
HIPRT: A Ray Tracing Framework in HIP

DANIEL MEISTER, Advanced Micro Devices, Inc., Japan
PARITOSH KULKARNI, Advanced Micro Devices, Inc., Canada
AARYAMAN VASISHTA, Advanced Micro Devices, Inc., Japan
TAKAHIRO HARADA, Advanced Micro Devices, Inc., USA

Fig. 1. Images rendered with applications using HIPRT (from left to right): Blender Cycles (Splash Fox),
PBRT-v4 (Landscape), and Radeon ProRender (Edo).

We present HIPRT, an open-source ray tracing framework in HIP. HIPRT provides a versatile, cross-platform
solution for professional rendering on contemporary many-core architectures. The core of the framework
relies on the bounding volume hierarchy (BVH) with scalable construction algorithms and efficient ray
traversal, employing hardware acceleration on AMD GPUs. From a user perspective, we aim at minimalist
and user-friendly API design, allowing a user to write ray tracing applications only in a few lines of code.
Unlike other graphics APIs that couple ray tracing and shading together, HIPRT provides only ray tracing
functionality and thus can be seamlessly integrated into existing rendering environments. To demonstrate
advanced features of HIPRT, we integrated it into the three rendering systems: Blender Cycles, PBRT-v4, and
Radeon ProRender.

CCS Concepts: •Computingmethodologies→Graphics systems and interfaces;Ray tracing;Visibility;
• Theory of computation→ Sorting and searching;Massively parallel algorithms.

Additional Key Words and Phrases: Bounding volume hierarchy, graphics systems and interface, ray tracing

ACM Reference Format:
Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada. 2024. HIPRT: A Ray Tracing
Framework in HIP. Proc. ACM Comput. Graph. Interact. Tech. 7, 3 (July 2024), 18 pages. https://doi.org/10.1145/
3675378

1 INTRODUCTION
With recent advances in hardware, GPU ray tracing has been gradually penetrating both professional
(offline) and real-time (online) rendering. Professional rendering (e.g., the movie production) was
almost exclusively dominated by CPU-based ray tracing due to limited GPU memory and costly

Authors’ addresses: Daniel Meister, Advanced Micro Devices, Inc., Japan, daniel.meister@amd.com; Paritosh Kulkarni,
Advanced Micro Devices, Inc., Canada, paritosh.kulkarni@amd.com; Aaryaman Vasishta, Advanced Micro Devices, Inc.,
Japan, aaryaman.vasishta@amd.com; Takahiro Harada, Advanced Micro Devices, Inc., USA, takahiro.harada@amd.com.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3675378.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0002-3149-1442
HTTPS://ORCID.ORG/0000-0002-8121-2421
HTTPS://ORCID.ORG/0000-0002-8037-9350
HTTPS://ORCID.ORG/0000-0001-5158-8455
https://doi.org/10.1145/3675378
https://doi.org/10.1145/3675378
https://orcid.org/0000-0002-3149-1442
https://orcid.org/0000-0002-8121-2421
https://orcid.org/0000-0002-8037-9350
https://orcid.org/0000-0001-5158-8455
https://doi.org/10.1145/3675378
https://doi.org/10.1145/3675378

2 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

CPU-GPU transfers. However, high-end GPU models have significantly more memory at their
disposal, and thus allow to render even complex scenes entirely in-core. Production renderers
support various backends to maximize compute capabilities on diverse devices. There are two major
GPU-based industrial ray tracing frameworks oriented on professional rendering: Embree [Wald
et al. 2014] for Intel GPUs and OptiX [Parker et al. 2010] for Nvidia GPUs. We introduce HIPRT, a
ray tracing framework written in the HIP1 kernel language, tailored for professional rendering on
AMD GPUs.

HIPRT is an open-source framework providing functionality for diverse scenarios commonly
encountered in professional rendering environments, including multi-level instancing, motion
blur, custom primitives, and intersection filters. HIPRT is entirely implemented on the GPU based
on bounding volume hierarchy (BVH), accelerating ray traversal through specialized hardware
units on AMD GPUs. HIPRT provides a scalable bounding volume hierarchy construction relying
on optimized BVH construction algorithms. In addition, we propose a novel massively parallel
construction algorithm for bounding volume hierarchy with spatial splits (SBVH), optimized to
handle disproportional diagonal and oblong scene primitives. HIPRT implements the instance-
based multi-segment motion blur with non-uniform time intervals. Motion blur provides a correct
interpolation even for transformation matrices thanks to internal component-wise representation.
HIPRT API is designed to be flexible, transparent, and lightweight. The design emphasizes providing
minimal ray tracing functionality such as BVH build and ray traversal while shading and other
computations are left to the application side. This design choice significantly simplifies the concepts
such as shader binding table (SBT), making the setup of the application and data management very
simple and intuitive. HIPRT is based on the HIP kernel language, supporting modern C++ standards.
To sum up our contributions:

• We provide a complete ray tracing framework in a general-purpose language tailored for
professional rendering on AMD GPUs.

• We propose a novel BVH construction algorithm, building high-quality BVHs with spatial
splits on GPU.

• We release the source code such that it can serve as a reference either for the ray tracing
research community or for engineers in the industry building their own ray tracing system.

• We also release the source codes of our PBRT-v4 port to HIP and HIPRT as an advanced
tutorial, demonstrating how HIPRT can be easily integrated into an existing framework.

• We address some of the API design drawbacks of the existing APIs, such as motion blur or
the shader binding table.

2 RELATEDWORK
In this section, we review the most relevant work related to ray tracing APIs and bounding volume
hierarchy.

2.1 Ray Tracing APIs and Renderers
OptiX [Parker et al. 2010] introduced a programmable ray tracing pipeline that was later adopted by
two major graphics APIs as ray tracing extensions: DirectX [Microsoft 2020] and Vulkan [Khronos
Group 2020]. While the programmable pipeline is tailored for graphics APIs, where shading and
ray tracing are tightly bound, it is not well suited for professional rendering, where a renderer is
typically implemented in a general-purpose language. Isolated shaders also make things opaque
and difficult to debug. Last, the shader binding table (SBT) that is inherently coupled with the
programming pipeline turned out to be the most challenging part to set up, giving rise to the whole

1Heterogeneous-Compute Interface for Portability

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 3

book chapters [Haines and Akenine-Möller 2019]. Various wrappers such as OWL [Wald et al.
2024] can simplify the setup of some of the features.
DirectX [Microsoft 2020] and Vulkan [Khronos Group 2020] are low-level APIs, requiring

hundreds or even thousands of lines of code to render a single triangle. Both APIs are vendor-
independent; however, DirectX is supported only on the Windows OS. Metal [Apple 2023] is
another low-level graphics API developed by Apple, supporting hardware-accelerated ray tracing
on Apple computers and mobile devices. Embree [Wald et al. 2014] has been designed from the
beginning as a ray tracing framework for professional rendering, adopted by many industrial
renderers. Embree, initially designed for CPUs, has been recently extended to Intel ARC GPUs that
support hardware-accelerated ray tracing via SYCL.

Unlike the other two graphics APIs, Embree, OptiX, and Metal support more advanced features
essential for professional rendering such as multi-level instancing, motion blur, or curve primitives.
Some of these features are also available in Vulkan through vendor-specific extensions. Nonetheless,
manual loading of extensions, including the ray tracing one, is an unnecessary burden on the user
side. Furthermore, architectures that do not support these extensionswould need a fallback, resulting
in an additional code path, making the maintenance more difficult.
Separating ray tracing from rendering allows seamless switching between various ray tracing

backends [Georgiev and Slusallek 2008]. Many professional renderers, including Arnold [Georgiev
et al. 2018], MoonRay [DreamWorks 2023], and RenderMan [Christensen et al. 2018], implement
backends using Embree or OptiX. Hence, these renderers could use HIPRT as another backend to
utilize the hardware capabilities of AMD GPUs.
Mitsuba [Nimier-David et al. 2019] is a retargetable system based on Dr.JIT [Jakob et al. 2022],

using CUDA and OptiX with the parallel thread execution (PTX) ISA to compose and compile
optimized rendering kernels in runtime. Rodent [Pérard-Gayot et al. 2019] is a framework in a
domain-specific language that can generate optimized rendering programs. LuisaRender [Zheng
et al. 2022] encapsulates the ray tracing functionality of ray tracing engines behind a common API
using an extended C++ and utilizing OptiX or DirectX as backends. Similarly to the professional
renderers mentioned above, Rodent and LuisaRender could implement a HIPRT backend for AMD
GPUs. Mitsuba requires an intermediate representation (e.g., PTX), which is not supported by HIP.

2.2 Bounding Volume Hierarchy
All contemporary ray tracing frameworks rely exclusively on the bounding volume hierarchy
(BVH) as an underlying acceleration data structure, and HIPRT is not an exception. BVH has been
extensively studied in the past; therefore, we limit ourselves only to the most relevant works
focusing on state-of-the-art GPU-based algorithms. We refer to a survey by Meister et al. [2021] for
more details.

