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Fig. 1. Path tracing (10 s) with previous hierarchical light sampling methods (a, b) and our method (c) using one light sample per tree-traversal query

(3840×2160 pixels, AMD Radeon™ RX 7900 XTX GPU). Our light sampling method significantly reduces undesirable noise (i.e., Monte Carlo variance),

especially for glossy highlights at grazing angles, by accounting for the anisotropic scattering characteristics of microfacet BRDFs.

Importance sampling using a light tree (i.e., a hierarchy of light clusters)

has been widely used for many-light rendering. This technique samples a

light source by stochastically traversing the tree according to the importance
of each node. While this importance should be close to the illumination

integral for each node’s light cluster, it is infeasible to compute the exact so-

lution. Therefore, existing methods used a rough approximation (e.g., upper

bound), which results in significant Monte Carlo (MC) variance, especially

for high-frequency microfacet BRDFs at grazing angles. In this paper, we

present a more accurate approximation of the importance based on spherical
Gaussians (SGs). Our method represents a light cluster with an SG light for

each node, and analytically approximates the product integral of the SG

light and a BRDF. Although high-quality SG lighting approximations have

been studied, they could not be used for the node importance due to viola-

tions of an unbiased sampling constraint. To improve the sampling quality

and satisfy the constraint for anisotropic microfacet BRDFs, we introduce a

new high-quality SG lighting approximation by extending an NDF filtering
method that has been used for specular antialiasing. For diffuse surfaces,

we also present a simpler and more accurate SG lighting than the state-of-

the-art SG approximation, satisfying the constraint. Using our method, we
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can efficiently reduce the MC variance for many-light scenes with modern

physically plausible materials.
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1 Introduction

Hardware ray tracing and Monte Carlo (MC) integration are widely

used for photorealistic rendering nowadays. However, for scenes

with many emissive objects, developing an efficient direct illumina-

tion algorithm is still a challenging problem. Since it is infeasible to

trace shadow rays and evaluate contributions for all the lights, we

should sample an important light source efficiently. The ideal light

sampling is according to the product of the incoming radiance from

each light and the bidirectional reflectance distribution function

(BRDF) at a shading point, but the exact solution of this product

importance sampling is also infeasible. In addition, modern physi-

cally plausible materials further complicate the problem due to the

high-frequency and anisotropic scattering characteristics of micro-

facet BRDFs [Cook and Torrance 1982]. In this paper, we tackle this

product importance sampling problem for all-frequency BRDFs.
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Importance sampling using a light tree (i.e., a hierarchy of light

clusters) [Conty and Kulla 2018] is widely used for many-light ren-

dering nowadays. This method samples a light source by stochasti-

cally traversing the tree according to the importance of each node.

By using an importance value close to the illumination integral for

each light cluster, we can approximately perform product impor-

tance sampling. However, previous sampling methods used rough

approximations for the importance, such as using upper bounds,

ignoring BRDFs [Conty and Kulla 2018; Lin and Yuksel 2020; Yuk-

sel 2021], and representing anisotropic reflections with isotropic

lobes [Liu et al. 2019]. Since these approximation errors were partic-

ularly large near the root node, previous methods had to adaptively

split light clusters during tree traversal to reduce the MC variance.

Such adaptive splitting generates multiple light samples per tree-

traversal query, increasing computational cost and implementation

complexity. Efficient splitting is also a challenging problem as stud-

ied in lightcuts-based methods [Huo et al. 2020; Nabata et al. 2016;

Vévoda et al. 2018; Walter et al. 2006, 2005; Wang et al. 2021].

To render high-quality images even with one light sample per

tree-traversal query (Fig. 1), we introduce an accurate importance

approximation based on spherical Gaussians (SGs) [Tsai and Shih

2006]. SGs have often been used to approximate all-frequency il-

lumination integrals [Wang et al. 2009; Xu et al. 2013]. However,

existing accurate SG lighting approximations cannot be used for

light-tree-based hierarchical importance sampling because they can

violate the constraint of unbiased importance sampling. These SG

approximations can produce zero (or negative) importance due to

approximation error, and thus the probability distribution of sam-

ples cannot cover the integral domain. To use SGs for hierarchical

importance sampling, this paper introduces new high-quality SG

lighting approximations that satisfy the constraint.

Our SG lighting for anisotropic microfacet BRDFs is based on

a filtering method for a microfacet normal distribution function

(NDF) [Kaplanyan et al. 2016]. While this NDF filtering was devel-

oped for specular antialiasing, we extend the filtering method for

SG lighting. Our method increases the roughness parameter while

preserving the NDF model to approximate the SG lighting integral.

Therefore, we can obtain accurate importance, especially for NDFs

with longer tails than the SG, such as the GGX NDF [Trowbridge

and Reitz 1975; Walter et al. 2007]. In this paper, we also present a

new approximation for the product integral of an SG and a clamped

cosine for diffuse SG lighting, which is simpler and more accurate

than the state-of-the-art approximations [Meder and Brüderlin 2018;

Tokuyoshi 2022] and satisfies the unbiased sampling constraint. By

using our SG lighting methods for the importance of each node, we

can approximately perform product importance sampling with less

error than the previous importance approximations.

Our contributions are as follows.

• We propose a light sampling method using an SG light tree

whose nodes have SG lighting-based importance (§ 3). Our

light cluster representation in each node is more compact

than the previous representation [Conty and Kulla 2018].

• To improve the importance approximation and avoid a bias

for diffuse BRDFs, we introduce a simpler and more accu-

rate approximation than the state-of-the-art method for the

product integral of an SG and the clamped cosine term (§ 4).

• For anisotropicmicrofacet BRDFs, we introduce a high-quality

and numerically stable SG lighting approximation based on

NDF filtering, while avoiding a bias for importance sampling

(§ 5). This glossy SG lighting is the main contribution to

improve the sampling quality.

• We demonstrate the efficiency of our method for one light

sample per tree-traversal query in experimental results (§ 6).

