wise parallel
prefix scan and top-down traversal of the hierarchical struc-
ture, where we have to deal with parent-child dependencies.
To make is complete, we add bottom-up traversal [Karras
2012] as another technique, reducing the information from
leaves up to the root.

More complex algorithms require global synchronization,
which is typically realized as separate kernel launches that
are implicitly synchronized. However, it might be beneficial
to fuse multiple kernels into a single one to decrease the ker-
nel launch overhead and memory accesses. The global syn-
chronization inside the kernel can be implemented through
the concept of persistent threads [Gupta et al. 2012] that al-
lows global synchronization, which is otherwise not possible.

For some algorithms, we need a per-thread auxiliary buffer
(e.g., a buffer for the stack). Local arrays are allocated per
thread, but they cause significant register pressure. On the
other hand, allocating a global buffer for all scheduled threads
may be too costly as only a fraction of threads are executed
concurrently. One solution is to use persistent threads, but it

might be difficult to change the scheduling in complex frame-
works. We present a technique that allocates data only for
the concurrent threads and dynamically assigns the buffers
to the launched threads to address this issue.

5.4 Linear Probing
Linear probing is an algorithm to build a hash table. Since
it uses open addressing, an array is used as the storage for
elements. Insertion is done by linearly searching from the
home location that is defined by a hash function. Thanks
to the search linearity, parallel insertion can be supported
on the GPU with CAS. We first show the basic algorithm of
linear probing and introduce bidirectional linear probing as
another variant of linear probing for better performance in
case the load factor of the hash table is high [van der Vegt
2011].

5.5 Radix Sort
Radix sort is one of the efficient sorting algorithms that is
suitable to run on GPUs due to the parallel nature [Harada
and Howes 2011; Merrill and Grimshaw 2011]. Its design
leverages offset-counting instead of comparison. In this sec-
tion, we will introduce the concept of the parallel radix sort
with a working example. Specifically, we will demonstrate
how the aforementioned techniques, such as the parallel pre-
fix sum, could be applied, as well as the design considerations
in order to optimize the algorithm.

5.6 Code Optimization
We provide a couple of basic general recommendations to
improve code efficiency, irrespective of the underlying archi-
tecture. In particular, we focus on coalescedmemory accesses
to the global memory, bank conflict in the shared memory,
thread divergence, and occupancy.

REFERENCES
Guy E. Blelloch. 1990. Prefix Sums and Their Applications. Technical Re-

port CMU-CS-90-190. School of Computer Science, Carnegie Mellon
University.

Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A Study of Persistent
Threads style GPU programming for GPGPU workloads. In 2012 Innova-
tive Parallel Computing (InPar). 1–14. https://doi.org/10.1109/InPar.2012.
6339596

Takahiro Harada and Lee W. Howes. 2011. Introduction to GPU Radix Sort.
Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs,

Octrees, and k-d Trees. In Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics (Paris, France)
(EGGH-HPG’12). Eurographics Association, Goslar, DEU, 33–37.

Duane Merrill and Andrew Grimshaw. 2011. High Performance and Scalable
Radix Sorting: A case study of implementing dynamic parallelism for
GPU computing. Parallel Processing Letters 21, 2 (2011), 245–272. https:
//doi.org/10.1142/S0129626411000187

Steven van der Vegt. 2011. A Concurrent Bidirectional Linear Probing
Algorithm Towards a Concurrent Compact Hash Table.

https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1142/S0129626411000187
https://doi.org/10.1142/S0129626411000187

Slide 1

GPU PROGRAMMING
PRIMITIVES FOR COMPUTER

GRAPHICS

Daniel Meister | Atsushi Yoshimura | Chih-Chen Kao

Advanced Micro Devices, Inc.

Advanced Rendering Research Group (ARR)

1

These are the notes for our course ‘GPU Programming Primitives for Computer Graphics’.

Slide 2

2

INTRODUCTION

In the introductory part, we briefly describe the course organization and course objectives. We
also provide a minimal introduction to HIP that we use to illustrate the algorithms.

Slide 3

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

COURSE SYLLABUS

- Introduction (~15 min, Daniel)

- Parallel reduction and prefix scan (~25 min, Daniel)

- Programming primitives (~25 min, Daniel & Atsushi)

- Linear probing (~20 min, Atsushi)

- Radix sort (~15 min, Atsushi)

- Code optimization (~10 min, Atsushi)

- Q&A (~10 min)

3

Our course consists of the following six sections and discussion, taking 105 minutes in total:
introduction, parallel reduction and prefix scan, programming primitives, linear probing, radix
sort, code optimization, and Q&A.

Slide 4

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

MOTIVATION

- Thousands of threads running simultaneously on the GPU

- Trivial single-threaded operations might be non-trivial on the GPU

- Different algorithms often deal with similar problems

- How to write output in parallel?

- How to find minimum, maximum, or sum?

- How to sort elements?

- How to map data to threads/warps/blocks?

- The same patterns observed in different algorithms

4

Programming massively parallel systems such as GPUs is difficult due to running thousands of
threads simultaneously. Many operations that are straightforward on the CPU are non-trivial on
the GPU. We can observe that some parts of different algorithms resemble each other. In this
course, we study these patterns and introduce how to handle the operations that are simple
single-threaded but difficult on the GPU.

Slide 5

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

COURSE RESOURCES

- Course notes:

- Presentation slide in PPT with animations

- PDF with additional notes

- Code samples:

- Buildable code presented in the slides

- Performance comparison of different variants

5

https://gpu-primitives-course.github.io

Using this link or QR code, you can access the course webpage with course resources, including
presentation slides, PDF, and sample code.

Slide 6

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HIP (HETEROGENEOUS-COMPUTE INTERFACE FOR PORTABILITY)

HIP is a C++ API and kernel language for GPU computing

- Syntactically similar to CUDA

- Supports most of the CUDA runtime functionality

- Portable applications for AMD and CUDA devices

- CUDA wrapper is provided

Portable C++ (HIP Syntax)

HIPCC
Runtime API

Driver API

NVCC
Runtime API

Driver API

NVIDIA GPU AMD GPU

6

CUDA wrapper

inline static hipError_t hipMalloc(void** ptr, size_t size) {
return hipCUDAErrorTohipError(cudaMalloc(ptr, size));

}

int* out;
hipMalloc(&out, sizeof(int));
...

CUDA is a widely supported GPU computing environment popular for scientific computations. A
drawback is that CUDA is specific for Nvidia GPUs.

HIP is a C++ API and kernel language designed for GPU computing. It offers a syntax that closely
resembles CUDA and supports a majority of the CUDA runtime functionality. It enables the
development of portable applications for both AMD and CUDA devices. For the Nvidia path, the
HIP header is only a wrapper around the CUDA, while for the AMD path, the program is directly
compiled into the AMD device-specific code.

Therefore, we decided to use HIP/CUDA as a platform for algorithms presented in this course.

Slide 7

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HIP RUNTIME API – KERNEL EXAMPLE

A counterpart to the CUDA runtime API

- Host calls are prefixed with hip instead of cuda

Kernel compatibility

- Same built-in variables

- thread index, block index, and block size

- Functions specifiers such as __global__ and
__device__

- Kernel launch via <<<…>>> specifying the grid and
block resolutions

#include <hip/hip_runtime.h>

__device__ int threadIndex()
{

return threadIdx.x + blockIdx.x * blockDim.x;
}

__global__ void Kernel(int* out)
{

int index = threadIndex();
if (index == 0) *out = warpSize;

}

int main()
{

int* out;
hipMalloc(&out, sizeof(int));
Kernel<<<1, 64>>>(out);
hipFree(out);
return 0;

}

7

cudaMalloc(&out, sizeof(int));
Kernel<<<1, 64>>>(out);
cudaFree(out);

The HIP runtime API is a counterpart to the CUDA runtime API, with host calls prefixed with
‘hip*’ instead of ‘cuda*’. The HIP device code is practically identical to the CUDA device code,
providing the same built-in variables such as thread index, block index, or block size. Similarly,
kernel functions are decorated with __global__ and device functions with __device__. The
kernels functions are launched via <<<…>>>, specifying the grid and block resolutions.

Slide 8

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HIP DRIVER API – KERNEL EXAMPLE

A counterpart to the CUDA driver API

- Host calls are prefixed with hip or hiprtc instead of
cu and nvrtc

- Kernels compiled in runtime via hiprtc (similar to
nvrtc) and launched via hipModuleLaunchKernel

8

const char* code = ...
const char* funcname = ...

hiprtcProgram prog;
hiprtcCreateProgram(

&prog, code, "", 0, nullptr, nullptr);
hiprtcCompileProgram(prog, 0, nullptr);

size_t binarySize = 0;
hiprtcGetCodeSize(prog, &binarySize);

std::vector<std::byte> binary(binarySize);
hiprtcGetCode(prog, binary.data());

hipModule_t module;
hipModuleLoadData(&module, binary.data());

hipFunction_t func;
hipModuleGetFunction(&func, module, funcname);

void* args[] = { &out };
hipModuleLaunchKernel(func, 1, 1, 1, 64, 1, 1, 0,

0, reinterpret_cast<void**>(args), 0);

cuModuleGetFunction(&func, …

cuLaunchKernel(func, 1, 1, 1, …

nvrtcCreateProgram(&prog, …

Similarly, the HIP driver API is a counterpart to the CUDA driver API, with host calls prefixed with
‘hip*’ or ‘hiprtc*’ instead of cu* and ‘nvrtc*’. In the example on the right, we can compile the
kernel manually in runtime using the HIPRTC API.

Slide 9

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

9

OROCHI

CUDA/HIP software builds with each SDK

- Separate compilation for HIP and CUDA (two binaries)

- Recompiling the program to switch platforms

Orochi

- A library loading HIP and CUDA dlls dynamically

- Switching between HIP and CUDA in runtime (one binary)

An executable
with CUDA SDK

An executable
with HIP SDK

Portable C++ (HIP Syntax)

HIPCC
Runtime API

Driver API

NVCC
Runtime API

Driver API

NVIDIA GPU AMD GPU

CUDA Wrapper

Multiple
executables…

Orochi API

An executable with Orochi

Portable C++ (Orochi syntax)

Driver APIDriver API

Single
executable ☺

The HIP code can be compiled for both Nvidia and AMD; however, it needs to be compiled for
each platform separately. To switch the platforms, we need to recompile the code.

Orochi is a library loading HIP and CUDA APIs dynamically, allowing the user to switch platforms
at runtime via a single (host) binary.

We decided to provide code samples written in Orochi for your convenience and simplicity of
the sample code structure.