LBVH Lauterbach et al. [2009] introduced one of the earliest construction algorithms for GPUs
known as linear BVH (LBVH). The algorithm is based on sorting scene primitives along the Morton
curve, where the order along the curve is given byMorton codes [Morton 1966]. The key observation
is that the sorted Morton codes define an implicit BVH constructed by spatial median splits, where
each bit defines a split. The whole BVH is constructed in an iterative manner, where in each iteration,
a single level is constructed, corresponding to one kernel launch. Karras [2012] reformulated LBVH
that the BVH topology can be constructed in a single kernel launch, yet still, another pass is
necessary to fit bounding boxes in a bottom-up manner. This issue was addressed by Apetrei [2014],
who proposed an algorithm with a single bottom-up pass that simultaneously computes topology
and fits the bounding boxes. This method is considered to be the fastest algorithm to date. The
standard Morton codes approximate a scene primitive by a single point that might be quite different

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

4 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

from its actual extent. Vinkler et al. [2017] proposed extended Morton codes that encode not only a
position but also the size of a scene primitive that improves the quality of the BVH. For sorting the
Morton codes, GPU variants of radix sort such as those by Merrill and Grimshaw [2011] or Adinets
and Merrill [2022] can be used.

PLOC Meister and Bittner [2018] proposed parallel locally-ordered clustering (PLOC) constructing
high-quality BVHs, iteratively merging multiple cluster pairs in parallel. Each iteration consists
of three steps: nearest neighbor search, merging, and compaction. To find the nearest neighbor,
the authors proposed to test clusters along the Morton curve without the necessity of any explicit
data structure. In the original algorithm, each step is implemented as one kernel launch. Benthin
et al. [2022] proposed to fuse all three steps into a single kernel launch with a couple of other
optimizations, achieving construction performance close to LBVH while maintaining the quality of
the original PLOC algorithm.

SBVH Spatial splits may achieve tighter boxes at the cost of increasing the number of references
to scene primitives. This can improve the BVH quality significantly, especially for scenes with
overlapping, oblong, or diagonal scene primitives. Ernst and Woop [2011], Dammertz and Keller
[2008], and Karras and Aila [2013] propose to pre-split triangles before the actual construction,
which is fast and easy to parallelize, but the quality improvement is rather marginal as each triangle
is processed individually not taking into account neighboring triangles. Stich et al. [2009] and
Popov et al. [2009] proposed to allow spatial splits during the top-down construction, selecting
either (standard) object or spatial split based on the local BVH cost approximation [Meister and
Bittner 2022]. Fuetterling et al. [2016] proposed a scheduling strategy based on dynamic thread
pools to construct SBVH in parallel on the CPU. As a top-down algorithm, this approach puts
stress on top levels that are more important than lower ones as they are visited during the traversal
by most of the rays. However, top-down construction is difficult to adapt for GPU, and thus, it is
considered slow.

Wide BVH All modern GPU ray tracing engines adapted the concept of wide BVH [Guthe 2014;
Lier et al. 2018; Ylitie et al. 2017] (i.e., a BVH with a higher branching factor). The ray-triangle
and ray-box intersections can be computed in parallel over multiple SIMD lanes, but what is
more important for the GPU is that the wide BVH reduces the number of visited nodes during
ray traversal, and thus, reducing the memory traffic. In practice, we build a binary BVH (all the
aforementioned methods produce binary BVHs), and then we convert it to a wide BVH by pulling
child nodes to the parent nodes in a top-down manner [Wald et al. 2014]. Pinto [2010] and Ylitie
et al. [2017] proposed an algorithm based on dynamic programming that performs this conversion
optimally with regard to the BVH cost. The direct construction of wide BVHs is considered difficult,
remaining as an open problem.

Two-level hierarchy Wald et al. [2003] introduced the concept of a two-level hierarchy, where a
bottom-level BVH is built for each object in the scene, and then a single top-level BVH is built over
all objects. This concept supports the instancing of scene objects by referencing a bottom-level
BVH with an affine transformation from the leaves of the top-level BVH. This concept is also useful
for dynamic geometry. If an instantiated object (i.e., the transformation changes) moves, we need
to update only the top-level BVH, which typically comprises only a fraction of the whole hierarchy.
Nonetheless, the two-level hierarchy decreases the performance if instances significantly overlap.
Benthin et al. [2017] proposed rebraiding (i.e., opening nodes of the bottom-level BVHs and pulling
them up to the top-level BVH), decreasing the overlap and improving the overall BVH quality. To
construct the top-level BVH, we need to know the bounding boxes of the transformed instances. The
straightforward approach is to compute axis-aligned bounding boxes of the transformed corners of

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 5

the root bounding box of the instantiated bottom-level BVH. However, the resulting bounds might
be too conservative. Laine and Karras [2015] proposed the apex point map method that allows to
compute tighter bounds for instances.

Ray Traversal Aila and Laine [2009] proposed a stack-based ray traversal with persistent threads
and dynamic fetch for binary BVHs. Guthe [2014] extended this algorithm for 4-wide BVHs, showing
that a higher branching factor helps hide latency. Later, Ylitie et al. [2017] showed that a compressed
8-wide BVH can reduce memory traffic even further, improving the overall ray tracing performance.
Lier et al. [2018] experimented with SIMD ray traversal for wide BVHs on GPUs.
In the context of GPU ray traversal, various stackless algorithms have been proposed. Laine

[2010] and Vaidyanathan et al. [2019] proposed a restart trail technique for binary BVH and wide
BVHs, respectively, skipping already processed subtrees while traversing every time from the root.
Another class of stackless algorithms is based on backtracking with parent links. Hapala et al.
[2013] proposed a stackless algorithm based on simple state logic. A caveat is that the state logic
needs to evaluate the order of child nodes multiple times, which limits its practicality to simple
heuristics such as those based on a sign of the ray direction. Barringer and Akenine-Möller [2013]
and Áfra and Szirmay-Kalos [2014] proposed to encode the order into a bit trail for binary BVH and
wide BVHs, respectively, without the necessity to evaluate the child order multiple times. Binder
and Keller [2016] proposed backtracking in constant time based on a path to the node in a bitset
and perfect hashing.

3 HIPRT API OVERVIEW
Similarly to Embree [Wald et al. 2014], we are not restricted by standards defined by the third
parties. While designing HIPRT API, we keep two goals in mind. First, the API needs to be intuitive
and easy to integrate into existing rendering frameworks. Second, the API must be general purpose,
covering all possible functionality required by modern professional renderers.

1 / / T r i a n g l e mesh
2 hiprtTriangleMeshPrimitive mesh ;
3 mesh . triangleIndices = . . . ;
4 mesh . vertices = . . . ;
5 . . .
6
7 / / Bu i l d i npu t
8 hiprtGeometryBuildInput input ;
9 input . type = hiprtPrimitiveTypeTriangleMesh ;
10 input . triangleMesh . primitive = mesh ;
11
12 / / C rea t e and b u i l d geometry
13 hiprtGeometry geom ;
14 hiprtCreateGeometry (. . . , input , . . . , geom) ;
15 hiprtBuildGeometry (. . . , input , . . . , geom) ;
16
17 / / Bu i l d t r a c e k e r n e l
18 hipFunction_t func ;
19 hiprtBuildTraceKernels (. . . , &func , . . .) ;

Listing 1. An example of using the HIPRT API on the host side, building a single geometry and a trace kernel.
First, we create a triangle meshed defined by vertices and indices. Then, we assign the mesh to the build
input, create (allocate) and build geometry. Lastly, we build a trace kernel, which is returned as a standard
HIP function.

Initializing HIPRT is as simple as a single line where we create the HIPRT context by passing
the HIP context and the HIP device. HIPRT defines two acceleration structure types: geometry and
scene. Geometry is the bottom-level acceleration structure (BLAS) built either over triangles or

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

6 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

custom primitives. The triangles are defined as a triangle mesh with vertices and indices; the custom
primitives are defined as a list of axis-aligned bounding boxes. Scene is the top-level acceleration
structure (TLAS) built over instantiated geometries or other scenes in the case of more than two
levels (see Section 4.1). Each instance has one or more affine transformations in the case of per-
instance motion blur. The transformation can be specified either as a 3 × 4 matrix or as an SRT
frame (i.e., scale, rotation, and translation). For both types, we can specify the time, which allows
us to define non-uniform intervals for motion blur.
Single or multiple geometries or scenes can be created, built, compacted, and updated via the

host HIPRT API (see Listing 1). A user can specify the preferred build algorithm: fast, balanced,
or high-quality. This allows us to balance construction speed and ray tracing performance for a
particular use case. One interesting feature that HIPRT supports is importing a custom BVH. The
build input structure has an optional list of nodes defining a topology and bounding boxes of the
custom BVH. If the list is specified, then HIPRT skips the build and just converts the nodes from
the API format to the internal format. This feature might be useful for research, allowing users to
benchmark their BVH builders with HIPRT hardware-accelerated kernels.
HIPRT supports two types of custom functions: an intersection function for custom primitives

and a filter function for filtering intersections that are useful, for example, for alpha masking
or filtering self-intersections. The custom functions are organized into a 2D table (ray types ×
geometry types). The geometry type is a user-defined integer that can be specified in the geometry
build input. The ray type is specified during the ray traversal. The trace kernel is a standard HIP
device kernel. However, it must be compiled via the HIPRT API to construct the custom function
table and inject the necessary ray tracing functionality to the user code (see Listing 1). The custom
functions must be device functions in the same module as the trace kernel.

A geometry or scene can be passed as a kernel argument. In the kernel itself, we create a HIPRT
traversal object (either for the closest hit or for any hit), passing a ray to be traced and geometry or
scene together with other arguments (e.g., the ray type, ray mask, etc.). We can also pass a traversal
stack type as a template argument. This allows us to have various traversal stack implementations
(see Section 4.2) tailored for diverse scenarios.