2 Background

2.1 Related Work

Many-Light Rendering. Rendering using a light tree has been stud-
ied in many-light methods [Dachsbacher et al. 2014] for direct illu-

mination and indirect illumination using virtual point lights [Keller

1997]. One such method referred to as lightcuts [Walter et al. 2006,

2005] hierarchically splits light clusters based on an estimated error

bound [Huo et al. 2020; Nabata et al. 2016] or adaptive cluster-

ing [Vévoda et al. 2018; Wang et al. 2021], and then uses a represen-

tative light in each found cluster. Conty and Kulla [2018] developed

a practical importance sampling method using a light tree, taking

multiple importance sampling (MIS) [Veach and Guibas 1995] into

account for next event estimation in path tracing. Yuksel [2021]

and Lin [2020] avoided the correlation of MC variance in lightcuts

by stochastically sampling representative lights as in Conty and

Kulla [2018]. The effectiveness of the light-tree-based importance

sampling was demonstrated by Moreau et al. [2019] for real-time

rendering. Another many-light sampling method orthogonal to light

trees is spatiotemporal reservoir resampling (ReSTIR) [Bitterli et al.

2020] that reuses candidate samples from spatiotemporal neighbors.

Although ReSTIR massively increases the number of candidates for

resampled importance sampling [Lin et al. 2022; Talbot 2005], its

variance is proportional to the initial candidate sampling technique.

To reduce the ReSTIR variance, hierarchical light sampling can be

used for initial candidate generation. In this paper, we improve the

hierarchical light sampling by using SGs and NDF filtering.

Spherical Gaussians (SGs). SGs based on the von Mises–Fisher

(vMF) distribution [1953] are often used to approximate the il-

lumination integral for environment maps [Tsai and Shih 2006],

light maps [Currius et al. 2020; Neubelt and Pettineo 2015], area

lights [Wang et al. 2009], and virtual lights [Tokuyoshi 2015; Xu

et al. 2014]. This is because they have closed-form solutions for the

integral, product, and product integral, which are fundamental oper-

ations to evaluate illumination integrals. Xu et al. [2013] introduced

anisotropic SGs (ASGs) based on the Bingham distribution [1974]

and approximated the product and integral for ASGs. For microfacet

BRDFs under SG lights, they approximated the reflection lobe with

an ASG to convolve it with an SG light. However, the ASG under-

states its lower hemisphere to zero. It also produces undesirable

distortion and underestimation for the ASG reflection lobe (Fig. 6a).

Huang et al. [2024] introduced normalized ASGs for neural path

guiding, but the product integral to approximate illumination was

not presented. For diffuse surfaces, Pettineo and Hill [2016] fitted the

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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irradiance from an SG light. However, it produced a noticeable neg-

ative error in corner cases. Meder and Brüderlin [2018] introduced

a more robust approximation than the fitted irradiance by using

the hemispherical integral of an SG. The quality and performance

of their method were then improved by Tokuyoshi [2022], but the

diffuse SG lighting could still produce a small negative value due to

the approximation error. These underestimation errors introduce a

bias in importance sampling using SG approximations.

NDF Filtering. Parametric NDFs, such as the GGX and Beck-

mann [1963] distributions, are widely used for microfacet BRDFs in

the computer graphics industry. Filtering of such NDFs was intro-

duced for specular antialiasing [Hill and Baker 2012; Kaplanyan et al.

2016; Tokuyoshi and Kaplanyan 2021]. This NDF filtering increases

the roughness parameter by approximately convolving the NDF

with a pixel footprint in halfvector space. We extend this filtering

method for SG lighting by projecting an SG light to halfvector space.

There was little work on empirically increasing the roughness to

approximate area lighting [Karis 2013], which ignored the transfor-

mation between halfvectors and light directions. Our method takes

the transformation into account by deriving its Jacobian matrix.

2.2 Importance Sampling Using a Light Tree

Our method is built upon an importance sampling method using

a light tree [Conty and Kulla 2018]. This tree-based method clus-

ters lights hierarchically and stores a light cluster in each node

during preprocessing. To sample a light, the method traverses the

light tree by stochastically selecting a child node in a 1D manner

of hierarchical sample warping [Clarberg et al. 2005; McCool and

Harwood 1997]. For a binary tree, the probability of selecting a left

child is 𝐼
left

/(𝐼
left

+ 𝐼
right

), where 𝐼
left

∈ [0,∞) and 𝐼
right

∈ [0,∞)
are the importance of the left and right child nodes, respectively. To

reduce the MC variance, this importance should be approximately

proportional to the integral of illumination from the light cluster:

𝐼 ∝∼
∫

S
2

𝐿(x, o) 𝑓 (i, o) |o · n|do.

For notations used in this paper, please see Table 1. For unbiased

rendering, this importance must satisfy the following constraint:

𝐼 > 0 if

∫
S

2

𝐿(x, o) 𝑓 (i, o) |o · n|do > 0. (1)

Therefore, an efficient approximation that satisfies this constraint is

the key to improving the hierarchical light sampling.

Conty and Kulla [2018] approximated the BRDF with the Lambert

model, and used the upper bounds of cosine terms by representing

the light cluster using an axis-aligned bounding box (AABB) and

bounding cones. They also approximated the distance attenuation

from the light cluster by the inverse square distance between the

shading point and the center of the AABB. Although their approxi-

mation satisfies Eq. 1, it produces an enormous error for shading

points near the AABB center. Lin and Yuksel [2020] mitigated the

distance attenuation error by using the minimum and maximum

distances from the shading point to the AABB. However, they still

overstated their importance by using the directional bound. To

reduce the variance due to the importance error, these previous

methods generated multiple samples per tree-traversal query using

Table 1. Notations used in this paper

Symbol Description

𝐼 ∈ [0,∞) Importance of a light cluster

x ∈ R3
Shading point

n ∈ S
2

Surface normal

i ∈ S
2

View direction

o ∈ S
2

Light direction

h ∈ S
2

Halfvector between i and o
[𝑖𝑥 , 𝑖𝑦, 𝑖𝑧 ] ∈ S

2
Tangent-space view direction

[ℎ𝑥 , ℎ𝑦, ℎ𝑧 ]∈ S
2

Tangent-space halfvector

𝐿 (x, o) ∈ [0,∞) Incoming radiance from the light cluster

𝑓 (i, o) ∈ [0,∞) BRDF

𝑔 (o; 𝛏, 𝜅 ) ∈ [0,∞) Spherical Gaussian (SG), 𝑔 (o; 𝛏, 𝜅 ) = e
𝜅 (o·𝛏)−𝜅

𝛍 ∈ R3
Spatial mean of a light cluster

𝜎2 ∈ [0,∞) Spatial variance of a light cluster

𝛎 ∈ S
2

vMF axis of a light cluster

𝜆 ∈ [0,∞) vMF sharpness of a light cluster

𝑊 ∈ [0,∞) Amplitude of an SG light viewed from x
𝛏 ∈ S

2
Axis of an SG light viewed from x

𝜅 ∈ [0,∞) Sharpness of an SG light viewed from x
𝐷 (h; A) ∈ [0,∞) Microfacet normal distribution function (NDF)