Slide 10

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

OROCHI – KERNEL EXAMPLE

The same as HIP driver API

- Host calls are prefixed with oro instead of hip or cu

10

const char* code = ...
const char* funcname = ...

orortcProgram prog;
orortcCreateProgram(

&prog, code, "", 0, nullptr, nullptr);
orortcCompileProgram(prog, 0, nullptr);

size_t binarySize = 0;
orortcGetCodeSize(prog, &binarySize);

std::vector<std::byte> binary(binarySize);
orortcGetCode(prog, binary.data());

oroModule module;
oroModuleLoadData(&module, binary.data());

oroFunction func;
oroModuleGetFunction(&func, module, funcname);

void* args[] = { &out };
oroModuleLaunchKernel(func, 1, 1, 1, 64, 1, 1, 0,

0, reinterpret_cast<void**>(args), 0);

Orochi is practically the same as the HIP driver API; the host calls are prefixed with ‘oro*’
instead of ‘hip*’ / ‘cu*’.

Slide 11

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HIP/CUDA – PROGRAMMING MODEL

- Multi-level hierarchy

- The thread is the smallest unit of program execution

- Threads are organized in a block

- Blocks form a grid

- Block and grid have up to three dimensions

- Threads within a block are further implicitly divided into
warps (32 or 64 threads)

- A certain level of granularity

grid

block (0,0) block (1,0)

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

block (0,1)

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

block (1,1)

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

…

……

11

thread (warp 0)
(0,0) … (31,0)

…

thread
(0,0)

thread
(1,0)

thread
(0,1)

thread
(1,1)

…

…

……

…

HIP and CUDA use three models. The first model is the programming model, which defines how
the threads are organized into a multi-level hierarchy. The thread is the smallest unit of
parallelism. The threads are further organized into blocks of a fixed size (e.g., 128 or 256
threads), and blocks are organized into a grid. Both the blocks and the grid have up to three
dimensions.

Technically speaking, there is one more level between threads and blocks. Threads within a
block are implicitly grouped into warps, where each warp contains 32 or 64 threads. The warp
was originally defined by the execution model (see the following slides) in the context of
scheduling, but since HIP/CUDA introduced the warp-level primitives (that we will discuss later
as well), we can exploit a priori knowledge of warps for the algorithm design.

This hierarchical model allows us to choose the appropriate level of granularity when designing
parallel algorithms. We are going to explain how to arrange the hierarchy for several algorithms.

Slide 12

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HIP/CUDA – MEMORY MODEL

- Define memory hierarchy

- Registers (VGPR, SGPR)

- Local variables per thread

- The fastest memory

- Local memory

- local variables per thread

- Slow off-chip memory (VRAM)

- Register spills if not enough registers

- Shared memory (Local data share)

- Shared between threads in a block

- Faster on-chip memory

- Global memory

- Shared with all blocks

- Largest memory

- Slow off-chip memory (VRAM)

- Texture and constant memory

- Cached differently, on off-chip memory

grid

block (0,0)

thread thread

block (n,0)

thread thread

shared memory shared memory

registers registers registers registers

local
memory

local
memory

local
memory

local
memory

global memory

constant memory

texture memory

…

12

The memory model defines the memory hierarchy.
• Registers (also known as VGPR or SGPR) is a fast per-thread on-chip memory used for storing

local variables of the thread.
• Local memory stores local variables that do not fit into registers (i.e., register spilling). Local

memory is an off-chip memory, and thus it is significantly slower than registers.
• Shared memory (also known as local data share – LDS) is a fast on-chip memory shared

between threads in the block, providing an efficient way of communication between threads
in the block. It is slightly slower than registers but significantly faster than off-chip memory.

• Global memory is large memory but very slow (taking hundreds of clock cycles per IO
operation) off-chip memory, typically stored in VRAM.

• Constant and texture memory are off-chip types of memory optimized for read-only
accesses. Texture memory is suitable for storing image data, exploiting 2D spatial coherency.

Slide 13

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HIP/CUDA – EXECUTION MODEL

- Mapping blocks of threads to streaming
multiprocessors (SMs)

- Streaming multiprocessors

- Streaming processors

- Registers

- Shared memory

- Single-instruction-multiple-threads (SIMT)

- Process warps (32 or 64 threads)

GPU

streaming
multiprocessor (0) …

constant cache

texture cache

device memory

13

block (0,0)

streaming
multiprocessor (1)

streaming
multiprocessor (n-1)

block (1,0)

block (2,0)

…

block (16,0)

block (17,0)

block (18,0)

…

block (n-3,0)

block (n-2,0)

block (n-1,0)

…
…

Blocks for a computing task

streaming multiprocessor

streaming
processor

shared memory

streaming
processor

registers
… …

block (0,0)

thread (warp 0)
(0,0) (1,0) … (31,0)

thread (warp 1)
(32,0) (33,0) … (63,0)

The execution model defines how blocks of threads are mapped to streaming multiprocessors
(SMs), i.e., the actual hardware units.

Streaming multiprocessors consist of streaming processors, registers, and shared memory; all
SMs share device memory and caches. The threads are scheduled and executed on a streaming
multiprocessor in warps (i.e., groups of 32 or 64 threads); this model is also known as single-
instruction-multiple-data (SIMT).

Slide 14

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

14

HIP KEY COMPONENTS

- Atomic operations

- Guarantee correctness even in a highly parallel environment

- Shared memory

- Temporal memory for sharing data in the same block

- Warp-level primitives

- Low-level control of warp execution

- Inter-warp communication between threads

The algorithms we cover in this course heavily depend on three essential components provided
by HIP/CUDA.
• Atomic operations ensure the correctness of basic arithmetic operations within a highly

parallel environment.
• Shared memory acts as temporary storage for exchanging information among threads within

the same block.
• Warp-level primitives enable control over warp execution and facilitate communication

between threads within a warp.

Slide 15

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

ATOMIC OPERATIONS

- Even a trivial operation may consist of multiple
instructions

- Concurrent execution by multiple threads may lead
to undesirable results (race conditions).

- X += Y

- Addition consists of three steps:

- Reading a value of X

- Adding Y to this value

- Writing the result back to X

- Atomic operations (or atomics) guarantee that the
operation is correctly processed in parallel execution

- atomicAdd(), atomicMin(), atomicMax(),
atomicExch(), atomicCAS(), etc.

15

__global__ void DotProductKernel(int size, float* x,
float* y, float* out)
{

int index = threadIdx.x + blockIdx.x * blockDim.x;
if (index < size)

atomicAdd(out, x[index] * y[index]);
}

Multiple threads may process
simultaneously

Even a trivial operation may consist of multiple instructions. Concurrent execution by multiple
threads may lead to undesired results as the instructions of threads are executed in arbitrary
order (i.e., race conditions). For example, addition consists of three steps: reading the original
value, adding the value to the original value, and writing the new value.

To prevent race conditions, we can employ built-in atomic operations that guarantee that the
operation is correctly processed in parallel execution. The HIP provides a couple of atomic
operations such as atomicAdd(), atomicMin(), atomicMax(), atomicExch(), atomicCAS(), and
others. Atomic operations allow communication between threads of different blocks.

The code on the right side calculates a dot product of two vectors (represented as two arrays).
Each thread multiplies the corresponding vector components fetched from the arrays. To
accumulate the sum of partial products, we employ atomicAdd() to prevent data races. Note
that this is an illustrative example showing the capability of the operations. We will introduce
later more efficient algorithms.

Slide 16

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

SHARED MEMORY

Memory shared among the threads in the same block

- Can be used for accumulators, communicating
between threads

- __syncthreads() guarantees IO operations have been
completed in the block by synchronizing threads

- Some threads in a block may go forward than
others

16

__syncthreads()

write data

read data

A block

constexpr int BLOCK_SIZE = 64;

__global__ void DotProductKernel(int size, float* x,
float* y, float* out)
{

int index = threadIdx.x + blockIdx.x * blockDim.x;
__shared__ float smem[BLOCK_SIZE];

float val = 0.0f;
if (index < size)

val = x[index] * y[index];

smem[threadIdx.x] = val;
__syncthreads();

if (threadIdx.x == 0)
{

float sum = 0.0f
for (int i = 0; i < blockDim.x; ++i)

sum += smem[i];
atomicAdd(out, sum)

}
}

Read data

Shared memory

Write & sync

The shared memory is a memory that is shared among threads in the same block, declared with
__shared__. It is very fast, almost as fast as registers, if there are no bank conflicts (we will talk
about them later). We typically use shared memory in combination with __syncthreads, which
allows threads in the block to be synchronized (also known as a barrier). This is important,
especially for memory accesses, to make sure that the data has been written before any further
computation.

On the right side, we use shared memory to compute the dot product. Each thread stores the
corresponding partial products in the shared memory. We use __syncthreads to make sure that
all data have been written. The first thread then sums the individual products sequentially. This
is not the optimal way, and we will show later how to do it more efficiently.

Slide 17

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

__global__ void DotProductKernel (int size, float* x,
float* y, float* out)
{

int index = threadIdx.x + blockIdx.x * blockDim.x;
int laneIndex = threadIdx.x & (warpSize – 1);

float val = 0.0f;
if (index < size)

val = x[index] * y[index];

float sum = 0.0f
for (int i = 0; i < warpSize; ++i)

sum += __shfl(val, i);
if (laneIndex == 0)

atomicAdd(out, sum)
}

WARP-LEVEL PRIMITIVES

Efficient operations within a warp

- __shfl*(): Allows threads to read local registers of
another thread in the same warp (no need for shared
memory!)

- __ballot(): Binary voting within the warp

- __any() and __all(): Logic quantifiers for the warp
Still sequential

work

17

The voting results are packed as a
bitmask and returned to threads.

1 0 0 1 0 1 0 1

= __ballot(x)
= 0x95

x
Read data from a

specific thread

Need more parallelism
for further optimization

HIP/CUDA provides warp-wide level primitives that facilitate efficient communication within a
warp. The shuffle instruction allows reading registers of other threads in the warp without the
need for shared memory. The ballot instruction returns an integer, where each bit indicates a
predicate of each thread. The any and all instructions implement logic quantifiers. We will
employ these instructions a lot in the following section.

Note that in HIP, the warp-level primitives implicitly use the synchronized versions with a full
mask to handle independent thread scheduling.

Slide 18

18

PARALLEL REDUCTION & PREFIX SCAN

We look into the details of two pivotal algorithms: parallel reduction and parallel prefix scan.
These two algorithms are typically covered in parallel programming courses. As both algorithms
serve as building blocks for more advanced techniques, we pay extra attention to them.

Slide 19

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PARALLEL REDUCTION (PR)

- Input: An array of values and associative operator

- Output:

8 1 7 4 6 3 5 2

9 11 9 7

20 16

36

add, min, max,
..

19

The reduce operation takes a binary associative operator op and an ordered sequence of n
elements, returning a value obtained by iteratively applying operator op on all elements in the
sequence.

Slide 20

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PARALLEL REDUCTION (PR) – TIME COMPLEXITY

- Sequential algorithm

- Parallel algorithm

- for processors

- for processors and

Depth of recursion

20

8 1 7 4 6 3 5 2

9 11 9 7

20 16

36

The sequential algorithm of the reduction is straightforward. We scan the sequence element by
element and simultaneously update the partial result of processed elements. The time
complexity of the sequential algorithm is O(n).