1 __global__ vo id RayTraceKernel (hiprtGeometry geom , . . .)
2 {
3 / / Genera te ray
4 hiprtRay ray = generateRay (. . .) ;
5
6 / / T r a v e r s a l o b j e c t
7 hiprtGeomTraversalClosest tr (geom , ray , . . .) ;
8
9 / / F ind h i t
10 hiprtHit hit = tr . getNextHit () ;
11
12 / / Do whatever you want with the h i t
13 . . .
14 }

Listing 2. An example of using the HIPRT API on the device side. We create a ray and the traversal object
that we use to find the closest intersection.

We find a hit by calling the traversal object (see Listing 2). There are two types of traversal
objects to find the closest hit and any hit. The latter one can be used for visibility queries or to
find multiple hits by calling the traversal object repeatedly. It is up to the application how the
found intersections are used. The hit structure contains primitive ID, instance ID(s), ray distance,
barycentric coordinates, and normal in the object space. In the case of multi-level instancing, there
are multiple instance IDs (one per level); the first component corresponds to the top-most scene, the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 7

component corresponds to the next level, and so on. As the scene contains transformations across
all levels and all time steps, HIPRT API provides a set of functions to query such transformations
based on instance IDs and at a given time. This is very convenient as users do not need to compose
and interpolate transformation manually by themselves.

4 HIPRT IMPLEMENTATION
In this section, we describe the implementation details of HIPRT, focusing on the BVH construction
and ray traversal.

4.1 BVH Construction
At the core of HIPRT, there are three BVH builders corresponding to the three quality levels (see
Section 3): LBVH (fast), PLOC (balanced), and SBVH (high-quality). The are two steps common for
all builders: triangle pairing (for triangles only) at the beginning and conversion to a wide BVH at
the end.

Triangle Pairing The BVH format allows us to store triangle pairs in leaf nodes [AMD 2023b]. Thus,
we merge triangles into pairs in an optional preprocessing step. This can be efficiently implemented
through the warp-level primitives [Meister et al. 2023], restricting the search to a single warp,
assuming that the order of triangles is not completely random and that the neighboring triangles
are stored closely to each other. This works surprisingly well, decreasing the input for the actual
build by about 30% on average and thus significantly accelerating all further steps.

LBVH We use 32-bit Morton codes that adaptively adjust the number of bits for indiviual dimen-
sions based on the scene extent [AMD 2023; Vinkler et al. 2017]. For sorting, we use radix sort from
the Orochi library [AMD 2022], based on the one-sweep algorithm [Adinets and Merrill 2022]. The
build itself is based on the algorithm by Apetrei [2014], constructing the BVH in a single kernel
launch. The algorithm proceeds from leaves to the root while keeping the ranges of the Morton
codes of the corresponding subtrees. The parent index is either one position before the first Morton
code or one position after the last Morton code in the range.

PLOC As for LBVH, we need to compute and sort Morton codes that are used to find the nearest
neighbors for clustering. Our algorithm is based on PLOC++ [Benthin et al. 2022], implementing all
proposed algorithmic optimizations. The most important optimization is to fetch additional clusters
corresponding to the previous or following block to be able to verify the merging condition (i.e., the
nearest neighbors of both clusters mutually correspond) without the necessity of communications
with other blocks. This allows us to process each block completely independently, and thus, all
three steps of the original algorithm can be implemented in a single kernel. Note that we still
need a global synchronization after each iteration. Another important optimization is to use a
unidirectional search with one atomic operation (in the shared memory) to propagate the search
results to the neighbors. The last notable optimization is switching to a specialized kernel that
efficiently builds the remaining top levels.

SBVH The SBVH algorithm by Stich et al. [2009] improves the BVH quality significantly, but the
construction is slow as this algorithm is sequential and designed for CPUs. We adapt the SBVH
algorithm for GPUs to accelerate the construction speed. Our priority is to preserve the quality
of the original algorithm. Our algorithm builds the BVH iteratively, level by level, in a top-down
fashion. Similarly to Garanzha et al. [2011], each iteration consists of multiple kernel launches,
where either tasks (e.g., node splitting) or references (e.g., binning) are processed in parallel, starting
with a single task corresponding to the root node.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

8 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

Each task has two sets of bins (i.e., for object splits and spatial splits); we specify the minimum
and maximum numbers of bins per task (we use 8 and 32, respectively, for each dimension). We
allocate only the minimum number of bins for each potential task. The actual number of bins is
scaled by the number of tasks before each iteration such that we can use more bins if there are
fewer tasks and vice versa. We specify the maximum number of additional references to scene
primitives (we use 50%) to allocate all necessary buffers only once; each reference has an index
to the corresponding node. The number of potential tasks is bounded by half of the number of
references, which corresponds to the largest possible cut in the tree, excluding the leaves. For each
such potential task, we allocate two sets of bins. The tasks are stacked in a single buffer, where
the task index coincides with the node index. We keep an offset and task count for each iteration.
We use double buffering for active reference indices, swapping the input and output after each
iteration, while references themselves are stacked in a single separate buffer.
At the beginning of each iteration, we reset both sets of bins. We perform the object binning,

where references are projected to the appropriate bin of the corresponding node in parallel. We
evaluate the best object split, and based on the overlap of child bounding boxes, we decide whether
to perform spatial binning as in the original algorithm [Stich et al. 2009]. If the surface area of
an intersection of child bounding boxes is larger than a fraction of the surface area of the root
bounding box , corresponding to the 𝛼 parameter in the original algorithm [Stich et al. 2009] (we
use 𝛼 = 10−4), then we perform spatial binning. We evaluate the best spatial splits, and we select
either the best object or spatial split, choosing the one that minimizes the surface area heuristic
(SAH). We write the node and create child tasks for the next iteration. In the last step, we split
the references and redistributed them to new tasks. If the maximum number of references is to be
exceeded, we turn spatial splits off. If all references fall into the same bin, we split them into two
halves of roughly the same size (not necessarily sorted). For triangles, we perform the split taking
into account the actual triangle geometry, while for instances and custom primitives, we split only
the bounding boxes [Hendrich et al. 2017]. Note that we do not split triangle geometry but cover
the triangle with multiple tighter bounding boxes.

Our algorithm implements all the same steps as the original algorithm [Stich et al. 2009] except
unsplitting, which would make the GPU implementation more complicated. The major bottleneck
is spatial binning, which is implemented via atomic updates. For standard object binning, if one
increases the number of bins, it helps to distribute atomic pressure across different locations.
However, this is not the case of spatial binning, where increasing the number of bins makes it
worse. For example, if a triangle spans across the whole extent, it is diced into all bins. We use a
small optimization; if all references in the block belong to the same task, we aggregate binning
in the shared memory and then update the corresponding bins in the global memory only once.
We also experimented with the build-from-hierarchy to be able to perform binning always in the
shared memory, but this always leads to significant quality degradation. The issue is that if we bin
triangles in clusters, we cannot perform splitting directly on the triangle geometry.

Conversion to Wide BVH The builders produce binary BVH in a compact format with 32B internal
nodes. The last step is to convert the BVH to the 4-wide BVH that can be fed to ray tracing
hardware units on AMD GPUs. The 4-wide BVH node contains child indices and child boxes
(128B) [AMD 2023b]. This conversion is a relatively difficult problem, often omitted in research
papers (e.g., shortcomings such as that it is done on CPU). The conversion based on dynamic
programming [Ylitie et al. 2017] provides an optimal result, but it requires an additional bottom-up
pass to compute the partial costs that have to be stored in an additional buffer. We opt for a simple
solution based on surface areas using a single top-down pass. In each internal node, we replace a
child node with the highest surface area by its children; we repeat this until all slots are occupied

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 9

Fig. 2. The Moana Island scene [Disney 2016] rendered in the PBRT-v4 with HIPRT on AMD Radeon PRO
W7900. The scene contains 156 million unique primitives and 31 billion instantiated primitives. The scene is
organized into a three-level hierarchy.

(or we reach leaves). This can be implemented on GPU using one kernel launch per level. As an
optimization, we use a specialized kernel, building the first top levels by a single thread block in a
single kernel launch.

Compaction We need to allocate the node buffer beforehand. Thus, we need to conservatively
estimate the number of 4-wide nodes. This can be bounded as ⌈ 2𝑛−13 ⌉, where 𝑛 is the number of leaf
nodes. This corresponds to the worst case for the conversion above, where each internal node in the
level above leaves contains only two leaf nodes. The best case is ⌈𝑛−13 ⌉ for 4-wide BVHs (or ⌈𝑛−1

𝑘−1 ⌉
for 𝑘-wide BVHs in general), which corresponds to the case with no empty slots. However, even
this estimate might be too conservative. Therefore, the BVH buffer can be compacted, removing
the unused space. It is beneficial to work with the compact binary format before conversion as it
reduces memory traffic, and the buffer with 4-wide nodes can be used as an auxiliary buffer for
intermediate computations during the construction.

Multi-Level Instancing Geometries and scenes can be instantiated in multiple levels, which reduces
the memory requirements significantly. For example, we are able to render the Moana Island scene
with multi-level instancing in-core on a single GPU (see Figure 2). The organization into multiple
levels also has logical meaning; for example, triangles are organized into meshes sharing the same
materials, the meshes are further organized into objects, and objects are organized into a scene. To
compute the bounds of the instances, we open the geometry and transform the bounding boxes
of the grandchildren from which we compute an axis-aligned bounding box. This provides much
tighter bounds than transforming the root bounding box, and it is independent of the underlying
geometry size. Note that we do not use explicit rebraiding [Benthin et al. 2017]; however, spatial
splits in SBVH performed on instances achieve similar results. The transformations are converted
to an internal component-wise format using the QR decomposition. This allows us to correctly
interpolate transformations for motion blur (see Figure 3).