[𝛼𝑥 , 𝛼𝑦 ] ∈ (0, 1]2
Axis-aligned roughness parameter for the NDF

A 2×2 roughness matrix, A =

[
𝛼2

𝑥 0

0 𝛼2

𝑦

]
Ā 2×2 filtered roughness matrix

𝐻 (o · n) ∈ {0, 1} Heaviside function: 1 if o · n > 0 and 0 otherwise

adaptive tree splitting [Conty and Kulla 2018] or lightcuts. For high-

frequency isotropic microfacet BRDFs, Liu et al. [2019] represented

the light cluster with a sphere light, and then approximated the

illumination integral for the sphere light by using a spherical pivot

transformed distribution (SPTD) [Dupuy et al. 2017]. Since the SPTD

cannot represent an anisotropic reflection lobe created by the micro-

facet BRDF at grazing angles, their method can underestimate the

importance even for isotropic BRDFs. Therefore, Liu et al. combined

their technique with Conty and Kulla [2018]’s technique using MIS.

This combination is robust, but it increases the computational cost.

To reduce the MC variance even with one light sample per query,

we introduce a more accurate importance approximation than the

previous methods, while considering anisotropic microfacet BRDFs.

3 Spherical Gaussian (SG) Light Tree

3.1 SG Light Clusters

In this paper, we propose an SG light tree to improve the importance

approximation for each node. To represent the distribution of a light

cluster in each node, we follow virtual SG lights [Tokuyoshi 2015],

which are more compact than bounding boxes and cones [Conty and

Kulla 2018]. It approximates the distribution of light positions by an

isotropic Gaussian (i.e., mean 𝛍 and variance 𝜎2
) and the directional

distribution of radiant intensity by a vMF (i.e., normalized SG with

axis 𝛎 and sharpness 𝜆) for each cluster (Fig. 2). In our method, this

approximation is done during the construction of the light tree. We

first build a binary tree of light primitives in an existing manner (e.g.,

surface area orientation heuristic, SAOH [Conty and Kulla 2018]).

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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Gaussian

vMF

(a) Our light cluster representation

SG light

light cluster

Gaussian

vMF

(b) SG light given by the cluster

Fig. 2. Our light cluster representation in each node. The spatial and di-

rectional distributions in a light cluster are represented by a Gaussian and

a vMF, respectively. The product of the two distributions viewed from a

shading point gives incoming radiance from the light cluster as an SG light.

Then, similar to mipmapping of virtual SG lights, we calculate the

light distribution parameters as well as the bounding sphere of the

cluster in each node in a bottom-up fashion.

3.1.1 vMF Distribution for Radiant Intensity. We use Banerjee et

al.’s method [2005] to approximate the directional distribution of

radiant intensity with a vMF. For this approximation in each node,

we compute the weighted average of the radiation directions of

lights as follows:

�̄� = 𝑤
left

�̄�
left

+𝑤
right

�̄�
right

, (2)

where𝑤
left

= Φ
left

/(Φ
left

+Φ
right

) and𝑤
right

= Φ
right

/(Φ
left

+Φ
right

)
are weights, Φ

left
∈ [0,∞) and Φ

right
∈ [0,∞) are radiant flux, and

�̄�
left

∈ [−1, 1]3
and �̄�

right
∈ [−1, 1]3

are the average directions for

left and right child nodes, respectively. Then, we convert the average

direction �̄� to vMF axis 𝛎 and sharpness 𝜆 as follows:

𝛎 =
�̄�

∥�̄�∥ , 𝜆 =
3∥�̄�∥ − ∥�̄�∥3

1 − ∥�̄�∥2
. (3)

For an area light source in each leaf node, we use �̄� ≈ 0.5n to roughly

fit the vMF to Lambert’s cosine.

3.1.2 Spatial Mean and Variance for Light Positions. In each node,

we compute the spatial mean of light positions by the weighted

average of light positions weighted by radiant flux as follows:

𝛍 = 𝑤
left

𝛍
left

+𝑤
right

𝛍
right

, (4)

where 𝛍
left

∈ R3
and 𝛍

right
∈ R3

are the spatial mean of light

positions for left and right child nodes, respectively. For a triangle

light in each leaf node, the spatial mean within the triangle is simply

given by �̄� = (p0 + p1 + p2)/3 where p0, p1, and p2 are vertex

positions of the triangle. The spatial variance is computed using the

same weights as follows:

𝜎2

𝑠 = 𝑤
left

𝜎2

𝑠,left
+𝑤

right
𝜎2

𝑠,right
+𝑤

left
𝑤

right
∥𝛍

left
− 𝛍

right
∥2, (5)

where 𝜎2

𝑠,left
∈ [0,∞) and 𝜎2

𝑠,right
∈ [0,∞) are the spatial variance

of light positions for left and right child nodes, respectively. For

a triangle light in each leaf node, the spatial variance is given by

𝜎2

𝑠 =
(
∥e1∥2 + ∥e2∥2 − (e1 · e2)

)
/18, where e1 = p1 − p0 and e2 =

p2 − p0.

Although we can use 𝜎2 = 𝜎2

𝑠 , we also provide another option:

𝜎2 = 0.5𝑟2
where 𝑟 ∈ [0,∞) is the bounding sphere radius. This

bound-based variance is of lower quality than 𝜎2

𝑠 in most cases,

but conservative for outliers. In our experiments, we use a hybrid

approach:𝜎2 = 𝜎2

𝑠 (1−𝑐)+0.5𝑟2𝑐 where 𝑐 = max(n·(x−𝛍)/∥x−𝛍∥, 0).
For details, please refer to the supplementary document.