The parallel algorithm is based on the divide and conquer paradigm. The sequence is recursively
divided into halves until a single element is left. In interior nodes of a recursion tree, partial
results are merged using the operator.

The depth of the recursion tree is [log2(n)], and hence the time complexity for n/2 processors is
O(log n). The time complexity for p processors such that p < n/2 is O([n/p]+log(p)). Each
processor requires [n/p] time steps, and merging partial results of each processor takes another
log2(p) steps.

Slide 21

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PARALLEL REDUCTION (PR) – AXIS-ALIGNED BOUNDING BOX

Axis-aligned bounding box (AABB)

- Defined by minimum and maximum (red dots)

- Can be computed by parallel reduction

- Minimum and maximum for each axis

- Six parallel reductions in 3D

21

Typically, the operator is addition, minimum, or maximum. In the context of computer graphics,
it can be, for example, an axis-aligned bounding box of a triangle soup. The bounding box is
defined by two points: minimum and maximum (the red dots). Hence, the computation can be
decomposed into 2x3=6 parallel reductions in 3D.

Slide 22

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PARALLEL REDUCTION (PR) – IMPLEMENTATION

template <typename T>
__device__ T ReduceSumBlock(T val, T* smem)
{

smem[threadIdx.x] = val;
__syncthreads();

for (int i = 1; i < blockDim.x; i *= 2)
{

if (threadIdx.x < (threadIdx.x ^ i))
smem[threadIdx.x] += smem[threadIdx.x ^ i];

__syncthreads();
}

return smem[0];
}

Block-wise reduction with shared memory

22

i = 100

i = 001

i = 010

[0] [1] [2] [3] [4] [5] [6] [7]

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

[0-1] [2-3] [4-5] [6-7]

[0-3] [4-7]

[0-7]

Make pairs

Any associative
operator

Shared Memory

- Shared memory for intermediate computations

Parallel reduction (PR) can be implemented using one parallel loop. This is a block-wise variant
using shared memory with block-wise barriers. The figure illustrates the steps of the algorithm.
There are several ways to do this, but we present the xor approach.

The thread pairs in each iteration are determined by xor operation: each thread applies xor to
its own index and i to determine the other thread’s index. The distance between paired items is
given by i, and it gets doubled after each iteration. For example, for the leftmost item [0], it
forms a pair [0,1] in the first iteration; it forms a pair with [0,3] in the second iteration; and
finally, it forms a pair [0,7] in the last iteration. The same rule applies to other elements. Only
the smaller thread in the pair process to avoid shared memory data race.

Note that any associative operator can be used, although this example uses the plus operator
for the sake of simplicity.

Slide 23

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PARALLEL REDUCTION (PR) – IMPLEMENTATION

template <typename T>
__device__ T ReduceSumWarp(T val)
{

for (int i = 1; i < warpSize; i *= 2)
{

val += __shfl_xor(val, i);
}
return val;

}

Warp-wise reduction with shuffle

23

i = 100

i = 001

i = 010

[0] [1] [2] [3] [4] [5] [6] [7]

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

[0-1] [0-1] [2-3] [2-3] [4-5] [4-5] [6-7] [6-7]

[0-3] [0-3] [0-3] [0-3] [4-7] [4-7] [4-7] [4-7]

[0-7] [0-7] [0-7] [0-7] [0-7] [0-7] [0-7] [0-7]

- Directly reading registers of other threads

__shfl(val, laneIndex ^ i)

The warp-wise variant is practically the same as the block-wise one. The difference is that the
values are directly acquired from registers of other threads via the shuffle instruction.

Slide 24

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PREFIX SCAN

- Input: An array of values and associative operator

- Inclusive prefix scan:

- Exclusive prefix scan:

- Identity element

24

8 1 7 4 6 3 5 2

8 9 16 20 26 29 34 36

0 8 9 16 20 26 29 34

Inclusive prefix scan

Exclusive prefix scan

There are two types of prefix scans: inclusive and exclusive. Both types take a binary associative
operator op and an ordered sequence of n elements. The prefix scan returns an ordered
sequence, where the i-th element is a reduction of the input sequence up to the i-element,
which is either included or excluded. Note that in practice, we typically use exclusive prefix scan.

The exclusive prefix scan can be constructed from the inclusive prefix scan by removing the last
element and inserting the identity element at the beginning. The inclusive prefix scan can be
constructed from the exclusive prefix scan by removing the identity element and inserting the
sum of the last element of the input sequence and the last element of the exclusive prefix scan
at the end. The sequential algorithm is trivial; we scan the input sequence element by element
and simultaneously write the partial results of the output sequence.

Slide 25

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

PARALLEL PREFIX SCAN (PPS) – TIME COMPLEXITY

- Sequential algorithm

- Parallel algorithm

- for processors

- for processors and

25

8 1 7 4 6 3 5 2

8 9 16 20 26 29 34 36

0 8 9 16 20 26 29 34

Inclusive prefix scan

Exclusive prefix scan

- Two parallel algorithms:

- Hillis-Steele algorithm

- Blelloch’s algorithm

The time complexity of the sequential algorithm is O(n). The time complexity of the parallel
algorithm is the same as parallel reduction. There are two parallel prefix scan algorithms: the
Hillis-Steele algorithm and Blelloch’s algorithm. We explain the Hillis-Steele algorithm in detail.
You can find details of the Blelloch’s algorithm in the supplementary material.

Slide 26

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

26

HILLIS-STEELE ALGORITHM

- Inclusive prefix scan

- Computational steps

- One pass
8 1 7 4 6 3 5 2

8 8 10 89 11 9 7

8 9 16 18 1820 20 16

8 9 16 26 3420 29 3636

20 16

9 11 9 7

8 1 7 4 6 3 5 2

29

9 20

9 11 9

8 1 7 4 6 3

The Hillis-Steele algorithm implicitly computes inclusive prefix scan in a single pass with
O(n*log(n)) computational steps. The algorithm works iteratively by adding preceding values to
the succeeding ones. In each iteration, a thread adds a value located to the left by a given offset
to its own value (if such a value exists). The offset is initially set to 1 and doubled after each
iteration. Intuitively, the algorithm reduces the preceding elements for each entry in the output
prefix scan. In the example above, we can reconstruct the computational tree that represents
these reductions. Missing branches are assumed to be zero (or an identity element in general).

Slide 27

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HILLIS-STEELE ALGORITHM – IMPLEMENTATION

27

template <typename T>
__device__ T ScanBlock_HillisSteele(T val, T* smem)
{

smem[threadIdx.x] = val;
__syncthreads();

for (int offset = 1; offset < blockDim.x; offset *= 2)
{

if (threadIdx.x – offset >= 0)
val += smem[threadIdx.x - offset];

__syncthreads();
smem[threadIdx.x] = val;
__syncthreads();

}

return smem[threadIdx.x];
}

Block-wise prefix scan with shared memory

8 1 7 4 6 3 5 2

8 8 10 89 11 9 7

8 9 16 18 1820 20 16

8 9 16 26 3420 29 36

offset=1

offset=2

offset=4

- Shared memory for intermediate computations

The Hillis-Steele algorithm can be implemented in one parallel loop. This is a block-wise variant
using shared memory. The input values are initially loaded to the shared memory. Each thread
keeps the current value of the prefix scan also in registers. In each iteration, the thread loads a
value of another thread (given by the current offset) from shared memory and adds it to its own
value stored in registers. Before we write the updated value back to shared memory, we use a
block-wise barrier to prevent race conditions. The offset gets doubled after each iteration. On
the right side, you can see a figure illustrating the offset behavior in different iterations.

Slide 28

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

HILLIS-STEELE ALGORITHM – IMPLEMENTATION

28

8 1 7 4 6 3 5 2

8 8 10 89 11 9 7

8 9 16 18 1820 20 16

8 9 16 26 3420 29 36

offset=1

offset=2

offset=4

template <typename T>
__device__ T ScanWarp_HillisSteele (T val)
{

int laneIndex = threadIdx.x & (warpSize – 1);
for (int offset = 1; offset < warpSize; offset *= 2)
{

T paired = __shfl_up(val, offset);
if (laneIndex – offset >= 0)

val += paired;
}
return val;

}

Warp-wise prefix scan with shuffle

- Directly reading registers of other threads

__shfl(val, laneIndex - offset)

The warp-wise variant is practically the same as the block-wise one. The difference is that the
values are directly acquired from registers of other threads via the shuffle instruction. Note that
the __shfl_up instruction reads the variable of a thread with the lane index lower (given by the
offset) than the caller’s lane index.

Slide 29

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

29

0 = POPC ()

WARP-WISE BINARY PPS – IMPLEMENTATION

__device__ int ScanWarpBinary(bool x)
{

int laneIndex = threadIdx.x & (warpSize – 1);
uint64_t ballot = __ballot(x);
return __popcll(ballot & ((1ull << laneIndex) – 1));

}

- A special case of prefix scan with binary values (0 or 1)

- __ballot: bits indicating how threads voted

- __popc: the number of bits set to one
1 0 0 1 0 1 0 1

x

ballot(x) =

[0] 1 0 0 1 0 1 0 1

1 = POPC ()[1] 1 0 0 1 0 1 0 1

1 = POPC ()[2] 1 0 0 1 0 1 0 1

2 = POPC ()[3] 1 0 0 1 0 1 0 1

2 = POPC ()[4] 1 0 0 1 0 1 0 1

…

Threads:

laneIndex=0 -> 00000000
laneIndex=1 -> 00000001
laneIndex=2 -> 00000011
laneIndex=3 -> 00000111
laneIndex=4 -> 00001111
…

[0][1][2][3][4][5][6][7]

If the values of the prefix scan are binary (0 or 1), we can implement warp-wise prefix scan
efficiently via the ballot and popcount instructions. The ballot instruction returns an integer
where each bit represents the vote (0 or 1) of the corresponding thread in the warp. The
popcount instruction calculates the number of bits that are set to one. To obtain the prefix scan
value for a specific thread, we need to first mask out the higher bits, corresponding to threads
with higher lane indices, before we use the popcount instruction.

Slide 30

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

DEVICE-WISE PARALLEL PREFIX SCAN – HIERARCHICAL APPROACH

30

8 1 7 4 6 3 5 2 9

8 9 16 4 10 13 5 7 16

16 13 16

16 29 450

20 26 29 34 36 45

Input

Block-wise prefix scans

Block sums

Prefix scan of the sums
(block offsets)

Adding offsets to
block prefix scans

We introduced block-wise and warp-wise prefix scan algorithms. However, the input is typically
larger than the block or warp. There are two approaches to how we can compute the (global)
device-wise prefix scan from (partial) block-wise prefix scans.

The problem is that for each block, we need to compute its offset, which is the sum of all
previous items. The key observation is that already each block has computed the sum of its
items, i.e., the last entry in the block-wise prefix scan.

One solution is a hierarchical approach. First, we compute the prefix scan in each block, then we
compute the prefix scan of block sums to get the offset for each block. If the number of blocks is
larger than the block size, we have to use more than one level, requiring multiple kernel
launches and additional buffers.