Batch Construction Each geometry or scene can be rebuilt (using the same storage) or updated by
refitting bounding boxes. For small geometries and scenes (up to 512 primitives or instances), we
have a specialized construction, building multiple small geometries and scenes, respectively, in a
single kernel launch. Internally, each geometry or scene is mapped to a single thread block. This is
useful for extreme cases such as the one depicted in Figure 4, where each hair strand is represented
as a single geometry.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

10 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

cos(𝑡𝜋) sin(𝑡𝜋) 0
− sin(𝑡𝜋) cos(𝑡𝜋) 0

0 0 1

︸ ︷︷ ︸
HIPRT

≠ (1 − 𝑡)

1 0 0
0 1 0
0 0 1

 + 𝑡

−1 0 0
0 −1 0
0 0 1

︸ ︷︷ ︸
OptiX

Fig. 3. HIPRT (left) correctly interpolates rotations even with transformation matrices thanks to the internal
component-wise representation, unlike OptiX (right), which directly interpolates transformation matrices.
Notice that OptiX provides a singular matrix for 𝑡 = 0.5.

Fig. 4. Hair models rendered in the PBRT-v4 with HIPRT on AMD Radeon PRO W7900, consisting of 1.1
million (left) and 3.3 million (right) hair strands, where each hair strand is diced into 25 segments, represented
as a single bottom-level geometry.

4.2 Ray Traversal
The ray traversal techniques discussed in Section 2.2 almost exclusively use a one-level hierarchy
to achieve the highest possible performance. For example, while-while traversal by Aila and Laine
[2009] is not applicable in the case of a two-level hierarchy as instead of two cases since we now
have three conditions in the case of two levels or more. A general-purpose ray tracing engine must
also support all possible features required by various rendering applications, which naturally brings
some overhead. Thus, the main loop of ray traversal in HIPRT consists of three cases based on the
current node type: internal node, leaf node (in geometry), or instance (in scene). On AMD RDNA 2
and RDNA 3 GPUs, we employ hardware intrinsics for ray-box and ray-triangle intersections [AMD
2023b]; for other architectures, we use software equivalents of the hardware intrinsics. Besides the
intersection intrinsics, all other parts are implemented in software, which provides us flexibility in
designing the traversal algorithm. On the other hand, to achieve high-performance, we need to
consider special solutions. As each ray is traced separately, we also cannot make any assumptions

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 11

about other rays processed by threads from other warps. For instance, we cannot use a block-wise
barrier inside the traversal code, as we do not know which threads are active (we still can use
warp-level primitives [Meister et al. 2023]).

Custom Traversal Stack One unique feature of HIPRT is that ray traversal works with a generic
traversal stack defined by an interface; the stack type is a template argument of the traversal object.
This allows users to select a traversal stack based on a particular use case. HIPRT provides three
types of traversal stacks: private stack, global stack, or dynamic stack. The private stack is the
simplest type using the (private) local memory as a storage (similarly to Aila and Laine [2009]).
The default ray traversal objects internally use the private stack (see Listing 2). Local memory may
cause unnecessary register pressure. The global stack is the most efficient type, combining shared
memory with global memory as a fallback. The shared memory buffer keeps the top-most entries
(i.e., a circular buffer), while the global memory serves as a backup for the bottom-most entries. A
caveat is that the global buffer must be allocated for all scheduled threads, which must be wasteful
as only a fraction runs simultaneously on the GPU. This could be bypassed by persistent threads,
but in complex rendering frameworks, it might be difficult to change scheduling. The dynamic
stack combines shared and global memory in the same way as the global stack. What is different is
how the global buffer is allocated. In the case of dynamic stack, we allocated only a limited number
of stacks (not for all scheduled threads), and then we dynamically distributed them to the active
threads Meister et al. [2023]. The dynamic stack introduces an additional overhead compared to
the global stack, but it still might be useful on memory-critical systems.

Multi-Level Hierarchy For multi-level hierarchies, we need additional logic to keep information
to be able to backtrack to upper levels. Specifically, we need to store a ray and a pointer to the
scene above for each additional level. The ray could be theoretically transformed inversely, but it
would likely lead to numerical errors, accumulating the error through multiple levels. We use an
additional short stack to store this extra information in the case of more than two levels.

Custom Function Table HIPRT supports custom intersections and intersection filters. The custom
intersection is invoked whenever a custom primitive is encountered; the intersection filter is
invoked whenever an intersection is found. A function that dispatches custom functions based on
the geometry type and ray type is generated during the compilation and then linked together with
the traversal code to the user code. We experimented with general function pointers, which turned
out to be highly inefficient (causing high register pressure). Thus, we opt for the dynamic compilation
that exposes the whole function to the compiler to optimize the code properly. The custom function
table structure contains a user-specified buffer specified at the trace kernel compilation type (see
Section 3), typically encapsulating the geometry of custom primitives. During the traversal, based on
the geometry and ray types, the appropriate table entry is selected. Similar to OptiX, a user-defined
payload structure can be passed for additional outputs.

4.3 Technical Details
The HIPRT codebase is relatively small, comprising about 17 thousand lines of code, thanks to
modern C++ features such as templates and compile-time conditions. This is especially useful for
BVH construction and ray traversal, where we have different variants with only minor changes
(e.g., geometry vs. scene). We want to emphasize the importance of compile time conditions for
GPUs; this allows us to instantiate separate optimized variants (in the spirit of RTfact [Georgiev
and Slusallek 2008]), unlike runtime conditions and virtual functions calls that often introduce
additional register usage.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

12 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

Given that HIPRT host code can be compiled for both AMD and NVIDIA platforms, if a user
wants to compile their code for both platforms, they would have to compile twice. To alleviate this
issue, HIPRT internally uses the Orochi library AMD [2022] that allows compiling the host side
into a single binary which enables runtime switching on the host side between AMD and Nvidia
platforms. Note that an application using HIPRT may use either Orochi or standard HIP. HIPRT can
be compiled into any GPU that supports HIP, including AMD MI GPUs (unlike ray tracing APIs in
Vulkan or DirectX). Note that MI GPUs do not support hardware-accelerated ray tracing. The trace
kernels can be either compiled and linked via the HIPRT API at runtime or offline using HIPCC
from the command line. In the case of offline compilation, we need to implement the dispatch
function manually (see Section 4.2). The offline compilation is useful for large frameworks where
we need to include C++ standard header files (which is not possible with runtime compilation).

HIP does not support an intermediate representation (IR) such as SPIR-V or PTX, which makes
shipping rather cumbersome as we have to compile each architecture separately. The device binaries
compiled by different versions of HIP SDK (also known as ROCm) are generally incompatible. For
instance, the HIPRT bitcode compiled with an older version cannot be linked to an application
code compiled by a newer version. To overcome these issues and make HIPRT more accessible, we
have decided to open-source it.

5 EVALUATION
We evaluated HIPRT in our in-house HIP renderer. We use a wavefront path tracer that isolates
trace calls from shading into separate kernel launches. This allows us to implement various ray
tracing back ends independent of the shading. All experiments were conducted on AMD Radeon
PRO W7900 with 48 GB VRAM with ROCm 5.7 and Vulkan 1.3.261.

Vulkan is the only cross-platform solution for AMD GPUs, and thus, we use it as a main reference
method. We test both available performance options: Vulkan Fast (fast build) and Vulkan HQ
(fast trace). We also employ the custom BVH import (discussed in Section 3), importing BVHs
constructed by Embree with the high-quality option and spatial splits (on the CPU).
The main results are summarized in Table 1. We use ten scenes of various complexity both in

geometry and light transport. We report build times, trace times for different ray types, and the
SAH cost. For each scene, since the scene does not contain instances, we collapse all scene objects
into a single geometry by pre-transforming the objects into a common coordinate system to report
a single build time and SAH cost.

Build Times LBVH is the fastest method overall, 1.4 − 3.4× faster than Vulkan Fast. PLOC is
1.3− 4.1× faster than Vulkan HQ and faster than Vulkan Fast for large scenes (with more than 2.5M
triangles). Note that the most costly phase of LBVH and PLOC is the conversion to 4-wide BVH,
taking more than 50% and 33% of the total build times for LBVH and PLOC, respectively. SBVH is
the slowest method overall, 3.7 − 8.9× slower than Vulkan HQ. However, this cost can be easily
amortized by tracing more samples per pixel (see Figure 6).

Trace Times The trace times are average values per one sample per pixel. We report trace times
not only for the pre-transformed single geometry but also trace times with the original two-level
scene partitioning. While for the pre-transformed case, Vulkan and HIPRT are on par, we can
observe that for some scenes, Vulkan is significantly slower in the original two-level partitioning,
especially for shadow and secondary rays. For instance, PLOC is 1.7× faster for secondary rays
in the Museum scene and 1.8× faster for shadow rays in the Yokohama scene. SBVH and Embree
consistently achieve the lowest trace times. One outlier is the Opera House scene, where LBVH in
the pre-transformed case, despite the relatively low SAH cost, is significantly slower than other
methods, not reflecting the actual number of tested nodes (see Table 2). This is due to insufficient

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 13

Table 1. Performance comparison of HIPRT and the reference methods: Vulkan Fast (fast build), Vulkan HQ
(fast trace), and Embree (high-quality). The values in the parentheses are relative values with the respect to
HIPRT PLOC. The trace times are average trace times per sample per pixel. The SAH cost is a sum of the
surface areas of leaves and internal node divided by the surface area of the root.