3.2 Importance Based on SG Lighting

During the tree traversal for light sampling, we approximate the

incoming radiance 𝐿(x, o) from the light cluster by the product of

the two distributions in the light direction space. This product yields

an SG as follows:

𝐿(x, o) ≈
Φ𝑔 (o;−𝛎, 𝜆) 𝑔

(
o;

𝛍−x
∥𝛍−x∥ ,

∥𝛍−x∥2

𝜎2

)
2𝜋𝜎2

∫
S

2
𝑔 (𝛚;−𝛎, 𝜆) d𝛚

=𝑊𝑔 (o; 𝛏, 𝜅) ,

where Φ ∈ [0,∞) is the radiant flux of the light cluster. The SG light

parameters𝑊 , 𝛏, and 𝜅 are obtained analytically, and a numerically

robust implementation is available as open source [Tokuyoshi 2024]

(please refer to the supplementary document for details). With this

SG light, our importance for each node is given by

𝐼 ∝∼
∫

S
2

𝐿(x, o) 𝑓 (i, o) |o·n|do ≈𝑊

∫
S

2

𝑔 (o; 𝛏, 𝜅) 𝑓 (i, o) |o·n|do. (6)

Compared to the previous bound-based importance, this SG-based

importance avoids the singularity at the cluster center that causes

the enormous distance attenuation error, and more accurately takes

into account the light distributionwithin the cluster. To compute this

importance analytically while satisfying the constraint of unbiased

sampling (Eq. 1), we introduce novel SG lighting approximations.

4 Interpolation-based Diffuse SG Lighting

In this paper, we approximate the diffuse BRDF by the Lambert

model 𝑓 (i, o) ∝∼ 𝐻 (o · n)/𝜋 , and represent the SG lighting by the

product integral of an SG and the clamped cosine term. For this

product integral, we introduce a simpler and more accurate approx-

imation than previous methods, while satisfying Eq. 1.

Our approximation is derived in a similar manner to the hemi-

spherical integral of an SG [Meder and Brüderlin 2018; Tokuyoshi

2022] that is approximated by an interpolation between the upper

hemispherical integral and the lower hemispherical integral. For

diffuse SG lighting, we interpolate the cosine-weighted hemispheri-

cal integrals. If the SG axis is 𝛏 = ±n, the product integral of the SG
and the clamped cosine has the following closed-form solutions:

�̂�(𝜅) =
∫

S
2

𝑔(o; n, 𝜅) max(o · n, 0)do =
2𝜋 (e−𝜅 − 1 + 𝜅)

𝜅2
,

�̌�(𝜅) =
∫

S
2

𝑔(o;−n, 𝜅) max(o · n, 0)do =
2𝜋e

−𝜅 (1 − e
−𝜅 − 𝜅e

−𝜅 )
𝜅2

.

The product integral of an SGwith an arbitrary axis and the clamped

cosine monotonically increases between �̌�(𝜅) and �̂�(𝜅). Therefore,
we represent the product integral by interpolating them:

𝐼 ∝∼
𝑊

𝜋

∫
S

2

𝑔(o; 𝛏, 𝜅) max(o · n, 0)do =
𝑊

𝜋

(
�̂�(𝜅)𝑢 + �̌�(𝜅) (1 − 𝑢)

)
,

(7)

where the interpolation factor 𝑢 ∈ [0, 1] is the normalized product

integral. In this paper, we approximate this 𝑢 as follows:

𝑢 =

∫
S

2
𝑔(o; 𝛏, 𝜅) max(o · n, 0)do − �̌�(𝜅)

�̂�(𝜅) − �̌�(𝜅)
≈ 𝑞(𝛏 · n, 𝜅) − 𝑞(−1, 𝜅)

𝑞(1, 𝜅) − 𝑞(−1, 𝜅) ,

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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(a) Root mean square error (RMSE) (b) Maximum absolute error

Fig. 3. Plots of RMSEs (a) and maximum errors (b) for the product integral

of a normalized SG and the clamped cosine. Errors at different SG axes are

aggregated for each SG sharpness 𝜅 . Our method produces smaller errors

than the state-of-the-art approximation [Tokuyoshi 2022].

𝜅 = 10 𝜅 = 100 𝜅 = 1000
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Fig. 4. Plots of signed errors for the product integral of a normalized SG

and the clamped cosine. Unlike the previous method (blue line), our approx-

imation (orange line) reduces the error around 𝛏 · n = 1 for large 𝜅 .

where 𝑞(𝛏 · n, 𝜅) ≈
∫
S

2
𝑔(o; 𝛏, 𝜅) max(o · n, 0)do is monotonically

increasing for 𝛏 · n. Since �̂�(𝜅) > 0 and �̌�(𝜅) > 0, the interpola-

tion form (Eq. 7) satisfies Eq. 1 even approximating 𝑢. In addition,

the approximation error for 𝑢 approaches zero for 𝛏 · n → ±1.

Therefore, we introduce an approximate product integral 𝑞(𝛏 · n, 𝜅)
considering the accuracy around 𝛏 · n = 0. For 𝜅 → ∞, the SG

asymptotically approaches a Gaussian on a plane, therefore we ap-

proximate the product integral using an analytical convolution of

the planar Gaussian and the clamped cosine. To reduce the approxi-

mation error around 𝛏 · n = 0, we use a plane parallel to the surface

normal n as follows:

𝑞 (𝛏 · n, 𝜅) =
∬
R2

e
−𝑡 (𝜅 )2 (𝑥2+(𝑦−(𝛏·n) )2)

max(𝑦, 0)d𝑥d𝑦

∝ 𝑡 (𝜅) (𝛏 · n)erfc (−𝑡 (𝜅) (𝛏 · n)) + e
−𝑡 (𝜅 )2 (𝛏·n)2

√
𝜋

,

where 𝑡 (𝜅) ∈ [0,∞) is the inverse standard deviation ×
√

0.5 for

the planar Gaussian. For this 𝑡 (𝜅), we use a fitted approximation:

𝑡 (𝜅) ≈ 𝜅

√︃
0.5𝜅2+2.7360833𝜅+17.021297

𝜅3+4.0100827𝜅2+15.219156𝜅+76.087896
. In the supplemental

material, we provide a numerically stable implementation for our

SG lighting as well as previous SG lighting methods.

For the product integral of an SG and the clamped cosine, our

approximation computes only one interpolation, whereas the previ-

ous approximations [Meder and Brüderlin 2018; Tokuyoshi 2022]

computed an SG product and two interpolations. Thus, the imple-

mentation of our method is simpler than the previous methods. On

an AMD Radeon™ RX 7900 XTX GPU, our method is 1.4 times faster

than the state-of-the-art method [Tokuyoshi 2022] thanks to the

simplicity. In addition, it also significantly improves the accuracy,

as shown in Figs. 3 and 4.

5 NDF Filtering for Glossy SG Lighting

In this section, we introduce an NDF filtering method for SG lighting.