Slide 31

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

DEVICE-WISE PARALLEL PREFIX SCAN – PARTIALLY SEQUENTIAL APPROACH

31

8 1 7 4 6 3 5 2 9Input

8 9 16 4 10 13 5 7 164 10 13 5 7 16
Block-wise prefix scans

8 9 16

+ Offset (0) + Offset (16)

20 26 29

+ Offset (16 + 13)

34 36 45

Apply the offset

Global offset calculation

Global offset += 16

Global offset += 13

Global offset += 16

Another solution is to use a partially sequential approach. As before, we compute block-wise
prefix scans for each block. To compute the global offset for each block, we process blocks
sequentially. Each block is waiting until the previous block updates the global offset. This
approach can be implemented in a single kernel launch.

Slide 32

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

DEVICE-WISE PARALLEL PREFIX SCAN – IMPLEMENTATION

template <typename T>
__device__ T ScanDevice (T val, T* smem, T* sum, int*
counter)
{

val = ScanBlock(val, smem);
__shared__ T offset;
if (threadIdx.x == blockDim.x - 1)
{

while (atomicAdd(counter, 0) < blockIdx.x);
__threadfence();

offset = *sum;
*sum += val;

__threadfence();
atomicAdd(counter, 1);

}
__syncthreads();
return offset + val;

}

Device-wise prefix scan

32

- Hierarchical approach

- Prefix scan of block sums

- Multiple kernel launches

- For large inputs we need more than two levels

- Sequential approach

- Wait for the block offset using atomic counter

- Add the block sum obtaining the block offset

- Add the block offset and block values to obtain
the global prefix scan

- Only one kernel launch ☺

- Both approaches can be implemented as an in-place
algorithm

Synchronization for
sequential execution

Parallel execution

Parallel execution

Unlike parallel reduction, where we can use an atomic operation for each block to get the final
result, the implementation of device-wise parallel prefix scan is more complicated. The
hierarchical approach requires multiple kernel launches, and even a one-level hierarchy might
not be enough.

The sequential approach can be implemented via a waterfall scheme, which we will discuss later
in detail. It allows us to compute the device-wise prefix scan in a single kernel launch regardless
of the input size. We use two atomic counters: sum and counter. The last thread in each block
spins until counter is equal to its block index, then it adds its sum to sum, obtaining the offset
for all threads in the corresponding block. Finally, it atomically increases counter, letting the
next block be processed.

Note that as we do not have to store intermediate prefix sum results in global memory, both
approaches can be implemented as in-place algorithms, avoiding unnecessary memory
allocations.

Slide 33

33

PROGRAMMING PRIMITIVES

This section presents a collection of more advanced techniques widely applicable across
different areas.

Slide 34

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

34

PARALLEL ENQUEUING

- Writing an output is one of the most common tasks
in parallel computing

- Task queue, tree constructions, etc.

- Non-trivial if not all threads want to write

- Naïve solution is to use atomic add to get the offset

- Better solution is to use warp-wise with atomic add

- Device-wise prefix scan is not necessary

- Block-wise or warp-wise are sufficient

__global__ void EnqueueNaiveKernel(const int* input,
int* output, int* counter)
{

int value = …

bool enqueue = /* ANY CONDITION HERE */;
if (enqueue)

output[atomicAdd(counter, 1)] = value;
}

Naïve solution with atomic add

Input buffer

Output buffer

Per thread

Writing output is a basic task in parallel computing, frequently encountered in various domains.
In computer graphics, spatial data are often organized into hierarchical structures. During the
construction, we output elementary blocks such as nodes or cells in parallel. Another example is
a task queue, where we need to enqueue new tasks. While a naive approach using atomic add
to determine the offset (as shown on the right side) is simple, this method can introduce
significant overhead. A more efficient alternative is to employ the warp-wise (or block-wise)
prefix scan with atomic add, which offers improved performance compared to a device-wise
prefix scan that may be unnecessarily wasteful.

Slide 35

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

35

PARALLEL ENQUEUING – IMPLEMENTATION

__global__ void EnqueueBinaryKernel(int size, const
int* input, int* output, int* counter)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;
int laneIndex = threadIdx.x & (warpSize - 1);

int val = 0;
if (index < size) val = input[index];

bool enqueue = /* ANY CONDITION HERE */;
int warpScan = ScanWarpBinary(enqueue);

int warpOffset = 0;
if (laneIndex == warpSize - 1)

warpOffset = atomicAdd(
counter, warpScan + enqueue);

warpOffset = __shfl(warpOffset, warpSize - 1);

if (index < size && enqueue)
output[warpOffset + warpScan] = val;

}

Binary warp-wise prefix scan with atomic add and shuffle Warp-wise prefix scan with atomic add and shuffle

__global__ void EnqueueKernel(int size, const int*
input, int* output, int* counter)
{

int val0 = …, val1 = …;

bool enqueue0 = /* ANY CONDITION HERE */;
bool enqueue1 = /* ANY CONDITION HERE */;
int enqueuedCount = enqueue0 + enqueue1;

int warpScan =
ScanWarp(enqueuedCount) - enqueuedCount;

int warpOffset = 0;
if(laneIndex == warpSize - 1) warpOffset =

atomicAdd(counter, warpScan + enqueuedCount);
warpOffset = __shfl(warpOffset, warpSize - 1);

int offset = warpOffset + warpScan;
if(index0 < size && enqueue0)

output[offset++] = val0;
if(index1 < size && enqueue1)

output[offset] = val1;
}

Include the current
value of the last lane

Each threads outputs
up to two items

On the left side, you can see an implementation employing the binary warp-wise prefix scan. On
the right side, each thread outputs up to two items. In this case, we use the (general) warp-wise
prefix scan that can handle arbitrary values.

Slide 36

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

36

PARALLEL ENQUEUING – COMPLEMENT

- Sometimes we want to output data to either one of
buffer or to another one

- We can use just one prefix scan and its complement
instead of two prefix scans

__global__ void EnqueueComplementKernel(int size, const int*
input, int* output0, int* output1, int* counters)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;
int laneIndex = threadIdx.x & (warpSize - 1);

int val = 0;
if (index < size) val = input[index];

bool enqueue = /* ANY CONDITION HERE */;
int warpScan = ScanWarpBinary(enqueue);
int complWarpScan = laneIndex - warpScan;

int warpOffset = /* THE SAME AS BEFORE */;

int complWarpOffset = 0;
if (laneIndex == warpSize - 1) complWarpOffset =

atomicAdd(&counters[1], complWarpScan + !enqueue);
complWarpOffset = __shfl(complWarpOffset, warpSize - 1);

if (index < size)
{

if (enqueue) output0[warpOffset + warpScan] = val;
else output1[complWarpOffset + complWarpScan] = val;

}
}

Binary warp-wise prefix scan with its complement

Input buffer

Green output buffer

Red output buffer

int complWarpScan = ScanWarpBinary(!enqueue);

i-th element

Sometimes we want to output data either to one buffer or to another. On the left side, our goal
is to separate green and red elements into two output buffers. We can use one prefix scan and
its complement instead of two separate prefix scans. On the right side, you can see the
implementation of a simple example, separating input numbers. In practice, we can employ this
approach, for example, in the context of a hierarchical structure construction where we produce
either leaf nodes or internal nodes.

Slide 37

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

37

BOTTOM-UP TRAVERSAL

- In computer graphics, we often arrange data into hierarchical structures

- Reduction of leaf nodes in the corresponding subtrees

- Refitting bounding boxes

- The sum of surface areas

- The number of primitives

8 1 7 4 6 3 52

9 11 9 7

20 16

36

In computer graphics, we often arrange data into hierarchical structures. A common operation is
a reduction of leaf nodes in the corresponding subtrees for each internal node, e.g., bounding
boxes or the sum of surface areas. This is very similar to parallel reduction; however, in this
case, the tree structure is explicit.

Slide 38

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

38

BOTTOM-UP TRAVERSAL - IMPLEMENTATION

- Counters in interior nodes (initialized to 0) and
parent links

- Each thread is assigned to a leaf node proceeding up
to the root

- In internal node, the thread atomically increment the
counter

- Allowing only the last thread processes the internal
node

__global__ void BottomUpTraversalKernel(int size, const Node* nodes,
const Leaf* leaves, int* sums, int* counters)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;
if (index >= size) return;

const Leaf& leaf = leaves[index];
index = leaf.m_parentAddr;

while (index >= 0 && atomicAdd(&counters[index], 1) > 0)
{

__threadfence();

const Node& node = nodes[index];

int sum = 0;
if (node.leftIsLeaf())

sum += leaves[node.getLeftAddr()].m_value;
else

sum += sums[node.getLeftAddr()];

if (node.rightIsLeaf())
sum += leaves[node.getRightAddr()].m_value;

else
sum += sums[node.getRightAddr()];

sums[index] = sum;
index = node.m_parentAddr;
__threadfence();

}
}

8 1

9

Summing up values in all the leaf nodes

To implement this, we need counters in interior nodes (initialized to 0) and parent links. Each
thread is assigned to a leaf node proceeding up to the root. In an internal node, the thread
atomically increments the counter. Only the last thread processes the internal node (the second
thread in the case of binary trees). In the example on the right side, we are summing up values
in all leaf nodes. As we modify sums, we have to use a memory fence to make sure that the
changes are visible to threads in other blocks.

Slide 39

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

39

WATERFALL SCHEME

- “A task queue with a predefined number of tasks”

- Schedule the number of threads equal to the number of tasks

- Each thread processes a single task

- A thread can arrange new tasks and quits

- Allowing other threads to be launched

- Tasks have to be scheduled in order, to avoid deadlock

- We already used this scheme to compute the device-wise PPS

All scheduled threads

Done threads
(processed tasks)

Active threads Threads to be launched or waiting

Active threads
spawn new tasks Execution order

A waterfall scheme is a task queue with a predefined number of tasks. We schedule the number
of threads equal to the number of tasks. Each thread processes a single task; the thread spawns
new tasks and quits, allowing other threads to be launched. Note that tasks have to be
scheduled in order to avoid deadlock.

Slide 40

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

template <typename T>
__device__ T ScanDevice(T val, T* smem, T* sum, int*
counter)
{

val = ScanBlock(val, smem);
__shared__ T offset;
if (threadIdx.x == blockDim.x - 1)
{

while (atomicAdd(counter, 0) < blockIdx.x);
__threadfence();

offset = *sum;
*sum += val;

__threadfence();
atomicAdd(counter, 1);

}
__syncthreads();
return offset + val;

}

40

WATERFALL SCHEME - DEVICE-WISE PARALLEL PREFIX SCAN

- Compute the device-wise PPS from block-wise PPSs

- Waterfall scheme for the global offset calculation

- A thread in a block adds its sum the global offset
obtaining the offset for its elements

- It increments the block counter letting the next block
compute its offset

Device-wise prefix scan

Waiting for
the previous block
to finish the task

4 5 7
Block-wise prefix scans
(parallel)

Apply the offset
(parallel)

Global Offset
(serial)

Global offset += 16

Global offset += 13

Global offset += 16

+ Offset (0) + Offset (16) + Offset (29)

Global offset
calculation

Schedule the next block

We already used the waterfall scheme to compute device-wise prefix scan, which you can see
on the right side.