Trains Bistro Int. Hangar Ship Opera House Bistro Ext. Museum Sci-fi Zero Day Toy Shop Yokohama

#triangles 836k 1207k 1235k 2512k 2829k 3650k 4809k 5165k 5212k 8217k avg. rel. val.
Build time (pre-transformed) [ms]

HIPRT LBVH 2.39 (0.37) 2.88 (0.4) 4.08 (0.44) 4.62 (0.52) 5.16 (0.43) 6.74 (0.5) 8.31 (0.52) 12.79 (0.56) 8.47 (0.5) 12.77 (0.56) 0.48
HIPRT PLOC 6.4 (1.0) 7.26 (1.0) 9.32 (1.0) 8.93 (1.0) 11.93 (1.0) 13.54 (1.0) 16.01 (1.0) 22.98 (1.0) 16.82 (1.0) 22.98 (1.0) 1.0
HIPRT SBVH 68.06 (10.63) 87.83 (12.1) 118.65 (12.73) 96.34 (10.79) 188.38 (15.79) 210.74 (15.56) 320.08 (19.99) 422.3 (18.38) 281.68 (16.75) 354.66 (15.43) 14.81
Vulkan Fast 3.44 (0.54) 5.51 (0.76) 5.68 (0.61) 12.23 (1.37) 14.09 (1.18) 18.56 (1.37) 25.86 (1.62) 27.87 (1.21) 27.18 (1.62) 44.25 (1.93) 1.22
Vulkan HQ 8.06 (1.26) 12.37 (1.7) 13.4 (1.44) 26.09 (2.92) 32.05 (2.69) 41.11 (3.04) 54.85 (3.43) 62.23 (2.71) 61.32 (3.65) 95.32 (4.15) 2.7

Primary ray trace time (pre-transformed) [ms]
HIPRT LBVH 1.46 (1.35) 1.56 (0.93) 1.42 (1.12) 159.13 (47.79) 2.22 (1.14) 1.42 (1.29) 1.51 (1.18) 1.3 (1.2) 1.86 (1.49) 1.73 (1.15) 5.86
HIPRT PLOC 1.08 (1.0) 1.68 (1.0) 1.27 (1.0) 3.33 (1.0) 1.94 (1.0) 1.1 (1.0) 1.28 (1.0) 1.08 (1.0) 1.25 (1.0) 1.5 (1.0) 1.0
HIPRT SBVH 0.93 (0.86) 0.9 (0.54) 0.87 (0.69) 1.91 (0.57) 1.28 (0.66) 0.89 (0.81) 0.99 (0.77) 0.99 (0.92) 1.49 (1.19) 0.98 (0.65) 0.77
HIPRT Embree 0.91 (0.84) 0.91 (0.54) 1.24 (0.98) 1.95 (0.59) 1.61 (0.83) 0.91 (0.83) 0.99 (0.77) 0.94 (0.87) 1.09 (0.87) 0.94 (0.63) 0.77
Vulkan Fast 1.63 (1.51) 1.96 (1.17) 1.54 (1.21) 9.35 (2.81) 2.13 (1.1) 1.54 (1.4) 1.76 (1.38) 1.59 (1.47) 1.53 (1.22) 1.72 (1.15) 1.44
Vulkan HQ 1.32 (1.22) 1.8 (1.07) 1.45 (1.14) 2.23 (0.67) 1.81 (0.93) 1.2 (1.09) 1.41 (1.1) 1.13 (1.05) 1.37 (1.1) 1.44 (0.96) 1.03

Primary ray trace time (two-levels) [ms]
HIPRT LBVH 1.74 (0.91) 2.55 (1.06) 3.51 (1.04) 4.41 (1.37) 3.57 (1.13) 1.42 (1.18) 1.63 (1.12) 1.6 (1.23) 2.53 (1.24) 1.96 (1.15) 1.14
HIPRT PLOC 1.91 (1.0) 2.41 (1.0) 3.38 (1.0) 3.21 (1.0) 3.15 (1.0) 1.2 (1.0) 1.46 (1.0) 1.3 (1.0) 2.04 (1.0) 1.71 (1.0) 1.0
HIPRT SBVH 1.26 (0.66) 2.09 (0.87) 2.94 (0.87) 2.31 (0.72) 3.15 (1.0) 1.12 (0.93) 1.31 (0.9) 1.58 (1.22) 2.74 (1.34) 1.63 (0.95) 0.95
HIPRT Embree 1.56 (0.82) 2.75 (1.14) 3.12 (0.92) 2.27 (0.71) 3.23 (1.03) 1.1 (0.92) 1.36 (0.93) 1.44 (1.11) 2.78 (1.36) 1.34 (0.78) 0.97
Vulkan Fast 1.43 (0.75) 2.54 (1.05) 3.25 (0.96) 2.66 (0.83) 3.28 (1.04) 1.23 (1.03) 1.55 (1.06) 1.48 (1.14) 2.32 (1.14) 1.76 (1.03) 1.0
Vulkan HQ 1.37 (0.72) 2.4 (1.0) 3.02 (0.89) 2.45 (0.76) 3.04 (0.97) 1.18 (0.98) 1.42 (0.97) 1.29 (0.99) 2.05 (1.0) 1.59 (0.93) 0.92

Shadow ray trace time (pre-transformed) [ms]
HIPRT LBVH 6.82 (1.22) 11.91 (1.17) 8.41 (1.11) 1063.39 (69.05) 16.24 (1.16) 10.41 (1.22) 8.96 (1.25) 8.83 (1.23) 9.69 (1.34) 9.62 (1.15) 7.99
HIPRT PLOC 5.61 (1.0) 10.19 (1.0) 7.58 (1.0) 15.4 (1.0) 14.06 (1.0) 8.51 (1.0) 7.19 (1.0) 7.19 (1.0) 7.22 (1.0) 8.37 (1.0) 1.0
HIPRT SBVH 4.84 (0.86) 5.19 (0.51) 5.63 (0.74) 7.56 (0.49) 9.24 (0.66) 6.72 (0.79) 5.99 (0.83) 6.57 (0.91) 6.3 (0.87) 6.76 (0.81) 0.75
HIPRT Embree 4.87 (0.87) 5.92 (0.58) 5.45 (0.72) 8.05 (0.52) 9.12 (0.65) 6.51 (0.76) 5.9 (0.82) 6.39 (0.89) 6.29 (0.87) 6.59 (0.79) 0.75
Vulkan Fast 8.36 (1.49) 13.19 (1.29) 9.51 (1.25) 48.29 (3.14) 15.37 (1.09) 10.75 (1.26) 9.06 (1.26) 10.22 (1.42) 9.57 (1.33) 11.03 (1.32) 1.48
Vulkan HQ 6.99 (1.25) 12.67 (1.24) 8.17 (1.08) 11.04 (0.72) 13.62 (0.97) 9.22 (1.08) 7.68 (1.07) 7.26 (1.01) 8.14 (1.13) 8.87 (1.06) 1.06

Shadow ray trace time (two-levels) [ms]
HIPRT LBVH 11.38 (1.07) 17.96 (1.19) 20.35 (1.08) 21.89 (1.72) 30.45 (1.14) 13.26 (1.19) 11.88 (1.26) 10.37 (1.07) 15.11 (1.18) 13.52 (1.17) 1.21
HIPRT PLOC 10.64 (1.0) 15.04 (1.0) 18.85 (1.0) 12.71 (1.0) 26.8 (1.0) 11.16 (1.0) 9.43 (1.0) 9.71 (1.0) 12.81 (1.0) 11.58 (1.0) 1.0
HIPRT SBVH 9.52 (0.89) 13.75 (0.91) 19.28 (1.02) 12.08 (0.95) 25.45 (0.95) 10.78 (0.97) 9.05 (0.96) 8.6 (0.89) 15.09 (1.18) 9.81 (0.85) 0.96
HIPRT Embree 10.06 (0.95) 18.62 (1.24) 21.01 (1.11) 11.87 (0.93) 27.46 (1.02) 10.21 (0.91) 9.66 (1.02) 9.31 (0.96) 15.12 (1.18) 10.64 (0.92) 1.02
Vulkan Fast 13.02 (1.22) 16.55 (1.1) 18.6 (0.99) 21.29 (1.68) 30.82 (1.15) 13.73 (1.23) 11.53 (1.22) 14.23 (1.47) 14.08 (1.1) 22.15 (1.91) 1.31
Vulkan HQ 11.5 (1.08) 15.68 (1.04) 18.52 (0.98) 18.92 (1.49) 28.15 (1.05) 12.68 (1.14) 10.4 (1.1) 12.4 (1.28) 11.98 (0.94) 21.23 (1.83) 1.19