While the original NDF filtering projected a pixel footprint into

halfvector space for specular antialiasing, our method projects an

SG light into halfvector space to analytically compute the lighting

integral. Fig. 5 illustrates the previous SG lighting [Xu et al. 2013]

and our SG lighting for anisotropic microfacet BRDFs. The previous

SG lighting approximated the reflection lobe with an anisotropic SG

(ASG) and violated Eq. 1. On the other hand, we preserve the original

NDF model while approximately convolving the NDF with the SG

light in halfvector space. Our NDF filtering increases the roughness

parameter by convolving the NDF with an SG light. Therefore, it

reduces the approximation error for NDF models with longer tails

than the SG (e.g., the GGX NDF). For such NDFs, the previous ASG

approximation can underestimate the tail to zero or nearly zero as

shown in Fig. 6a, and thus it can cause a significant MC error for

importance sampling. In addition, the ASG approximation distorts

anisotropic reflection lobes inappropriately. Since our NDF filtering

does not introduce such lobe distortion and underestimation for

tails (Fig. 6b), it is suitable for approximating the importance.

5.1 NDF Filtering

Our filtering method is built upon stable NDF filtering [Tokuyoshi

and Kaplanyan 2021] on an orthographically projected halfvector

space [ℎ𝑥 , ℎ𝑦]. For this filtering, we first represent the NDFwith a bi-
variate Gaussian on the [ℎ𝑥 , ℎ𝑦] space:𝐷 (h; A) ∝∼ e

− 1

2
[ℎ𝑥 ,ℎ𝑦 ]Σ−1

𝐷
[ℎ𝑥 ,ℎ𝑦 ]⊤

where Σ𝐷 is the 2×2 covariance matrix. For slope-space elliptical

NDFs such as the GGX and Beckmann NDFs, this covariance matrix

was derived by Tokuyoshi and Kaplanyan [2021] as follows:

Σ𝐷 ≈ 1

2

(
A−1 − E

)−1

, (8)

where E is the 2×2 identity matrix. Next, we project the SG light to

halfvector space [ℎ𝑥 , ℎ𝑦]. The variance of the SG light is given by

the reciprocal sharpness 1/𝜅 . We project this variance to halfvector

space using the following transformation:

Σ𝐿 = J
[
1/𝜅 0

0 1/𝜅

]
J⊤ =

1

𝜅
JJ⊤, (9)

where J is the 2 × 2 Jacobian matrix for the transformation between

halfvectors and light directions. We derived this Jacobian matrix

for arbitrary reflection and refraction vectors in the supplementary

document. Then, we approximately filter the NDF by Gaussian

convolution, which simply sums the covariance matrices:

Σ̄𝐷 ≈ Σ𝐷 + Σ𝐿 = Σ𝐷 + 1

𝜅
JJ⊤ .

Although we can use the Jacobian matrix J at the SG light axis o = 𝛏,

we use J at the NDF peak h = n assuming highly specular surfaces for

computational simplicity. In this case,Σ𝐷 and JJ⊤ are independent of

lights and are constant during the light tree traversal. After filtering

the NDF, we convert the covariance matrix to roughness using the

inverse transformation of Eq. 8:

Ā ≈
(
(2Σ̄𝐷 )−1 + E

)−1

.
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SG light

Slope-space NDF

ASG
ASG

ASGzero

ASG approximation
for the NDF ASG reflection lobe

Convolution

(a) Previous SG lighting with an ASG approximation [Xu et al. 2013]

Convolution

Halfvector space 

Filtered NDF

Filtered reflection lobe

SG light

Slope-space NDF Slope-space NDF

NDF

SG light

(b) Our SG lighting with NDF filtering

Fig. 5. SG lighting for anisotropic microfacet BRDFs. (a) The previous SG lighting first approximates the NDF with an ASG, and projects it to the reflection

vector space to approximate the anisotropic reflection lobe with an ASG. Then, it convolves the ASG reflection lobe with an SG light. Instead of approximating

the reflection lobe with an ASG, which violates Eq. 1, (b) our method projects the SG light to halfvector space and convolves the NDF with the projected light.

𝜅 = 50 𝜅 = 400

𝛼𝑥 = 0.1 𝛼𝑥 = 0.2
𝛼𝑦 = 0.1 𝛼𝑦 = 0.01

(a) ASG convolution

𝜅 = 50 𝜅 = 400

𝛼𝑥 = 0.1 𝛼𝑥 = 0.2
𝛼𝑦 = 0.1 𝛼𝑦 = 0.01

(b) Our NDF filtering

𝜅 = 50 𝜅 = 400

𝛼𝑥 = 0.1 𝛼𝑥 = 0.2
𝛼𝑦 = 0.1 𝛼𝑦 = 0.01

(c) Reference

Fig. 6. Visualization of convolved GGX reflection lobes projected onto the

tangent plane. (a) ASG convolution [Xu et al. 2013] distorts the anisotropic

reflection lobe inappropriately. In addition, the ASG approximation yields

zero in the lower hemisphere of the lobe (red area), and thus violates Eq. 1.

It also produces zero in the blue area due to a floating point error. (b) Our

NDF filtering does not produce such undesirable zero and is closer to the

reference (c) than the ASG convolution for anisotropic NDFs.

With this NDF filtering, we approximate the following convolution:∫
S

2

𝐷 (h; A) 𝑔 (o; 𝛏, 𝜅) do ∝∼ 𝐷

(
i + 𝛏

∥i + 𝛏∥ ; Ā
)
. (10)

We use this convolution for the SG lighting integral. For NDFs

generalized by the roughness matrix [Heitz 2014], please refer to

the supplementary document. The approximation error of Eq. 10

approaches zero for 𝜅 → ∞. Therefore, our method reduces the

error for sharp SG lights unlike the ASG approximation.

5.2 Lighting Approximation with the Filtered NDF

Although we use NDF filtering instead of the ASG approximation

that violates Eq. 1, the filtered BRDF lobe can still violate the con-

straint because themicrofacet model has several Heaviside functions.

Therefore, we further approximate the reflection lobe using a visible

normal distribution function (VNDF) [Heitz 2014] without Heavi-

side functions (i.e., a VNDF for symmetric microflakes [Heitz et al.