To compute the device-wise Parallel Prefix Scan (PPS) from block-wise PPSs, only a in each block
participates in the computation. Since there is only one active task at a time, the task queue can
be represented by a single counter. The thread starts its work when the counter value is equal
to its block index. The thread reads the offset and adds the block sum to the offset. After adding
the sum, the thread atomically increments the counter, signalizing that the next block can be
processed.

Slide 41

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

41

WATERFALL SCHEME – TOP-DOWN TREE BUILD

- The top-down construction of a binary tree via the
waterfall scheme

- Each thread processes a single node

- Each thread waits until its node is ready to process

- A node marks children as ready after it is processed

__global__ void BuildTree(int nodeCount, bool* readyStates, Node* nodes)
{

int index = threadIdx.x + blockDim.x * blockIdx.x;

bool done = index >= nodeCount;
while (!__all(done))
{

__threadfence();

bool ready = done ? false : readyStates[index];
if (!ready) continue;

Node& node = nodes[index];
if (node.isLeaf())
{

node = build a leaf
}
else
{

nodes[node.left] = build left child
nodes[node.right] = build right child

__threadfence();

readyStates[node.left] = true;
readyStates[node.right] = true;

}
done = true;

}
}

[3] [4] [5] [6]

[1] [2]

[0]

Active tasks

Done

Mark the children “ready”

Wait until the node is ready

Will be processed

Besides the bottom-up traversal of the hierarchical structure, we sometimes need the top-down
traversal that can be implemented via the waterfall scheme. In the example above, we use this
approach to build a binary tree in a top-down fashion.

The thread index is the same as the processed node index. The task queue contains only binary
values, indicating whether the task is ready or not yet. Other input information about a
particular node is stored in the node structure itself. In the beginning, there is only one task
corresponding to the root node. Each task may produce two new tasks.

Slide 42

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

42

PERSISTENT THREADS

- An algorithm can be implemented as several kernels

- Separated kernel launches are implicitly globally
synchronized (a.k.a. global barrier) in a stream

- Easy to guarantee that all the previous tasks have
been done

- It might be beneficial to fuse multiple kernels into
one kernel

- Eliminate the kernel launch overhead

- Reduce memory accesses

- Fused kernel may have deadlock

- Not guaranteed that all threads are running
simultaneously

Kernel launch 1

Kernel launch 2

All Tasks in the kernel launch 1 must be done here

Separated Kernels

Stream

Can continue with
the previous results

Done

Active threads Non-active threads are waiting

A Fused Kernel - A deadlock case

A Kernel Launch
Task 1

Task 2

Spin waiting…

Need all of the results from kernel 1

Task 1

Task 2

Separate kernel launches are implicitly globally synchronized (a.k.a. global barrier) in a stream. It
might be beneficial to fuse multiple kernels into one kernel to decrease the kernel launch
overhead and reduce memory access. Global synchronization in a single kernel typically leads to
a deadlock, as it is not guaranteed that all threads are running simultaneously.

Slide 43

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

43

PERSISTENT THREADS

- Launch the maximum number of threads that can run
simultaneously on the device to prevent deadlock

- The threads are persistently running

- We can use the occupancy API to determine the
number of persistent threads

- The global barrier by spin waiting is safely used for
already processed tasks

Just launch the maximum number of threads
on the device

Fused kernel – Persistent threads

Kernel launch

… Task 1

if (laneIndex == 0)
{

atomicAdd(counter, 1);
while (atomicAdd(counter, 0) < numberOfTask1);

}
__syncthreads();
__threadfence();

… Task 2

Count finished warps
and can wait properly

oroDeviceProp prop;
oroGetDeviceProperties(&prop, device);

int blockCount;
oroOccupancyMaxActiveBlocksPerMultiprocessor(&blockCount, func, BLOCK_SIZE, 0);

int nPersistentThreads = prop.multiProcessorCount * BLOCK_SIZE * blockCount;

Task 1

Task 2

The solution is to launch the maximum number of threads that can run simultaneously on the
device. As there are no inactive tasks that we are waiting for anymore, it is possible to use active
spinning. This concept is known as persistent threads.

Determining the number of persistent threads is relatively difficult as it depends on a particular
HW architecture and occupancy. Luckily, we can use the occupancy API to query the number of
active blocks on a multiprocessor. The number of blocks is further multiplied by the warp size
and the number of multiprocessors (which can also be queried) to get the number of persistent
threads.

Slide 44

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

44

PARALLEL POOL ALLOCATOR

- In some situations, we may need a per-thread/per-block buffer

- Registers and Shared memory may not be large enough

- Stack memory, hash table, etc.

- Allocating a global buffer for all scheduled threads may be
wasteful as only a fraction of threads are active at the time

- Persistent threads can reduce scheduled threads, but it might
be difficult to change scheduling in some situations

- malloc() in a kernel might be too costly

Done

Active threads

Just waiting…Just waiting…

Buffer

Buffer for each thread

Allocate a buffer only for the active threads and assign it

dynamically to active threads

In some situations, we need a per-thread buffer (e.g., stack). Local arrays are allocated per
thread, but they are hard to control as they may cause significant register pressure. Allocating a
global buffer for all scheduled threads may be wasteful as only a fraction of threads are active at
a time.

Persistent threads can reduce scheduled threads, but it might be difficult to change scheduling
in some situations. Another option is to use dynamic allocation in the device code via malloc;
however, depending on the implementation, it might be too costly.

Instead, we can allocate a buffer only for the active threads and assign it dynamically to active
threads.

Slide 45

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

45

PARALLEL POOL ALLOCATOR

Acquire a lock based on a hash of the warp index

Warps
Other warps fail to acquire

Warps

Fixed-size buffers

Try the next one

Warps

Linearly search
for a free buffer

next

int warpIndex = ...
int laneIndex = ...
int indexOfBuffer = INVALID_INDEX;
int iterator = hash(warpIndex) % numberOfBuffers;
while (bufferIndex == INVALID_INDEX)
{

if (laneIndex == 0)
if (atomicCAS(&locks[iterator], 0, 1) == 0)

bufferIndex = iterator; // success!
iterator = (iterator + 1) % numberOfBuffers;
bufferIndex = __shfl(bufferIndex, 0);

}
__threadfence();

int* buffer = getBufferPointer(bufferIndex);

... Do some awesome work here with the buffer ...

__threadfence();
__syncwarp();
if (laneIndex == 0)

atomicExch(&locks[bufferIndex], 0);

Acquire a lock

Release the lock

Parallel pool allocator (warp level)

Hash (warp index)

We first allocate a pre-defined number of buffers, enough for the active threads. The number of
buffers should be roughly the same as the number of persistent threads. It is independent of
the total number of scheduled warps (no deadlock); however, too few buffers would make
threads idle, and too many buffers would be wasteful.

When a warp reaches a point that needs some allocation, it tries to acquire a lock of one of the
buffers. It may fail in case the buffer is used by another warp. In that case, it tries the next one
and so on, linearly searching for the first buffer that is free. This can be implemented as a
spinlock with atomic compare-and-swap (atomicCAS). The first thread in the warp tries to
acquire the lock, broadcasting the result to other threads in the warp. After the work is done,
the buffer can be freed by releasing the lock via the atomic exchange (atomicExch). In this
example, we assign the buffer per warp; we can also implement the assignment per block.

We will discuss the spinlock and this kind of linear search in detail in the following section.

Slide 46

46

LINEAR PROBING

In this section, we take a look into details of another primitive known as linear probing.

Slide 47

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

LINEAR PROBING

- Resolving collisions in hash tables

- Open addressing

- An array as the internal representation

- Values stored directly in the table

- Use linear search to resolve hash collisions

- Similar to the parallel pool allocator

- Supports parallel insertion

- Various applications

- Duplicate removal

- Table-based compression

- Spatial hashing

- Photons in photon mapping

- Global Illumination caches (irradiance/radiance cache, reservoir sampling, etc)

- Particles in collision detection

47

Linear probing is an algorithm for resolving collisions in hash tables that are represented by
arrays. It is a form of open addressing, where values are directly stored in the hash table, in
comparison with chaining that stores chains of values with the same hash that are typically
represented as linked lists. As the name indicates, the search algorithm is linear from the
hashed location of the key. An advantage is that insertion can be implemented in parallel thanks
to the data structure simplicity, which is suitable for the GPU.

Various applications benefit from the use of linear probing, including duplicate removal, table-
based compression, and spatial hashing. In computer graphics, techniques such as photon
mapping, global illumination caching, and collision detection heavily rely on spatial hashing.

Slide 48

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

48

LINEAR PROBING - INSERTION

1. Allocate storage as an array with size N

2. Calculate hash for input X

3. Determine the home location based on hash(X)

- The mapping from hash value to home location is arbitrary but hash(X) % N is an option

4. Insert the value if it is empty. Or return if X is already existing

5. Otherwise, try 4. Try the next location

home = hash(X) % N

C X A

Linear search
Linear search

C B A

home = hash(X) % N

X

The core algorithm of linear probing works as follows.

First, we allocate storage of N items. We stick with a fixed size for the sake of simplicity. The
following steps are calculating a hash of the value and looking up the home location. Each value
has a home location. The mapping from hash to home location is arbitrary, but the simplest one
is hash(X) % N. Then, if the home location is empty, we insert the value; or if the value is already
present, we are done.

Let us assume there are already some items present in the table. On the left side, we can see
that the home location of X is occupied by C. Thus, we try the next location. As the value is
already present, we are done. On the right side, as in the previous case, the home location of X
is occupied by C. The following location is occupied by B. Fortunately, the next location is empty,
and thus we can insert X there.

Notice that all search operations are done by linear search. That is why it is called linear
probing.

Slide 49

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

49

PARALLEL LINEAR PROBING - INSERTION

- Insertion may cause data race in parallel execution

- Atomic CAS can handle it efficiently

hash(X) % N == 1

hash(Y) % N == 2

hash(Z) % N == 3

C B A

[0] [1] [2] [3]

hash(X) % N == 1

hash(Y) % N == 2

hash(Z) % N == 3

C B A

[0] [1] [2] [3]

Y

Occupied bit
(1 bit)

Value bits
(31 bits)

Elements:

Implementation

__device__ InsertionResult insert(unsigned int k)
{

int h = home(k);
for (int i = 0; i < m_table.size(); i++)
{

int location = (h + i) % m_table.size();
unsigned int r = atomicCAS(&m_table[location], 0 /* empty */, k | OCCUPIED_BIT);
if (r == 0)
{

return INSERTED;
}
else if (r == (k | OCCUPIED_BIT))
{

return FOUND;
}

}
return OUT_OF_MEMORY;

}

Only a thread can insert ☺

threads

Insertion can be done one by one

As previously mentioned, insertion in linear probing can be implemented in parallel in a GPU-
friendly way. Insertion may cause data races in parallel execution as one location can be
accessed by multiple threads.