Secondary ray trace time (pre-transformed) [ms]
HIPRT LBVH 9.24 (1.2) 24.73 (1.1) 14.87 (1.12) 1083.84 (45.6) 27.41 (1.14) 12.97 (1.19) 11.95 (1.22) 11.99 (1.15) 12.1 (1.23) 12.21 (1.17) 5.61
HIPRT PLOC 7.69 (1.0) 22.54 (1.0) 13.24 (1.0) 23.77 (1.0) 24.06 (1.0) 10.89 (1.0) 9.8 (1.0) 10.44 (1.0) 9.86 (1.0) 10.47 (1.0) 1.0
HIPRT SBVH 6.26 (0.81) 7.14 (0.32) 7.99 (0.6) 11.1 (0.47) 12.57 (0.52) 7.49 (0.69) 6.98 (0.71) 8.11 (0.78) 7.41 (0.75) 7.77 (0.74) 0.64
HIPRT Embree 6.25 (0.81) 9.61 (0.43) 7.56 (0.57) 12.02 (0.51) 12.22 (0.51) 7.38 (0.68) 7.01 (0.72) 7.44 (0.71) 7.36 (0.75) 7.13 (0.68) 0.64
Vulkan Fast 9.22 (1.2) 27.27 (1.21) 12.26 (0.93) 60.2 (2.53) 27.15 (1.13) 11.12 (1.02) 12.18 (1.24) 12.04 (1.15) 10.75 (1.09) 12.28 (1.17) 1.27
Vulkan HQ 7.49 (0.97) 26.31 (1.17) 10.74 (0.81) 12.57 (0.53) 25.54 (1.06) 9.52 (0.87) 9.97 (1.02) 8.85 (0.85) 9.07 (0.92) 10.14 (0.97) 0.92

Secondary ray trace time (two-levels) [ms]
HIPRT LBVH 15.36 (1.06) 39.09 (1.07) 33.22 (1.05) 30.84 (1.57) 54.82 (1.12) 14.61 (1.17) 17.42 (1.17) 14.63 (1.09) 20.22 (1.13) 16.35 (1.0) 1.14
HIPRT PLOC 14.48 (1.0) 36.67 (1.0) 31.75 (1.0) 19.65 (1.0) 48.9 (1.0) 12.48 (1.0) 14.92 (1.0) 13.48 (1.0) 17.87 (1.0) 16.33 (1.0) 1.0
HIPRT SBVH 12.02 (0.83) 22.26 (0.61) 26.08 (0.82) 16.83 (0.86) 37.42 (0.77) 11.05 (0.89) 13.12 (0.88) 11.16 (0.83) 20.76 (1.16) 12.64 (0.77) 0.84
HIPRT Embree 12.97 (0.9) 32.49 (0.89) 29.05 (0.91) 15.48 (0.79) 43.85 (0.9) 10.84 (0.87) 13.64 (0.91) 12.59 (0.93) 20.5 (1.15) 13.02 (0.8) 0.9
Vulkan Fast 20.75 (1.43) 39.39 (1.07) 36.48 (1.15) 28.18 (1.43) 69.26 (1.42) 21.27 (1.7) 19.02 (1.27) 15.48 (1.15) 19.05 (1.07) 30.95 (1.9) 1.36
Vulkan HQ 19.04 (1.31) 37.26 (1.02) 35.6 (1.12) 27.95 (1.42) 61.97 (1.27) 21.15 (1.69) 16.5 (1.11) 13.68 (1.01) 16.44 (0.92) 27.36 (1.68) 1.25

SAH cost (pre-transformed) [-]
HIPRT LBVH 25.55 (1.24) 87.74 (1.12) 30.59 (1.23) 18.12 (1.02) 56.84 (1.15) 54.93 (1.34) 40.7 (1.32) 22.84 (1.16) 52.21 (1.29) 24.39 (1.26) 1.21
HIPRT PLOC 20.62 (1.0) 78.61 (1.0) 24.96 (1.0) 17.81 (1.0) 49.26 (1.0) 41.03 (1.0) 30.77 (1.0) 19.69 (1.0) 40.4 (1.0) 19.3 (1.0) 1.0
HIPRT SBVH 18.79 (0.91) 26.1 (0.33) 20.95 (0.84) 17.03 (0.96) 29.21 (0.59) 31.75 (0.77) 25.21 (0.82) 16.4 (0.83) 36.34 (0.9) 15.71 (0.81) 0.78
HIPRT Embree 18.8 (0.91) 31.25 (0.4) 20.66 (0.83) 17.26 (0.97) 29.98 (0.61) 31.69 (0.77) 24.88 (0.81) 15.39 (0.78) 35.93 (0.89) 15.59 (0.81) 0.78

resolution of our 32-bit Morton codes. In such detailed scenes, the bottom levels contribute only
negligibly to the SAH cost (due to division by the surface area of the scene bounding box) regardless
of the actual BVH quality. To a certain extent, we can observe a similar tendency also for Vulkan
Fast.

SAH Cost The SAH cost is a sum of the surface areas of leaves and internal nodes normalized
by the surface area of the root. The hardware format makes the leaves fixed as it does not allow
more than one triangle per leaf (except the triangle pairs), and thus, using different values of the
SAH cost constants does not make a difference. SBVH and Embree are on par, achieving lower
SAH costs than LBVH and PLOC. A noticeable exception is Bistro Interior, where the BVH has
about 16% lower cost than Embree and 67% lower cost than PLOC, which is also reflected in the
corresponding trace speed (see Figure 5).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

14 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

Table 2. Average counts of tested nodes (internal nodes / instances / leaves) per ray for the HIPRT methods.
Each leaf node contains one or two triangles (i.e., a triangle pair), which is given by the hardware-specific
format.

Trains Bistro Int. Hangar Ship Opera House Bistro Ext. Museum Sci-fi Zero Day Toy Shop Yokohama

#triangles 836k 1207k 1235k 2512k 2829k 3650k 4809k 5165k 5212k 8217k
Primary rays (pre-transformed) [-]

HIPRT LBVH 42 / 1 / 3 47 / 1 / 13 46 / 1 / 9 3866 / 1 / 14 54 / 1 / 8 47 / 1 / 5 53 / 1 / 5 36 / 1 / 6 46 / 1 / 3 50 / 1 / 4
HIPRT PLOC 31 / 1 / 3 30 / 1 / 13 36 / 1 / 10 105 / 1 / 15 42 / 1 / 9 29 / 1 / 5 35 / 1 / 5 22 / 1 / 5 32 / 1 / 3 38 / 1 / 5
HIPRT SBVH 31 / 1 / 3 22 / 1 / 2 25 / 1 / 4 54 / 1 / 11 35 / 1 / 5 22 / 1 / 3 27 / 1 / 3 26 / 1 / 3 26 / 1 / 2 27 / 1 / 3
HIPRT Embree 30 / 1 / 2 24 / 1 / 3 25 / 1 / 4 55 / 1 / 11 32 / 1 / 4 23 / 1 / 3 26 / 1 / 3 21 / 1 / 2 25 / 1 / 2 26 / 1 / 2

Primary rays (two-levels) [-]
HIPRT LBVH 42 / 5 / 3 57 / 10 / 15 89 / 28 / 10 148 / 9 / 12 70 / 11 / 9 37 / 2 / 4 43 / 4 / 5 32 / 2 / 6 53 / 6 / 4 45 / 3 / 4
HIPRT PLOC 40 / 5 / 4 47 / 10 / 15 75 / 28 / 10 65 / 10 / 10 60 / 11 / 9 26 / 2 / 4 31 / 4 / 4 23 / 2 / 6 44 / 7 / 4 36 / 3 / 4
HIPRT SBVH 33 / 5 / 2 51 / 11 / 4 76 / 30 / 4 62 / 9 / 4 60 / 13 / 4 24 / 2 / 2 29 / 3 / 2 26 / 2 / 3 57 / 11 / 5 31 / 4 / 2
HIPRT Embree 33 / 5 / 2 65 / 14 / 10 84 / 32 / 6 58 / 8 / 8 60 / 13 / 6 23 / 2 / 3 30 / 4 / 3 28 / 2 / 3 59 / 12 / 5 31 / 4 / 3

Shadow rays (pre-transformed) [-]
HIPRT LBVH 31 / 1 / 2 37 / 1 / 11 29 / 1 / 6 1854 / 1 / 4 40 / 1 / 8 32 / 1 / 4 31 / 1 / 4 27 / 1 / 3 30 / 1 / 4 29 / 1 / 3
HIPRT PLOC 23 / 1 / 2 28 / 1 / 10 22 / 1 / 5 55 / 1 / 4 31 / 1 / 8 23 / 1 / 4 22 / 1 / 4 20 / 1 / 3 22 / 1 / 3 22 / 1 / 3
HIPRT SBVH 21 / 1 / 2 23 / 1 / 4 21 / 1 / 4 29 / 1 / 4 28 / 1 / 5 20 / 1 / 3 21 / 1 / 3 22 / 1 / 3 20 / 1 / 3 19 / 1 / 3
HIPRT Embree 21 / 1 / 2 23 / 1 / 4 21 / 1 / 3 30 / 1 / 4 27 / 1 / 5 21 / 1 / 3 21 / 1 / 3 21 / 1 / 2 20 / 1 / 3 20 / 1 / 2