2015]). This VNDF-based reflection lobe 𝑝 (o; i,A) is given by

𝑝 (o; i,A) = 𝐷 (m; A) |i · m|∫
S

2
𝐷 (𝛚; A) |i · 𝛚|d𝛚

 𝜕m
𝜕o

 ,
where the halfvector is flipped by m = sgn(h · n)h for symme-

try, ∥𝜕m/𝜕o∥ = 1/(4|i · m|) is the Jacobian for the transformation

between halfvectors and reflection vectors, and the normalization

factor is

∫
S

2
𝐷 (𝛚; A) |i ·𝛚|d𝛚 =

√︃
[𝑖𝑥 , 𝑖𝑦]A[𝑖𝑥 , 𝑖𝑦]⊤ + 𝑖2𝑧 for the GGX

NDF (for the Beckmann NDF, please refer to the supplementary

document). Using this VNDF, we approximate the reflection lobe by

𝑓 (i, o) |o · n| ∝∼ 𝐻 (o · n)𝑝 (o; i,A) , (11)

where 𝐻 (o · n) is the visibility of the reflection lobe in the upper

hemisphere. In this paper, we ignore Heaviside functions other than

this visibility. By substituting Eq. 11 into Eq. 6, we get

𝐼 ∝∼𝑊𝑉

∫
S

2
𝑝 (o; i,A) 𝑔 (o; 𝛏, 𝜅) do∫

S
2
𝑔 (o; 𝛏, 𝜅) do

∫
S

2

𝑔 (o; 𝛏, 𝜅) do,

where 𝑉 =

∫
S
2
𝐻 (o·n)𝑝 (o;i,A)𝑔 (o;𝛏,𝜅 )do∫

S
2
𝑝 (o;i,A)𝑔 (o;𝛏,𝜅 )do

is the filtered visibility. By

using NDF filtering (Eq. 10) for 𝑝 (o; i,A) ∝ 𝐷 (m; A), we obtain∫
S

2
𝑝 (o; i,A)𝑔 (o; 𝛏, 𝜅) do∫

S
2
𝑔 (o; 𝛏, 𝜅) do

≈ 𝑝
(
𝛏; i, Ā

)
.

This yields the following SG lighting approximation:

𝐼 ∝∼𝑊𝑉𝑝
(
𝛏; i, Ā

) ∫
S

2

𝑔 (o; 𝛏, 𝜅) do . (12)

By using Eq. 12 for the importance of each light tree node, we

improve the light sampling quality for microfacet BRDFs.

Filtered Visibility. The filtered visibility 𝑉 ∈ [0, 1] could be com-

puted using SSDFs [Wang et al. 2009] by approximating the filter

kernel 𝑝 (o; i,A)𝑔 (o; 𝛏, 𝜅) with an SG as follows:

𝑉 =

∫
S

2
𝐻 (o · n)𝑝 (o; i,A)𝑔 (o; 𝛏, 𝜅) do∫

S
2
𝑝 (o; i,A)𝑔 (o; 𝛏, 𝜅) do

≈
∫
S

2
𝐻 (o · n)𝑔(o;

´
𝛏, �́�)do∫

S
2
𝑔(o;

´
𝛏, �́�)do

.

To compute the rightmost without violating Eq. 1, we use a more

accurate hemispherical integral [Tokuyoshi 2022] than SSDFs. In ad-

dition, unlikeWang et al. [2009], we filter the visibility using a lower-

frequency SG kernel than the original anisotropic kernel to conser-

vatively reduce the MC variance. To obtain this lower-frequency

kernel, we approximate the reflection lobe with an SG as follows:

𝑝 (o; i,A)𝑔(o; 𝛏, 𝜅) ∝∼ 𝑔(o; 𝛏𝑝 , 𝜅𝑝 )𝑔(o; 𝛏, 𝜅) ∝ 𝑔(o;
´
𝛏, �́�), where the

lobe variance 1/𝜅𝑝 is equal to or greater than the maximum eigen-

value of the reflection lobe covariance matrix J−1Σ𝐷 (J−1)⊤. We

get this lobe variance by substituting the maximum roughness

max(𝛼𝑥 , 𝛼𝑦) into J−1Σ𝐷 (J−1)⊤. At the perfect specular reflection
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Table 2. Computation time for cluster parameter calculation on the CPU.

Hangarship Museum Toyshop Bistro

Conty and Kulla [2018] 0.73 ms 2.14 ms 20.1 ms 2.49 ms

Our SG light tree 0.49 ms 1.59 ms 13.5 ms 1.75 ms

vector 𝛏𝑝 = 2(i·n)n−i, we obtain𝜅𝑝 = (1−max(𝛼2

𝑥 , 𝛼
2

𝑦))/(2 max(𝛼2

𝑥 , 𝛼
2

𝑦)).
For implementation details, please refer to the supplementary code.

6 Experimental Results

Here we show the rendering results of hierarchical light sampling

using different importance approximations with one light sam-

ple per tree-traversal query. We compare our method with Conty

and Kulla [2018]’s importance (CK2018), Conty and Kulla’s impor-

tance with Lin and Yuksel [2020]’s distance attenuation heuristic

(CK2018+LY2020), and Liu et al. [2019]’s MIS (LXY2019). All ma-

terials are Autodesk Standard Surface [Georgiev et al. 2019], and

images are rendered at 3840×2160 pixels using HIPRT [Meister et al.

2024] performed on an AMD Radeon™ RX 7900 XTX GPU. For a

fair comparison, we build light trees using a high-quality sweep

SAOH [Conty and Kulla 2018] in preprocessing to maximize the

efficiency of the previous methods. For the SAOH construction time

which is common to all the methods, please see the supplemen-

tary document. The image quality is evaluated with the root mean

square percentage error (RMSPE) and mean absolute percentage

error (MAPE) metrics.

Implementation. In this experiment, we use a weighted average

of our diffuse importance (Eq. 7) and glossy importance (Eq. 12)

weighted by the reflectance of each BRDF lobe. We use the diffuse

importance for diffuse and sheen layers in Standard Surface. For

two glossy layers in Standard Surface, we merge the two lobes into

a single lobe by weighted averaging the roughness matrix A of each

layer to reduce computational cost. Thus, this experiment uses a

simple diffuse-glossy importance model for multi-lobe BRDFs. For

our SG light tree, we store 𝛎, 𝜆, 𝛍, 𝜎2

𝑠 , 𝑟 , and Φ in each node with-

out data compression (i.e., 10 floating point values). This cluster

representation is more compact than the previous cluster represen-

tation [Conty and Kulla 2018] (12 floating point values). Although

we may be able to further reduce the data size by quantizing the

cluster parameters, this optimization is left for future work. We

calculate the cluster parameters on an AMD Ryzen™ 9 7950X CPU

without parallelization. Even with this naïve implementation, the

computation time (Table 2) is negligibly small and faster than the

previous method thanks to the simplicity of Eqs. 2, 3, 4, and 5.