This problem can be solved by atomic compare-and-swap (atomicCAS). This operation takes
three arguments: address, old, and value. If the value pointed by address is equal to the old
value, then it assigns the value to the location pointed by the address, while returning the
original value at the address.

Assuming that empty locations are marked by zeroes, we can simply use atomic CAS for the
insertion. We use the occupied bit to be able to handle zero as an input value. If the returned
value is zero, we know that the insertion has been successful. If the returned value is equal to
the one we want to insert, then the value is already present. Otherwise, we know that the entry
is occupied by another value, and we try the next entry.

Notice that we already use the same approach in the parallel pool allocator.

Slide 50

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

50

LINEAR PROBING – HIGH LOAD FACTOR ISSUE

- Linear probing is simple and very fast

- What if the table is close to full?

C B H J W AG K E

hash(W) % N == 1
Too bad...

Linear probing with parallel implementation is simple and fast, making it a practical choice.
However, what happens if the table is almost full? For example, the home location (on the left)
is occupied by C, and there are a lot of existing elements in a line. In such a case, we have to go
all the way here, which is expensive. This is a drawback of linear probing.

Slide 51

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

51

BIDIRECTIONAL LINEAR PROBING

- Use the order of the hash values

C B D

We can keep the hash value order
for all elements

E

[0] [1] [2]

Home locations:

To address this issue, we introduce an extension of linear probing known as bidirectional linear
probing. In the previous example, it would be better to go to the left to find the empty location
more efficiently.

Bidirectional linear probing is based on ordering the hash values. Home value is defined by the
equation above; the home locations are distributed based on the magnitude of the hash value:
smaller hash values are distributed to the left while larger hash values are distributed to the
right. In the example above, 0 to 5 are on the left, 6 to 10 are around the center, and the others
are on the right. Moreover, we keep the order of the hash values in the storage even when
there are some home conflicts.

Slide 52

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

52

BIDIRECTIONAL LINEAR PROBING - SEARCH

- Find an element with half of the iteration

Go for the right

Go for the left

C B HV K

C B HV K

higherlower

Thanks to the ordering, we can determine the direction of search and find an element with half
of the iterations compared to standard (unidirectional) linear probing.

The example above depicts how the direction is determined. The lower values are on the left,
and the higher values are on the right in the storage. We want to insert H (top), but the home
location is already occupied by V. As the hash value of H is greater than the hash value of V, H
should be located on the right, and thus we search on the right. Similarly, we want to insert C
(bottom); as before, the home location is occupied by V. However, in this case, the hash value of
C is lower than the hash value of V, and thus we search on the left side.

Slide 53

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

53

BIDIRECTIONAL LINEAR PROBING - INSERTION

- Insertion

1. Search an insertion point to keep the order

2. Shift items and insert

27 29 31

C B V K

H

The insertion point is on the right.

The chunk is off-centered to the right.

Let’s move it to the left.

C B V K

[9]

Move to the left or right?

This comes at a cost of keeping the order of the values. This means that when we insert a new
value, we have to move the values to preserve the order.

That can be done in two steps. The first step is to find the insertion point. Similarly, as we did on
the previous slide, we determine the home location and the search direction. The insertion
point is a location such that the hash value of its element is less than the hash value of the
inserted element and the hash value of the next location is greater than the hash value of the
inserted element. In the example above, the home location is 9, and the search direction is
right. The insertion point coincides with V as hash(V) < hash(H) and hash(H) < hash(K). The
second step is to shift the elements to make an empty slot for the inserted element. We found
an insertion point on the right. That means you took some iteration to find the item to the right.
That means that the chunk is biased to the right, and thus we move it to the left. That is how
bidirectional linear probing makes the search to be done in fewer iterations.

Slide 54

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

54

PARALLEL BIDIRECTIONAL LINEAR PROBING - INSERTION

- As a range of entries is affected, a single atomic CAS is not sufficient

- However, it does not make sense to lock the whole hash table

- It would result practically in a sequential execution

- Only a fraction of the table is being modified

- Use a region-based lock instead

- Put a lock flag at both edges of the occupied sequence in a spinlock style

- Avoid the change of the sequence by other threads

- Multiple locks can be held simultaneously

C B V

Lock LockProtected

C B V J F

Avoid even concatenation of sequence

Thread 1

C B V

Multiple insertions should be possible in parallel

Thread 2

Unlike the standard (unidirectional) linear probing, a single atomicCAS is not sufficient as a
range of entries might be affected. However, it does not make sense to lock the whole hash
table globally as it would practically result in a sequential execution. It is also unnecessary as
only a fraction of the table is being modified.

Therefore, we use region-based locks instead, marking empty locations at the beginning and the
end of the modified occupied segment with lock flags (using the spinlock). In this way, the
segment is uniquely identified by these two locks, and the race conditions do not happen. This
would be more complicated if we allow to lock just a part of the occupied segment, requiring
explicitly locking all entries. The elements can be either inserted directly if the target entry is
empty (case 1); otherwise, we have to shift the elements to make a free slot for the inserted
element (case 2).

Slide 55

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

55

PARALLEL BIDIRECTIONAL LINEAR PROBING - INSERTION (SUMMARY)

Step 2. Acquire a range lock

C B V

Step 3. Shift items and insert it

C B V

H

Step 1. Direct Insertion

C B V

Unlock after
insertion

C B V

H

Still Protected because of the right-side lock
during the shifting & insertion process

One of the locks will
disappear during step 3?

B

The flow of the insertion is as follows. First, we try to insert the element directly via atomicCAS.
If the insertion succeeded, we are done (step 1). Otherwise, the location is occupied, and we
have to perform shifting before the actual insertion. We lock the occupied segment as we
described on the previous slide (case 2). To prevent a deadlock, if the thread acquires the first
lock but fails to acquire the second one, it releases the first one. If both locks have been
successfully acquired, we shift the elements to make an empty space, and we insert the input
element (case 3). Notice that we lose a lock on one side. It is still safe because there is one more
lock on the right. That is also another reason why to have two locks.

Slide 56

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

56

PERFORMANCE

- How faster?

- Bucket size 100,000,000

- Load factor 10% to 90%

0

10

20

30

40

50

60

70

80

10% 20% 30% 40% 50% 60% 70% 80% 90%

Insertion time [ms]

Linear Probing Bidirectional Linear Probing

0

10

20

30

40

50

60

70

80

10% 20% 30% 40% 50% 60% 70% 80% 90%

Search time [ms]

Linear Probing Bidirectional Linear Probing

Faster on high
load factor

The question is what is the performance of bidirectional linear probing in comparison with the
standard (unidirectional) one? On this slide, you can see the times needed for insertion and
search, respectively, in a hash table with 100 million entries for different load factors (i.e., the
ratio between the number of items and the hash table size). As you can see, the insertion of
bidirectional linear probing is slower, which is because the algorithm is more complex. However,
for the search phase, you can see better performance with bidirectional linear probing when the
load factor is higher. This is because simple linear probing needs a lot of iterations to find an
item, while bidirectional linear probing significantly reduces it.

Slide 57

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

__global__ void Increment(int* counter, int* mutex)
{

while(atomicCAS(mutex, 0, 1) != 0) { }

__threadfence();

(*counter)++;

__threadfence();

atomicExch(mutex, 0);
}

57

SPINLOCK ON GPU

- Bidirectional linear probing requires exclusive locks

- Is a simple spinlock implementation sufficient?

- Independent thread scheduling is an option

- Allows such thread divergence

- Not supported on all GPUs

A critical section

No. It can produce a deadlock

Threads

0 1

Lock failed?
atomicCAS() != 0

T F T T

Continue if any of the threads fail to lock

JMP

2 3

Yes

No

A critical section
All threads try to synchronize

to avoid thread divergence on SIMT1

Threads never reach here

1Single-instruction-multiple-threads (SIMT)

Bidirectional linear probing requires exclusive locks as we saw earlier. The question is whether a
naive spinlock implementation is sufficient. Spinlock can be implemented via atomicCAS; a
critical section is guarded by thread fences between atomic operations. The answer is no as it
can end up in a deadlock.

In the example above, there are four threads. Only one thread acquires the mutex. However, if
the threads in the warp are (implicitly) synchronized, the first thread is waiting for others to join
it after the while loop, but this will never happen as they are waiting for the mutex to be
released. Therefore, the while loop never ends.

This is not an issue for architectures with independent thread scheduling (with asynchronous
warps), but many architectures still use synchronous warps, and we should keep this problem in
mind.

Note that we already used this kind of exclusive lock in the dynamic allocation. However, as the
spinning threads are from different warps, this issue does not occur.

Slide 58

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

58

SPINLOCK ON GPU

- Explicit warp control

- Combine atomicCAS and the critical section

Threads

0 1

done == false T F T T

JMP if __all(done) == false Loop until all items are done.

JMP

2 3

Inc

Unlock

All the critical sections have done eventually
The threads can reach here ☺

__global__ void Increment(int* counter, int* mutex)
{

bool done = false;
do
{

if (done == false && atomicCAS(mutex, 0, 1) == 0)
{

__threadfence();

(*counter)++;

__threadfence();
atomicExch(mutex, 0);

done = true;
}

}
while(__all(done) == false);

}

F

Inc

Unlock

F

Inc

Unlock

F

Inc

Unlock

This does not require Independent thread scheduling ☺

The good news is that we can fix it with relatively little effort. The trick is to let all threads in the
warp participate in the while and postpone the exit until all threads are done. The thread that
acquired the mutex can do its logic inside the if statement.

In the following example, the code can continue the logic even if some threads fail to acquire
the lock. In each iteration, one thread acquires the mutex, does its work, releases the mutex,
and sets the done flag as true. Eventually, all threads will be done, and the __all warp-level
primitive will return true, allowing the threads in the warp to exit the loop. This logic works
correctly on any platform.

Slide 59

59

RADIX SORT

In the following section, we explain radix sort, one of the most popular sorting algorithms.
Sorting is a very general operation and the computer graphics area is not an exception.

Slide 60

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

60

RADIX SORT - BASICS

- Sorting -bit integers

- Linear time complexity

- Comparison-based algorithms

- Counting, prefix scan, and reordering

0 2 3 6 Prefix scan

0 0 1 2 2 2 3 3 Reordering

Output locations

2 1 3 2

0 3 2 2 3 2 0 1

Counting

[0] [1] [2] [3]

The three-step algorithm is also known as counting sort

The radix sort algorithm is a widely used sorting method that takes advantage of the binary
representation of integers. Unlike comparison-based sorting algorithms, which have a time
complexity of O(n*log n), radix sort has a time complexity of O(k*n), where k represents the
number of bits.