Shadow rays (two-levels) [-]
HIPRT LBVH 28 / 3 / 2 42 / 6 / 11 36 / 8 / 5 64 / 3 / 3 47 / 7 / 8 29 / 2 / 3 26 / 3 / 3 25 / 2 / 3 28 / 3 / 3 27 / 2 / 3
HIPRT PLOC 25 / 3 / 2 28 / 4 / 8 29 / 7 / 5 29 / 3 / 3 39 / 7 / 8 22 / 2 / 3 21 / 2 / 3 21 / 2 / 3 25 / 4 / 4 22 / 2 / 3
HIPRT SBVH 24 / 3 / 1 35 / 6 / 4 36 / 10 / 3 30 / 4 / 3 40 / 7 / 4 22 / 3 / 2 22 / 3 / 2 21 / 2 / 2 25 / 4 / 2 21 / 2 / 2
HIPRT Embree 24 / 3 / 2 43 / 7 / 8 37 / 10 / 4 27 / 3 / 3 40 / 7 / 5 21 / 2 / 2 22 / 3 / 3 22 / 2 / 2 24 / 4 / 3 21 / 2 / 2

Secondary rays (pre-transformed) [-]
HIPRT LBVH 40 / 1 / 4 57 / 1 / 38 47 / 1 / 12 2336 / 1 / 11 62 / 1 / 22 44 / 1 / 7 48 / 1 / 7 32 / 1 / 7 46 / 1 / 4 45 / 1 / 5
HIPRT PLOC 30 / 1 / 4 43 / 1 / 36 36 / 1 / 12 85 / 1 / 9 48 / 1 / 23 31 / 1 / 7 35 / 1 / 7 24 / 1 / 6 33 / 1 / 4 35 / 1 / 6
HIPRT SBVH 24 / 1 / 3 24 / 1 / 5 25 / 1 / 6 40 / 1 / 8 31 / 1 / 9 23 / 1 / 4 24 / 1 / 4 21 / 1 / 4 24 / 1 / 3 25 / 1 / 4
HIPRT Embree 24 / 1 / 3 25 / 1 / 8 26 / 1 / 5 41 / 1 / 8 30 / 1 / 7 24 / 1 / 4 24 / 1 / 4 19 / 1 / 3 24 / 1 / 3 25 / 1 / 3

Secondary rays (two-levels) [-]
HIPRT LBVH 35 / 4 / 4 67 / 10 / 38 62 / 13 / 12 89 / 5 / 8 84 / 13 / 25 36 / 3 / 5 41 / 5 / 6 29 / 2 / 6 51 / 7 / 4 41 / 3 / 5
HIPRT PLOC 32 / 5 / 4 54 / 10 / 36 52 / 13 / 12 43 / 5 / 7 71 / 13 / 24 28 / 3 / 5 32 / 5 / 6 23 / 2 / 6 39 / 7 / 4 35 / 4 / 5
HIPRT SBVH 28 / 4 / 2 49 / 10 / 8 49 / 13 / 6 43 / 5 / 5 65 / 14 / 8 25 / 3 / 3 29 / 4 / 3 25 / 2 / 4 43 / 9 / 4 29 / 4 / 3
HIPRT Embree 28 / 4 / 3 57 / 11 / 20 51 / 14 / 8 39 / 5 / 5 68 / 14 / 14 25 / 3 / 3 29 / 4 / 4 26 / 3 / 4 43 / 9 / 4 29 / 4 / 4

Tested Nodes We also report hardware-independent statistics in a form of tested nodes in Table 2.
The first number in each cell in the table is the number of tested internal nodes, the second number
is the number of tested instances, and the last number is the number of tested leaves, where each
leaf contains up to two triangles (i.e, a triangle pair).

SBVH achieves excellent results at the cost of higher construction times, which is not an issue
for professional rendering as this cost is amortized through tracing many rays. Nonetheless, there
are two other drawbacks. The first drawback is the high memory requirements given by the large
number of allocated bins (1536B per task). The second drawback is inherent to the spatial splits. If
we use any hit with spatial splits, the same hits are reported multiple times, which might be an
issue for some applications.

HIPRT was also integrated into three advanced rendering systems to demonstrate its robustness
and versatility: Blender Cycles [Blender Foundation 2023], PBRT-v4 [Pharr et al. 2023], and Radeon
ProRender [AMD 2023a] (see Figures 1, 2, and 4).

6 CONCLUSION AND FUTUREWORK
In this paper, we introduced HIPRT, a ray tracing framework tailored for professional rendering
and general-purpose scientific computing on AMD GPUs. HIPRT achieves performance comparable
with Vulkan, yet the HIPRT API is designed to be user-friendly and can be easily integrated
with existing renderers. We proposed a new SBVH algorithm for massively parallel architectures,
achieving high quality at the cost of higher construction times. We also addressed some of the
design flaws of the existing APIs, such as motion blur or shader binding table. The goal of HIPRT is
to offer a viable option to industrial renderers such as Blender Cycles on AMD GPUs rather than
compete with other vendor-specific ray tracing engines.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HIPRT: A Ray Tracing Framework in HIP 15

0 1 2 3 4
Bounce [-]

0

500

1000

1500

2000
Tr

ac
e

sp
ee

d
[M

Ra
ys

/s
]

HIPRT LBVH
HIPRT PLOC
HIPRT SBVH

HIPRT Embree
Vulkan Fast
Vulkan HQ

Fig. 5. Ray tracing performance of individual bounces for the Bistro Interior scene (pre-transformed). The
0-th bounce corresponds to primary rays and the other bounces to secondary rays.

0 20 40 60 80 100 120
Samples per pixel [-]

0

500

1000

1500

2000

2500

3000

Ti
m

e-
to

-im
ag

e
[m

s]

HIPRT LBVH
HIPRT PLOC
HIPRT SBVH

Vulkan Fast
Vulkan HQ

Fig. 6. Time-to-image of different samples counts for the Yokohama scene (pre-transformed). The offset in
the origin corresponds to the build time. The high quality of SBVH outweighs the build overhead already
around 64 samples per pixel.

There are a couple of interesting directions for future work. The results showed that 32-bit
Morton codes are not sufficiently robust in some case. We will integrate the 64-bit extended Morton
codes [Vinkler et al. 2017] to cover such cases. SBVH excels at scenes with oblong diagonal triangles.
For custom primitives, SBVH splits only a bounding box, which is not optimal for thin oblong
primitives such as curves. OptiX and Metal support specialized curves primitives. This allows split
curves to get tighter bounding boxes, but it is restricted to a specific curve type. A more general
solution could be to define a custom split function, leaving splitting up to the user. We plan to
test HIPRT in use cases other than ray tracing, such as collision detection. Similarly to the custom
intersection function, we could define a custom traversal function testing internal nodes. This
would allow a user to traverse the BVH with another bounding box instead of the ray, which might
be useful for the broad-phase in collision detection [Liu et al. 2010].

ACKNOWLEDGMENTS
We would like to thank other team members and colleagues for their valuable feedback and support
on this project: Carsten Benthin, Richard Geslot, Sho Ikeda, ChihChen Kao, and Atsushi Yoshimura.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

16 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

We also express our gratitude to the creators of the test scenes: Splash Fox (Daniel Bystedt),
Landscape (Laubwerk), Edo (Shunsuke Nakajo), Moana Island (Disney Animation), Hair (Cem
Yuksel), Trains (Denis Rutkovsky), Bistro (Amazon Lumberyard), Hangar Ship (Luxsoft), Opera
House (ArtcoreStudios), Museum (ArtcoreStudios), Sci-fi (Jonathon Frederick), Zero Day (Beeple),
Toy Shop (Luxsoft), and Yokohama (Kyrylo Sibiriakov).

Copyright Notice and Trademarks
©2024 Advanced Micro Devices, Inc. All rights reserved. AMD, Ryzen, Radeon, and combinations
thereof are trademarks of AdvancedMicroDevices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks of their respective companies.

REFERENCES
Andy Adinets and Duane Merrill. 2022. Onesweep: A Faster Least Significant Digit Radix Sort for GPUs. arXiv e-prints

(2022), arXiv:2206.01784.
Attila Áfra and László Szirmay-Kalos. 2014. Stackless Multi-BVH Traversal for CPU, MIC and GPU Ray Tracing. Computer

Graphics Forum 33, 1 (2014), 129–140.
TimoAila and Samuli Laine. 2009. Understanding the Efficiency of Ray Traversal on GPUs. In Proceedings of High-Performance

Graphics. 145–149.
AMD. 2022. Orochi. https://gpuopen.com/orochi/
AMD. 2023. GPURT. https://github.com/GPUOpen-Drivers/gpurt.
AMD. 2023a. Radeon ProRender. https://www.amd.com/en/technologies/radeon-prorender
AMD. 2023b. RDNA3 Instruction Set Architecture. https://www.amd.com/content/dam/amd/en/documents/radeon-tech-

docs/instruction-set-architectures/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
Ciprian Apetrei. 2014. Fast and Simple Agglomerative LBVH Construction. In Proceedings of Computer Graphics and Visual

Computing.
Apple. 2023. Metal Shading Language Specification. https://developer.apple.com/metal/Metal-Shading-Language-

Specification.pdf
Rasmus Barringer and Tomas Akenine-Möller. 2013. Dynamic Stackless Binary Tree Traversal. Journal of Graphics Tools 2,

1 (2013), 38–49.
Carsten Benthin, Radoslaw Drabinski, Lorenzo Tessari, and Addis Dittebrandt. 2022. PLOC++ : Parallel Locally-Ordered

Clustering for Bounding Volume Hierarchy Construction Revisited. In Proceedings of High-Performance Graphics.
Carsten Benthin, Sven Woop, Ingo Wald, and Attila Áfra. 2017. Improved Two-Level BVHs using Partial Re-Braiding. In

Proceedings of High-Performance Graphics.
Nikolaus Binder and Alexander Keller. 2016. Efficient Stackless Hierarchy Traversal on GPUs with Backtracking in Constant

Time. In Proceedings of High-Performance Graphics. 41–50.
Blender Foundation. 2023. Cycles. https://docs.blender.org/manual/en/latest/render/cycles/index.html
Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, Andrew Kensler, Stephen Friedman,

Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister, Brenton Rayner, Jonathan Brouillat, and Max Liani. 2018. RenderMan:
An Advanced Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37, 3 (2018).