Direct Illumination. Fig. 7 shows the equal-time comparison for

direct illumination using hierarchical light sampling. While our

method has a smaller number of path samples per pixel (spp) than

CK2018+LY2020 due to computational overhead, it produces lower

error than the previous methods, especially for glossy reflections

at grazing angles. Fig. 8 shows plots of error convergence for each

scene. Although our method reduces the error, there are still large

oscillations due to firefly noise for RMSPE. For error convergence,

please see MAPEs, which are less sensitive to such outliers.

Table 3. Computation time for direct illumination (3840×2160 pixels, 1 spp).

CK2018 CK2018+LY2020 LXY2019 Ours

Hangarship 16.2 ms 16.7 ms 47.6 ms 23.1 ms

Museum 19.7 ms 20.5 ms 59.5 ms 29.7 ms

Toyshop 21.5 ms 22.0 ms 65.6 ms 29.9 ms

Bistro 22.6 ms 23.4 ms 62.9 ms 34.2 ms

Table 4. Computation time for path tracing (3840×2160 pixels, 1 spp).

CK2018 CK2018+LY2020 LXY2019 Ours

Hangarship 99 ms 101 ms 219 ms 120 ms

Museum 124 ms 131 ms 306 ms 160 ms

Toyshop 123 ms 126 ms 309 ms 149 ms

Bistro 124 ms 126 ms 250 ms 159 ms

Path Tracing. In path tracing, noise on glossy surfaces can be

reduced by combining with BRDF sampling usingMIS. Fig. 10 shows

the equal-time comparison for this practical scenario. Even using

MIS, our method produces less error than the previous methods for

glossy surfaces. For the Bistro scene where diffuse surfaces are

dominant, our method is comparable to CK2018+LY2020 in RMSPE,

while our method slightly outperforms it in MAPE. Fig. 11 shows

plots of error convergence for each scene. Unlike direct illumination

without BRDF sampling, there are fewer oscillations in RMSPE. For

glossy scenes, our method improves the convergence speed in both

RMSPE and MAPE, even though our light cluster representation

is more compact than the previous methods. In the supplementary

document, we show additional experimental results for other scenes.

Anisotropy. Fig. 9 shows path tracingwithMIS for a highly anisotropic

microfacet BRDF. In this scene, CK2018 and CK2018+LY2020 pro-

duce noticeable noise because thesemethods ignore BRDFs. LXY2019

takes glossy BRDFs into account, but it is still inefficient for such

anisotropic materials due to the isotropic approximation. Unlike

these previous methods, our importance approximation accurately

represents anisotropic scattering effects thanks to NDF filtering. As

a result, our method efficiently reduces noise on glossy highlights,

especially for highly anisotropic microfacet BRDFs.

Performance. Tables 3 and 4 show the rendering times per path

sample for direct illumination and path tracing, respectively. Our

method has an overhead to calculate SG lighting using mathematical

functions (e.g., exp function) for each BRDF lobe. Therefore, it is

more expensive than ignoring BRDFs (CK2018+LY2020). On the

other hand, our method is faster than Liu et al.’s MIS (LXY2019)

which performs two different tree traversals. Our method reduces

the MC variance by using only one tree traversal. Thus, our method

improves the cost-effectiveness and convergence speed. For the

computation times of sampling routines only, please refer to the

supplementary document.

7 Limitations

Light Cluster Representation. Although our light cluster can rep-

resent all-frequency incoming radiance, it is an isotropic single

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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CK2018 CK2018+LY2020 LXY2019 Ours Reference

Hangarship (1.23 M triangles, 4,775 triangle lights) RMSPE: 216.5%, MAPE: 35.2% RMSPE: 89.1%, MAPE: 32.2% RMSPE: 482.3%, MAPE: 29.6% RMSPE: 65.9%, MAPE: 20.9%

(303 spp) (294 spp) (102 spp) (213 spp)

Museum (3.65 M triangles, 16,940 triangle lights) RMSPE: 55.1%, MAPE: 25.6% RMSPE: 45.2%, MAPE: 23.0% RMSPE: 26.5%, MAPE: 25.1% RMSPE: 18.5%, MAPE: 20.1%

(246 spp) (237 spp) (82 spp) (170 spp)

Toyshop (5.21 M triangles, 167,493 triangle lights) RMSPE: 64.9%, MAPE: 26.2% RMSPE: 30.8%, MAPE: 25.4% RMSPE: 29.9%, MAPE: 27.3% RMSPE: 20.7%, MAPE: 18.8%

(233 spp) (217 spp) (75 spp) (167 spp)

Fig. 7. Equal-time (5 s) comparison of our method and previous methods for direct illumination. BRDF sampling is not used in this experiment. The previous

methods produce noticeable Monte Carlo noise on glossy surfaces, especially for highlights at grazing angles. Our method significantly reduces this noise.

Hangarship Museum Toyshop

10%

100%

1000%

0.5 s 5 s 50 s 500 s
1%

10%

100%

0.5 s 5 s 50 s 500 s
2%

20%

200%

0.5 s 5 s 50 s 500 s
1%

10%

100%

0.5 s 5 s 50 s 500 s
2%

20%

200%

0.5 s 5 s 50 s 500 s
1%

10%

100%

0.5 s 5 s 50 s 500 s

CK2018

CK2018+LY2020

LXY2019

Ours

RMSPE MAPE RMSPE MAPE RMSPE MAPE

Fig. 8. Plots of RMSPE and MAPE for Fig. 7 (i.e., direct illumination without BRDF sampling). The oscillations in RMSPEs are due to firefly noise on glossy

surfaces. The error convergence is visible in the MAPE metric, which is less sensitive to fireflies. Our method improves the convergence speed in MAPE.