The algorithm consists of three operations: counting, prefix sum, and reordering. In the example
above, we assume sorting keys with 2 bits (4 digits in [0,3]):
• We count the occurrence of digits in the input values (a histogram with 4 bins). In particular,

0 occurs 2 times, 1 occurs 1 time, 2 occurs 3 times, and 3 is 2 times.
• We calculate the offset by performing the exclusive prefix scan on the histogram. The result

is the sum of all values in preceding locations in the sequence (the offset for each digit).
• We reorder the sorting keys to the new locations indicated by these offsets. Once the

sorting key is placed a new location, we increment the offset by one to provide the location
for the next sorting key with the digit (in the case of duplicities).

This approach is also known as a counting sort.

Slide 61

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

61

RADIX SORT - BASICS

- The size of the histogram exponentially grows with the number of bits

- 32-bit sorting keys require bins

- Least-significant-digit (LSD) radix sort

- The three-step counting sort can preserve the order from the previous passes (stable sort)

- Use multiple passes proceeding from lower bits to higher bits

- 32-bit sorting keys and 8 bits at a time → 4 passes

01, 22, 04, 13, 06, 15

01, 22, 13, 04, 15, 06 01, 04, 06, 13, 15, 22,

Pass 1:

01, 22, 13, 04, 15, 06

1st digit sort 2nd digit sort

Pass 2:

A decimal example for multiple passes

Preserving the order

The previous example assumes only 2-bit sorting keys; however, in practice, we need to sort
keys with significantly more bits (32 or 64 bits). The problem is that the number of bins in the
histogram grows exponentially with the number of bits. For example, 32-bit sorting keys require
a histogram with 2^32 bins, which becomes practically inapplicable.

The idea of radix sort is to employ counting sort multiple times, processing only a fixed number
of bits in each pass. For instance, assuming 32-bit sorting keys, if we process 8 bits at a time, it
takes 4 passes in total.

The algorithm proceeds from the least significant digits (lower bits) to more significant ones
(higher bits). This approach is also known as the least-significant-digit (LSD) radix sort in
contrast to the most-significant-digit (MSD). Note that the MSD radix sort is not suitable for GPU
processing, and we do not discuss it in this course. To preserve the order from the previous
passes, the important is that the counting sort itself must be stable.

In the example above, we sort sorting keys with decimal digits in two passes. In the first pass (on
the left side), we sort the keys according to the first digit (lower one). In the second pass (on the
right side), we sort the keys according to the second digit (higher one), preserving the order
from the first pass thanks to the stability of the counting sort.

Slide 62

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

62

RADIX SORT - GPU-FRIENDLY IMPLEMENTATION (OVERVIEW)

Input elements

...

 ...

 ...

...

1.Count

2.Prefix scan

0 10 1

3.Reorder

0 0

 ...

1 1

0 00 0 0 0 0 ... 0... 1 1 1 1 ...

Block 0 Block 1 Block 2 Block 3 Block N-1 Block 0 Block 1

 Number of blocks

- Splitting the input into independent blocks

Split Split

In the following example, unless stated otherwise, we assume 32-bit sorting keys processing 8
bits in each pass. What is challenging is how to split the work into tasks that can be processed
independently by each block (similarly to parallel prefix scan) and how to reconstruct the final
result from these partial results.

As we already mentioned, the algorithm works iteratively, processing a fixed number of bits in
each iteration, where each iteration consists of the following three steps:
• Count: We split the data into individual blocks and count the occurrences of digits in the

input values in each block separately.
• Prefix scan: We compute offsets in the output buffer for all digits for each block via a single

prefix scan.
• Reorder: We use the offsets from the previous step to determine output indices for

individual sorting keys in each block.

Slide 63

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

63

RADIX SORT – COUNT

Counting the number of occurrences of digits within each block

__shared__ int histogram[BIN_SIZE]; // BIN_SIZE = 256

... Zero clear histogram here

for (int i = threadIdx.x; i < itemsPerBlock; i += blockDim.x)
{

int indexOfItem = blockIdx.x * itemsPerBlock + i;
if (indexOfItem < size)
{

int binIndex = (input[indexOfItem] >> START_BIT) & RADIX_MASK;
atomicInc(&histogram[binIndex], 0xFFFFFFFF);

}
}

Block-wise counting with shared memory

Input buffer

...

Number of bins in histogram: (8-bit)

 ...

 Number of blocks

...

Block 1
histogram

Block N-1
histogram

01

+1+1

...

Let us check the details of each step.

In the count step, we count occurrences of digits of the input values, which are derived from the
sorting keys by masking the relevant bits. In the figure above, each block computes its own
histogram (with 2^8=256 bins) individually. Shared memory and atomics fit well for this
histogram calculation as shown in the code example. The atomic addition prevents race
conditions in the case of duplicities (i.e., two threads want to update the same counter).

Slide 64

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

64

64

RADIX SORT – PREFIX SCAN

Calculating the appropriate offset for all digits in each block

...

Input elements

...

Number of bins in histogram: (8-bit)

 ...

 Number of blocks

...

Block 0
histogram

Block N-1
histogram

Desired offsets
How they should be

...

...

Block 1
histogram

 ...

 ...

0 0 0 0

Block 0

0

0 0

Block 1

0

0 00 ... 0...

Block 2 Block 3 Block N-1

1 1 1

Block 0

1

1 1 1

Block 1

1

... 255...

Block N-1

255255

Apply prefix scan on the reordered counters

After each block processes its input and counts the occurrence of the digits, we utilize this result
and calculate the offsets for all counts in the block.

Imagine how the layout of the final result should be: all 0s must be placed before all 1s, and all
1s before all 2s, and so on. We need to calculate how many 0s there are in total to determine
the offset for 1s. Similarly, we need to calculate how many 0s and 1s there are in total to
determine the offset for 2s. Furthermore, we want to determine the offsets of individual 0s (and
similarly other digits): 0s of block 0 must be placed before 0s of block 1, and so on.

The question is how we can compute the offsets efficiently and in parallel.

Slide 65

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

65

RADIX SORT – PREFIX SCAN

Transpose the counters before performing device-wise prefix scan

...

 ...

 ...

Block 0

Block 1

Block N-1

Digit major

Digit 0

 ...Block 2

Block 0

Block 1

Block N-1

 Block 2

Digit 1 Digit 2 Digit 255

...

...

Block major

...

...

...

...

Device-wise prefix scan just once☺

Digit 0 Digit 1 Digit 2 Digit 255

To compute these offsets, we rearrange the count results such that we group the counts of 0s
for all blocks followed by counts of 1s for all blocks, and so on. Note that this can be considered
as a matrix transposition (i.e., switching the superscript and subscript). After rearranging, we
apply the prefix scan to obtain the desired offsets that we use in the last step. The device-wise
prefix scan here is calculated only once.

Slide 66

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

66

RADIX SORT - REORDER

Reordering

A chunk of input data in block 0

Local sorting

(Counting, prefix sum, reordering)

in shared memory

Sorted Input data

Outputs

255 1 0

25510

0 1 255

Another chunk of input data in block 1

3 1 0

...

Sorted input data

310

0 1

1

1

1

Local sorting

(Counting, prefix sum, reordering)

in shared memory

 ...

 ...

 ...

3

Block 0 Block 1 Block N-1

The last chunk of input data in block N-1

8 2 17

Sorted input data

1782

 ...

...

82

Output memory access is coherent.
Thanks to the local sorting ☺

After we get the results from the previous prefix scan kernel, we reorder the input elements
accordingly. The reordering process is conceptually straightforward, processing the input data
one by one and putting them in new positions based on the corresponding offset while
incrementing the offset. While this is true, we have to process values with the same digit
sequentially to preserve the relative order, which limits parallelism. Furthermore, the output
destination might be scattered, and thus memory accesses might be very incoherent, causing
high memory latency.

Slide 67

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

67

RADIX SORT - REORDER / HOW TO GUARANTEE STABLE SORT

- The input order have to be preserved

- Output locations are determined based on the global offsets and the local offsets

522 4 5 5

Locally sorted
data (stable)

22 4 5 5 5

+1

+1

+2

 Local Offsets

From local sorting
(counting – prefix scan)

To address this issue, we compute the local index for each input element by sorting the input
elements locally (using a stable sorting algorithm) in the shared memory before applying the
global offset from the previous kernel. After local sorting, we have a local offset (i.e., a prefix
scan of the histogram of the block) for each digit along with sorted data. We also have the
global offset from the previous slides.

We have all information needed to determine the output location. The global offset tells us
where to start outputting elements with the same digit within a given block. We need to
preserve the relative order of the values with the same digit. The values are already locally
sorted in a stable way, and thus preserving the order. Therefore, we can output values with the
same digit as they are sorted; we have to drop all preceding digits. In other words, the final
output location is global offset (for each digit and each block) plus sort index (the block-wise
stable sorting) minus local offset (dropping the previous digits).

Slide 68

68

CODE OPTIMIZATION

In this section, we provide a couple of basic recommendations for the code optimization.

Slide 69

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

69

COALESCED MEMORY ACCESS TO GLOBAL MEMORY

- Sequential and dense memory accesses in a warp can be combined into a single transaction

- Lower latency and higher throughput can be expected

- Worth considering when the memory access is the bottleneck

- E.g. Local sorting on reorder for radix sort

GPU Threads

Data in Global Memory

__device__ void copySomething(float* input, float* output)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
output[index] = input[index];

}

...

...

Coalesced memory access

Access to the global memory is very expensive in general. Memory coalescing is an access
pattern allowing threads within a half-warp to combine their memory accesses into a single
transaction. To achieve that, the consecutive threads have to access the elements consecutively.
The size of data elements must be 4B, 8B, or 16B with proper alignment (128B). Otherwise, the
access is split into individual transactions. Local sorting on reorder step in radix sort is strongly
encouraged as it imposes memory coalescing.

Slide 70

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

70

COALESCED MEMORY ACCESS TO GLOBAL MEMORY

- Coalesced memory access is often fragile

- Strided memory access

GPU Threads
struct Vector2
{

float x;
float y;

};

__device__ void copySomething(Vector2* output, Vector2* input)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;
output[index].x = input[index].x;

}

...

X Y X Y YX ...

8 bytes stride (4 bytes gap) It causes extra latency

For example, memory coalescing is often not achieved due to the memory accesses with a
stride. Array-of-structure (AoS) is a typical example of this, introducing extra latency. In the
figure, despite the sequential access to the array, the memory access is not coalesced.

Slide 71

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

71

COALESCED MEMORY ACCESS TO GLOBAL MEMORY

- Coalesced memory access is often fragile

- Memory access with stride

- Structure-of-Arrays data layout helps to achieve memory coalescing

- Guarantee proper sequentiality and data type (4, 8, or 16 bytes)

struct Matrix
{

float a;
float b;
float c;
float d;
…

};

int index = blockIdx.x * blockDim.x + threadIdx.x;
data[index].a = …;

struct Matrices
{

float a[N];
float b[N];
float c[N];
float d[N];
…

};

int index = blockIdx.x * blockDim.x + threadIdx.x;
data.a[index] = …;

Array-of-Structures (AoS) Structure-of-Arrays (SoA)

a a a a aa ...

b b b b bb ...

..
.