Holger Dammertz and Alexander Keller. 2008. Edge Volume Heuristic - Robust Triangle Subdivision for Improved BVH
Performance. In Proceedings of Symposium on Interactive Ray Tracing. 155–158.

Disney. 2016. Moana Island Scene. https://disneyanimation.com/resources/moana-island-scene/.
DreamWorks. 2023. MoonRay Production Renderer. https://openmoonray.org/
Manfred Ernst and Sven Woop. 2011. Ray Tracing with Shared-Plane Bounding Volume Hierarchies. Journal of Graphics,

GPU, and Game Tools 15, 3 (2011), 141–151.
Valentin Fuetterling, Carsten Lojewski, Franz-Josef Pfreundt, and Achim Ebert. 2016. Parallel Spatial Splits in Bounding

Volume Hierarchies. In Proceedings of Eurographics Symposium on Parallel Graphics and Visualization. 21–30.
Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. 2011. Simpler and Faster HLBVHwithWork Queues. In Proceedings

of High-Performance Graphics. 59–64.
Iliyan Georgiev, Thiago Ize, Mike Farnsworth, Ramón Montoya-Vozmediano, Alan King, Brecht Van Lommel, Angel Jimenez,

Oscar Anson, Shinji Ogaki, Eric Johnston, Adrien Herubel, Declan Russell, Frédéric Servant, and Marcos Fajardo. 2018.
Arnold: A Brute-Force Production Path Tracer. ACM Transactions on Graphics 37, 3 (2018).

Iliyan Georgiev and Philipp Slusallek. 2008. RTfact: Generic concepts for flexible and high performance ray tracing. In 2008
IEEE Symposium on Interactive Ray Tracing. 115–122.

Michael Guthe. 2014. Latency Considerations of Depth-first GPU Ray Tracing. In Proceedings of Eurographics (Short Papers).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

https://gpuopen.com/orochi/
https://github.com/GPUOpen-Drivers/gpurt
https://www.amd.com/en/technologies/radeon-prorender
https://www.amd.com/content/dam/amd/en/documents/radeon-tech-docs/instruction-set-architectures/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/content/dam/amd/en/documents/radeon-tech-docs/instruction-set-architectures/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://openmoonray.org/

HIPRT: A Ray Tracing Framework in HIP 17

Eric Haines and Tomas Akenine-Möller (Eds.). 2019. Ray Tracing Gems. Apress. http://raytracinggems.com.
Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil Havran, and Philipp Slusallek. 2013. Efficient Stack-less BVH

Traversal for Ray Tracing. In Proceedings of Spring Conference on Computer Graphics. 7–12.
Jakub Hendrich, Daniel Meister, and Jiří Bittner. 2017. Parallel BVH Construction Using Progressive Hierarchical Refinement.

Computer Graphics Forum (Proceedings of Eurographics) 36, 2 (2017), 487–494.
Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit: A Just-In-Time Compiler for Differentiable

Rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4 (2022).
Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d Trees. In Proceedings of High-

Performance Graphics. 33–37. https://research.nvidia.com/publication/maximizing-parallelism-construction-bvhs-
octrees-and-k-d-trees

Tero Karras and Timo Aila. 2013. Fast Parallel Construction of High-Quality Bounding Volume Hierarchies. In Proceedings
of High-Performance Graphics. 89–100.

Khronos Group. 2020. Vulkan Ray Tracing Extensions Specification. https://www.khronos.org/blog/vulkan-ray-tracing-
final-specification-release

Samuli Laine. 2010. Restart Trail for Stackless BVH Traversal. In Proceedings of High-Performance Graphics. 107–111.
Samuli Laine and Tero Karras. 2015. Apex Point Map for Constant-Time Bounding Plane Approximation. In Eurographics

Symposium on Rendering - Experimental Ideas & Implementations.
Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and Dinesh Manocha. 2009. Fast BVH

Construction on GPUs. Computer Graphics Forum 28, 2 (2009), 375–384.
Alexander Lier, Marc Stamminger, and Kai Selgrad. 2018. CPU-style SIMD Ray Traversal on GPUs. In Proceedings of

High-Performance Graphics. 7:1–7:4.
Fuchang Liu, Takahiro Harada, Youngeun Lee, and Young J. Kim. 2010. Real-Time Collision Culling of a Million Bodies on

Graphics Processing Units. ACM Transactions on Graphics 29, 6 (2010).
Daniel Meister and Jiří Bittner. 2018. Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy Construction.

IEEE Transactions on Visualization and Computer Graphics 24, 3 (2018), 1345–1353.
Daniel Meister and Jiří Bittner. 2022. Performance Comparison of Bounding Volume Hierarchies for GPU Ray Tracing.

Journal of Computer Graphics Techniques (JCGT) 11, 4 (2022), 1–19.
Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J. Doyle, Michael Guthe, and Jiří Bittner. 2021. A Survey on

Bounding Volume Hierarchies for Ray Tracing. Computer Graphics Forum (Proceedings of Eurographics) 40, 2 (2021).
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662

Daniel Meister, Atsushi Yoshimura, and Chih-Chen Kao. 2023. GPU Programming Primitives for Computer Graphics. In
ACM SIGGRAPH Asia 2023 Courses (SIGGRAPH Asia 2023).

Duane Merrill and Andrew Grimshaw. 2011. High Performance and Scalable Radix Sorting: A case study of implementing
dynamic parallelism for GPU computing. Parallel Processing Letters 21, 2 (2011), 245–272.

Microsoft. 2020. DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
Guy Morton. 1966. A Computer Oriented Geodetic Database and a New Technique in File Sequencing. Technical Report.
Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2: A Retargetable Forward and Inverse

Renderer. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (2019).
Steven Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan

McGuire, Keith Morley, Austin Robison, and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM
Transactions on Graphics 29, 4 (2010), 66:1–66:13.

Arsène Pérard-Gayot, Richard Membarth, Roland Leißa, Sebastian Hack, and Philipp Slusallek. 2019. Rodent: generating
renderers without writing a generator. ACM Transactions Graphics 38, 4 (2019).

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering: From Theory to Implementation (3rd ed.)
(4th ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

André Susano Pinto. 2010. Adaptive Collapsing on Bounding Volume Hierarchies for Ray-Tracing. In Proceedings of
Eurographics (Short Papers).

Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek. 2009. Object Partitioning Considered Harmful: Space
Subdivision for BVHs. In Proceedings of High-Performance Graphics. 15–22.

Martin Stich, Heiko Friedrich, and Andreas Dietrich. 2009. Spatial Splits in Bounding Volume Hierarchies. In Proceedings of
the High-Performance Graphics. 7–13.

K. Vaidyanathan, S. Woop, and C. Benthin. 2019. Wide BVH Traversal with a Short Stack. In Proceedings of High-Performance
Graphics.

Marek Vinkler, Jiří Bittner, and Vlastimil Havran. 2017. Extended Morton Codes for High Performance Bounding Volume
Hierarchy Construction. In Proceedings of High-Performance Graphics.

Ingo Wald, Carsten Benthin, and Philipp Slusallek. 2003. Distributed Interactive Ray Tracing of Dynamic Scenes. In
Proceedings of Symposium on Parallel and Large-Data Visualization and Graphics. 77–86.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

http://raytracinggems.com
https://research.nvidia.com/publication/maximizing-parallelism-construction-bvhs-octrees-and-k-d-trees
https://research.nvidia.com/publication/maximizing-parallelism-construction-bvhs-octrees-and-k-d-trees
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://www.khronos.org/blog/vulkan-ray-tracing-final-specification-release
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html

18 Daniel Meister, Paritosh Kulkarni, Aaryaman Vasishta, and Takahiro Harada

IngoWald, NateMorrical, and Eric Haines. 2024. OWL: ANodeGraph "Wrapper" Library for OptiX 7. https://github.com/owl-
project/owl

Ingo Wald, Sven Woop, Carsten Benthin, Gregory Johnson, and Manfred Ernst. 2014. Embree: A Kernel Framework for
Efficient CPU Ray Tracing. ACM Transactions on Graphics 33 (2014).

Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient Incoherent Ray Traversal on GPUs Through Compressed Wide
BVHs. In Proceedings of High-Performance Graphics. 4:1–4:13.

Shaokun Zheng, Zhiqian Zhou, Xin Chen, Difei Yan, Chuyan Zhang, Yuefeng Geng, Yan Gu, and KunXu. 2022. LuisaRender: A
High-Performance Rendering Framework with Layered and Unified Interfaces on StreamArchitectures. ACM Transactions
on Graphics 41, 6 (2022).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

https://github.com/owl-project/owl
https://github.com/owl-project/owl

	Abstract
	1 Introduction
	2 Related Work
	2.1 Ray Tracing APIs and Renderers
	2.2 Bounding Volume Hierarchy

	3 HIPRT API Overview
	4 HIPRT Implementation
	4.1 BVH Construction
	4.2 Ray Traversal
	4.3 Technical Details

	5 Evaluation
	6 Conclusion and Future Work
	Acknowledgments
	References