CK2018 (94 spp) CK2018+LY2020 (92 spp) LXY2019 (42 spp) Ours (72 spp) Reference

RMSPE: 32.1%, MAPE: 26.9% RMSPE: 32.2%, MAPE: 26.6% RMSPE: 33.2%, MAPE: 26.5% RMSPE: 22.6%, MAPE: 20.4%

Fig. 9. Equal-time (10 s) comparison of path tracing for an anisotropic glossy sphere placed in the Bistro scene. Highlights are stretched and curved by the

anisotropic microfacet BRDF. CK2018 and +LY2020 produce noticeable noise in the highlights because these methods ignore BRDFs. Even with LXY2019, it is

still inefficient for this scene due to the isotropic approximation. On the other hand, our method significantly reduces the noise for these anisotropic highlights.
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CK2018 CK2018+LY2020 LXY2019 Ours Reference

Hangarship (1.23 M triangles, 4,775 triangle lights) RMSPE: 16.5%, MAPE: 41.0% RMSPE: 16.2%, MAPE: 40.1% RMSPE: 19.2%, MAPE: 41.9% RMSPE: 13.9%, MAPE: 31.9%

(103 spp) (100 spp) (47 spp) (84 spp)

Museum (3.65 M triangles, 16,940 triangle lights) RMSPE: 37.6%, MAPE: 31.0% RMSPE: 35.6%, MAPE: 30.0% RMSPE: 38.4%, MAPE: 32.1% RMSPE: 31.1%, MAPE: 28.9%

(81 spp) (77 spp) (33 spp) (62 spp)

Bistro (2.83 M triangles, 20,638 triangle lights) RMSPE: 23.7%, MAPE: 26.7% RMSPE: 22.5%, MAPE: 25.7% RMSPE: 26.4%, MAPE: 27.3% RMSPE: 22.0%, MAPE: 24.0%

(82 spp) (80 spp) (39 spp) (63 spp)

Fig. 10. Equal-time (10 s) comparison of our method and previous methods for path tracing with MIS. MIS improves the sampling quality on glossy surfaces,

especially for CK2018 and CK2018+LY2020. Even with MIS, our method is more efficient than the previous methods for the Hangarship and Museum scenes.

In the Bistro scene, our method produces a quality comparable to CK2018+LY2020 on diffuse surfaces, while reducing noise on moderately glossy surfaces, as

shown in the closeups.

Hangarship Museum Toyshop Bistro

R
M
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100%

1 s 10 s 100 s 1000 s
1%
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Fig. 11. Plots of RMSPE (upper row) and MAPE (lower row) for Figs. 1 and 10 (i.e., path tracing with MIS). The oscillations for the Bistro scene are due to

firefly noise for caustics. Our method improves the error convergence speed for glossy scenes even using MIS with BRDF sampling. For the diffuse-dominant

scene (Bistro), while our convergence speed is comparable to CK2018+LY2020 in RMSPE, it is slightly faster than the previous methods in MAPE.
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lobe. It cannot represent complex multi-lobe incoming radiance and

anisotropic distribution of lights (e.g., narrow light primitives).

Shadow Ray Visibility. While our method approximates the prod-

uct of the incoming radiance and the BRDF for the importance, it

ignores the shadow ray visibility as in previous work. Therefore,

the method does not reduce the MC variance for shadows.

Computational Overhead. Our importance approximation has

computational overhead to calculate SG lighting. In our current

implementation, this SG lighting uses expensive mathematical func-

tions and also increases register pressure. There is room for im-

provement to reduce the overhead by using simpler and faster im-

plementations of mathematical functions.

Multi-lobe BRDFs. The computational cost of SG lighting is pro-

portional to the number of BRDF lobes. To reduce the cost in our

experiments, we merged two glossy lobes of Standard Surface into

a single lobe. This approximation is lightweight, but the approx-

imation error may not be negligible if the roughness parameters

between the two glossy lobes are significantly different. In such

cases, SG lighting should be calculated for every BRDF lobe.

8 Discussion and Future Work

Generalized Spherical Warping. Our covariance transformation

(Eq. 9) is a generalized form of the previous spherical warping be-

tween an NDF and a reflection lobe [Wang et al. 2009; Xu et al. 2013].

Xu et al. [2013]’s Hessian matrix for the warped ASG convolution is

equivalent to (J−1Σ̄𝐷 (J−1)⊤)−1 = (J−1Σ𝐷 (J−1)⊤+ 1

𝜅 E)−1
using the

Jacobian matrix J at the perfect specular reflection vector. Unlike the

previous work, we derived J at an arbitrary light direction. Therefore,
we can use a more accurate reflection lobe axis [Lagarde 2014] than

the previous warping. Our method can also support transmission

by using the Jacobian matrix J at a refraction vector. In the future,

we would like to investigate the improvement of the reflection lobe

axis and the efficiency of SG lighting for transmission.

High-frequency Radiant Intensity. Our SG light tree takes into

account all-frequency radiant intensity. Therefore, it may be more

suitable for lights with high-frequency directional distribution, such

as spotlights and IES lights, than the previous bound-based light

tree. Quality evaluation for such lights is also left for future work.

Point Lights. Although MIS with BRDF sampling has typically

been used for glossy surfaces under area lights, BRDF sampling

cannot sample point lights. Therefore, our method can be effective

for such lights. We would like to evaluate the efficiency for glossy

scenes with point (or extremely small) lights in the future.

Bidirectional Path Tracing (BDPT). Our light sampling method can

also be used for path connections in light vertex cache BDPT [Davi-

dovič et al. 2014]. Since our method takes glossy BRDFs into account,

it can improve the quality of glossy-to-glossy and specular-diffuse-

glossy paths, which are often problematic in BDPT. To build a tree

for light vertices generated in each iteration of BDPT, we should

use a fast tree construction method [Apetrei 2014] instead of the

high-quality SAOH construction. In the future, we would like to

extend our method for BDPT by using a fast tree construction.

9 Conclusions

We have presented a hierarchical product importance sampling

method for many lights based on novel SG lighting approximations.

Unlike previous high-quality SG lighting approximations, our SG

lighting satisfies the unbiased sampling constraint while improving

the approximation quality. For anisotropic microfacet BRDFs, we

extended an NDF filtering method for SG lighting. Thanks to this

NDF filtering, our light sampling method significantly reduces the

MC variance for glossy highlights, especially at grazing angles.

Although our method has an overhead to calculate SG lighting for

each BRDF lobe, experimental results show that it is cost-effective

for high-frequency or anisotropic BRDFs, even when combined

with BRDF sampling using MIS. By using our importance, we can

now render high-quality images without complex algorithms to

generate multiple light samples per tree-traversal query. We have

demonstrated the efficiency of using one light sample per query in

the experimental results.

While we have presented accurate SG lighting for diffuse BRDFs

and anisotropic microfacet BRDFs, we roughly represent a light

cluster in each node by an isotropic distribution. Therefore, there is

room for improvement in the cluster representation. For future work,

we would like to extend the cluster representation to an anisotropic

distribution to further reduce the approximation error.
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