Memory coalescing can be achieved by reordering the data beforehand, such as converting the
data into the structure-of-arrays (SoA) layout that organizes individual members into separate
arrays. On the right, the sequential access to the members of the Matrices struct is coalesced.

Slide 72

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

72

BANK CONFLICTS IN SHARED MEMORY

- The shared memory is fast, but bank conflicts might hinder its performance

- Multiple memory addresses are assigned at a bank

31302928…109876543210Bank

124-

127

120-

123

116-

119

112-

115

..40-4336-3932-3528-3124-2720-2316-1912-158-114-70-3

Address
252-

255

248-

251

244-

247

240-

243

…168-

171

164-

167

160-

163

156-

159

152-

155

148-

151

144-

147

140-

143

136-

139

132-

135

128-

131

Conflicted memory accesses are serialized
Even the addresses are different

The shared memory has a significantly shorter latency compared to the global memory, but
bank conflicts might hinder its performance. The shared memory banks are organized such that
successive 4-byte words are assigned to successive banks (and the bandwidth is 4-byte per bank
per clock cycle). The bank conflict occurs if two or more threads access the same bank. The
exception is if all threads access the same bank (so-called broadcast). If bank conflicts occur, the
memory accesses are serialized. In the example above, you can see memory is split into 32
banks. When two threads access against addresses in the same bank, their memory accesses
are conflicted and serialized.

Slide 73

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

73

BANK CONFLICTS IN SHARED MEMORY

- The shared memory is fast, but bank conflicts might hinder its performance.

- Multiple memory addresses are assigned at a bank

31302928…109876543210Bank

124-

127

120-

123

116-

119

112-

115

..40-4336-3932-3528-3124-2720-2316-1912-158-114-70-3

Address
252-

255

248-

251

244-

247

240-

243

…168-

171

164-

167

160-

163

156-

159

152-

155

148-

151

144-

147

140-

143

136-

139

132-

135

128-

131

struct Vector
{

float x;
float y;

};
__shared__ Vector vectors[N];
objects[threadIdx.x].x = 42.0f;

Only half of the banks are utilized
Conflicted memory accesses are serialized

Array-of-Structures (AoS)

A typical bank conflict scenario is due to the array-of-structures (AoS) layout. The highlighted
banks have conflicted memory accesses due to the stride.

Slide 74

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

74

BANK CONFLICTS IN SHARED MEMORY

- The shared memory is fast, but bank conflicts might hinder its performance.

- Multiple memory addresses are assigned at a bank

- Structure-of-Arrays data layout may help

struct Vectors
{

float x[N];
float y[N];

};
__shared__ Vectors vectors;
objects.x[threadIdx.x] = 42.0f;

Structure-of-Arrays (SoA)

31302928…109876543210Bank

124-

127

120-

123

116-

119

112-

115

..40-4336-3932-3528-3124-2720-2316-1912-158-114-70-3

Address
252-

255

248-

251

244-

247

240-

243

…168-

171

164-

167

160-

163

156-

159

152-

155

148-

151

144-

147

140-

143

136-

139

132-

135

128-

131

All banks are utilized ☺

The bank conflicts can be avoided by using a different access pattern, e.g., structure-of-
arrays (SoA). In the example above, all threads access the member x sequentially, and thus the
access is conflict-free.

Slide 75

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

75

OCCUPANCY

- Streaming Multiprocessor (SM) can schedule multiple warps

- Hiding latency to maximize throughput

- Occupancy is a ratio of the number of active warps per SM to the maximum number of possible active warps

- Depending on the register pressure, shared memory size, block size, and device capability

- Not a silver bullet, using vendor-provided profilers is recommended to analyze the latency or other bottlenecks

Single warp

Read Request

Obtain data
DRAM

Multiple warps

Read Request

Obtain data DRAM

zzz

Maximum number of warps on the HW

The number of active warps
Occupancy =

Latency hiding is a technique to substantially increase throughput by queuing a massive number
of requests or tasks while waiting on expensive resources.

The streaming multiprocessor (SM) can schedule multiple warps to hide latency to maximize
throughput. Specifically, the SM can schedule the warp that is ready to run and stalls the one
that requires data. In general, we cannot fully utilize the hardware if there are not enough
warps to be scheduled. However, it cannot hide latency if there is not enough concurrent warps.

For example, a single warp on the left needs to stall to obtain data from the memory. On the
other hand, if you have multiple warps like the figure on the right, other warps can be
scheduled while the warp requests data is waiting.

Occupancy is a ratio of the number of active warps with respect to the maximum number of
possible active warps. This number is affected by the register pressure, shared memory size, and
device capability; it is statically or dynamically measured. Since hardware resources (registers
and shared memory) are allocated separately for each warp, we may need to reduce the usage
to increase occupancy and improve the overall throughput.

Keep in mind that it is not a silver bullet. Relying on vendor-provided profilers is always
recommended.

Slide 76

THANK YOU FOR YOUR ATTENTION!

Questions?

Slide 77

77

SUPPLEMENTARY MATERIAL

In this section, we provide a couple of additional slides that we left out due the time constrains
of the course.

Slide 78

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

711

36

78

BLELLOCH’S ALGORITHM

- Exclusive prefix scan

- Computational steps

- Two passes

- Up-sweep

- Parallel reduction

- Down-sweep

8 1 7 4 6 3 5 2

9 9

20 16

Up-sweep phase

Blelloch’s algorithm implicitly computes exclusive prefix scan in two passes (up-sweep and
down-sweep) with O(n) computational steps.

The up-sweep phase is practically a parallel reduction. A caveat is that Blelloch’s algorithm uses
not just the resulting sum but also intermediate results. The parallel reduction can be computed
thanks to the associativity of the operator in any order, resulting in different partial sums.
Therefore, we have to make sure that the up-sweep computation scheme corresponds to the
down-sweep one.

Slide 79

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

729119

360

79

BLELLOCH’S ALGORITHM

- Exclusive prefix scan

- Computational steps

- Two passes

- Up-sweep

- Down-sweep

- Root ← identity element

- Right child ← parent and left child

- Left child ← parent

8 1 7 4 6 3 5 2

9 9

20 16

0

0 20

0 20

0 9 20 2916 26 348

Down-sweep phase

The down-sweep phase proceeds from the root of the reduction computational tree, using the
partial sums from the previous phase to reconstruct the prefix scan. The goal is to modify the
tree such that each interior node contains the sum of all leaves preceding the node in the
preorder traversal. The root value is set to the identity element because there are no leaves
preceding the root. Each left child node has the same number of preceding leaves as its parent
node; hence each left child node has the same value as its parent node. The value of each right
child node is the sum of the parent value and the left sibling value.

Slide 80

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

BLELLOCH’S ALGORITHM – IMPLEMENTATION

template<typename T>
__device__ void ReduceUpSweep(T val, T* smem)
{

smem[threadIdx.x] = val;
__syncthreads();
int active = blockDim.x << 1;
for (int i = 1; i < blockDim.x; I <<= 1)
{

if (threadIdx.x < active)
{

int L = i * (2 * threadIdx.x + 1) - 1;
int R = i * (2 * threadIdx.x + 2) - 1;
smem[R] += smem[L];

}
active >>= 1;
__syncthreads();

}
}

Up-sweep phase

80

8 1 7 4 6 3 5 2

[0] [1] [2] [3] [4] [5] [6] [7]

9 11

L R

9 7

i = 1

i = 2

20

L R

16

36

L R
i = 4

Threads
= {0, 1, 2, 3}

Threads
= {0, 1}

Threads
= {0}

Keep the intermediate results

For standard parallel reduction, only what is important is the final result (e.g., the sum). In the
implementation that we presented, eventually, all entries will contain the final sum as we let all
threads participate in each iteration. In the up-sweep phase, we have to be careful not to
overwrite the intermediate results that are important for the down-sweep phase.

Therefore, we let participate only threads they are contributing to a single computation tree
(depicted above). We use sequential addressing with variable active, indicating how many
threads are active in a particular iteration. The active threads are mapped to appropriate entries
in the computational tree. The values are fetched from shared memory, subsequently added,
and assigned back to shared memory.

Slide 81

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

BLELLOCH’S ALGORITHM – IMPLEMENTATION

81

template<typename T>
__device__ T ScanBlock_Blelloch(T val, T* smem)
{

ReduceUpSweep(val, smem);
if (threadIdx.x == 0)

smem[blockDim.x - 1] = static_cast<T>(0);
__syncthreads();
int active = 1;
for (int i = blockDim.x >> 1; i >= 1; i >>= 1)
{

if (threadIdx.x < active)
{

int L = i * (2 * threadIdx.x + 1) - 1;
int R = i * (2 * threadIdx.x + 2) - 1;
T parent = smem[R];
T Lvalue = smem[L];

smem[R] = parent + Lvalue;
smem[L] = parent;

}
active <<= 1;
__syncthreads();

}
return smem[threadIdx.x] + val;

}

Down-sweep phase

8 1 7 4 6 3 5 2

[0] [1] [2] [3] [4] [5] [6] [7]

9 11

L R

9

20

L R

0

L R

i = 1

i = 2

i = 4
Set 0

Threads
= {0, 1, 2, 3}

Threads
= {0, 1}

Threads
= {0}

0 + 200

0 0 + 9 20 9 + 20

0 9

Original
value

20 298+1 7+9 6+20 5+29

Right ← Parent + Left child
Left ← Parent

Add val for inclusive scan

In the down-sweep phase, we proceed from the root back to the leaves, using the values from
the up-sweep phase (stored in shared memory). First, we replace the root value with the
identity element (zero in the case of addition). In the main loop, we proceed in exactly opposite
order than in the up-sweep phase. In each iteration, we assign the sum of the parent and the
left child to the right child and the original value of the parent to the left child.

Slide 82

SIGGRAPH ASIA 2023 GPU PROGRAMMING PRIMITIVES FOR COMPUTER GRAPHICS

82

PREFIX SCAN – COMPLEMENT

- Prefix scan of for arbitrary

- Can be easily extracted from the prefix scan of as

1 0 1 1 0 0 1 0

1 1 2 3 3 3 4 4Inclusive prefix scan

1 2 3 4 5 6 7 8

0 1 1 1 2 3 3 4

0 1 0 0 1 1 0 1

Compl. prefix scan

Similarly for
exclusive PPS

We don’t need
two PPSs

We define a prefix scan complement of a given sequence for arbitrary k as a prefix scan of a
sequence where each element is the difference between k and the corresponding element of
the original sequence. We can simply extract the prefix scan complement from the prefix of the
original sequence without the necessity to compute it from scratch. Here you can see an
example with binary values and k=1. This property might be handy for some practical
applications.

	Synopsis
	1 Introduction
	2 Course Rationale
	3 Intended Audience
	4 Pedagogical Intentions and Methods
	5 Detailed Description
	5.1 Introduction
	5.2 Parallel Reduction and Prefix Scan
	5.3 Programming Primitives
	5.4 Linear Probing
	5.5 Radix Sort
	5.6 Code Optimization

	References

