
Introduction to GPU Radix Sort

Takahiro Harada
Advanced Micro Devices, Inc.

Lee Howes
Advanced Micro Devices, Inc.

1 Radix Sort

Radix sort is one of the fastest sorting algorithms. It is fast espe-
cially for a large problem size. Radix sort is not a comparison sort
but a counting sort. When we sort n bit keys, 2n counters are pre-
pared for each number. Let me explain how radix sort works by
showing a simple example sorting 2 bits. Here is the input for the
sort.

(0, 3, 2, 2, 3, 2, 0, 3, 2, 1)

In order to sort them, an offset table for each number is calculated.
It first counts the occurrences of each number. Counts are

(c0, c1, c2, c3) = (2, 1, 4, 3)

Taking the prefix sum of the counts transforms it to an offset table.

(o0, o1, o2, o3) = (0, 2, 3, 7)

The prefix sum is the sum of all values in preceding locations in the
sequence: in this case those to the left of the current location. In the
case of the radix sort this means that the prefix sum computes the
total count of all values less than the current value. For example,
the prefix sum of location, and hence value, 2 is o2 = 3. This
means there are 3 entries for 0s and 1s in the sequence. Thus, 3 is
the destination address of the first 2 in the data set. The destination
address of an element is the sum of the offset computed via the
prefix sum and the index of the value in the set of the same value
in the original array: the second 2 in the array would be at location
3 + 1. The elements are shuffled by calculating the destination
address to get a sorted array.

(0, 0, 1, 2, 2, 2, 2, 3, 3, 3)

This is the case for 2 bit numbers. When we sort larger numbers,
the table size can be huge. For example, when 32 bit numbers are
sorted, 232 entries are necessary for the table. In order to avoid
using such a large table, sorting is performed by chunking the num-
bers into smaller units and applying the sorting algorithm several
times. If n bits are sorted at once we have a radix 2n sort and 32/n
passes are necessary to complete the sort. It might seem at first
that sorting the keys chunk-by-chunk ignores the result of previous
passes. However, the sort is stable, which means that any two val-
ues that are viewed as the same by a given stage of the sort will be
output in unchanged order. If we are sorting bits 0-4 or two dif-
ferent 32-bit integers and only bit 6 differs then the two values are
seen as the same and the order will not change. By sorting from the
least significant bits to the most significant bits the stability of the
algorithm as a whole is maintained.

To summarize the algorithm, each pass over the data (and each new
chunk to sort) requires three steps:

1. Count

2. Prefix scan

3. Reorder

Figure 1: Parallel radix sort using four threads.

2 Parallel Radix Sort

When four threads are used for a radix sort, the input buffer is split
into four sections, each of which is assigned to one of the threads.
At first, each thread counts the occurrence of each value of the sub-
key in its section. In order to find the destination address of a key in
a section it only needs that value, but to find the destination address
of a key in the global data set it needs not only the count in its sec-
tion but also the corresponding values from the other sections. Let
cnm be the number of instances of value n in section m, the offset
onm of value n in section m is

onm =
∑

i=0,i<n

∑
j=0,j<4

cij +
∑

j=0,j<m

cnj . (1)

If the count values are placed in a one-dimensional array in column
major layout then Eqn. 1 translates to a computation of the prefix
sum over the array. Then the thread works again for the assigned
section to reorder it in the output buffer. Fig. 1 is an illustration of
a parallel radix sort using four threads.

3 Implementation on the GPU

Because of the wide vector architecture of the GPU (64 wide SIMD
on AMD GPUs), utilizing all the SIMD lanes is important. We
use OpenCL’s terminology for the following explanation. A work
group is the unit of work processed by a SIMD engine and a work
item is the unit of work processed by a single SIMD lane (some-
times confusingly termed a “core” by manufacturers). The earlier
explanation of the algorithm assumed that it was using a single lane
of a SIMD unit, or a single CPU core ignoring its vector instruc-
tions. Unfortunately, if a program is written to execute a single
work item in each work group it is highly inefficient because it uses
only one lane of the SIMD unit. On an AMD GPU whose SIMD
width is 64, it is using only 1/64 of the ALUs. Executing the num-
ber of work items equal to the SIMD width is necessary to fully
utilize the wide SIMD architecture. Thus we need another level of
parallelization in a work group1.

The basic strategy is the same as that described in Sec. 2. It takes
3 steps to complete a pass. Each step performed by a kernel is de-
tailed in the following subsections. In order to use all of the SIMD

1In theory the same approach could be mapped to CPU SIMD units but
the lack of scatter/gather operations in current CPUs makes this difficult.



Figure 2: The effective bandwidth on AMD Radeon HD5780 (The-
oretical peak bandwidth is 153.6GB/s).

engines (each corresponding to cores on the CPU), the input buffer
is split into sections and a work group is created for each section.
In the following discussion we describe how to split a work group
into work items to exploit the wide SIMD architecture.

Another point we have to keep in mind is the number of work
groups to execute. On a four core CPU without in-core multithread-
ing executing more than four threads would oversubscribe the sys-
tem, requiring the operating system to consume resources switch-
ing between threads. In the radix sort, one drawback of executing
more threads than necessary is that it creates more offset table data.
When sorting a large number of keys this means that more mem-
ory is consumed and the inter-thread communication phase of the
computation takes significantly longer. Thus executing the mini-
mum number of threads on the CPU is the better. The same applies
to the GPU but as GPU devices employ in-core multithreading to
hide latency (multiple wavefronts are scheduled concurrently on a
given SIMD engine) the number is somewhat higher than the num-
ber of cores: usually a factor of 4 to 8. We empirically deicide
the number of work groups we need to execute. Fig. 2 shows the
memory bandwidth and number of work items executed on AMD
Radeon HD5870. You can see it can saturate memory read before
executing 10K work items. The size of a section to be processed
by a work group is calculated from work group size and number of
work groups we executes.

There are several works on radix sort on the GPU[Satish et al.
2009][Ha et al. 2009]. Our implementation is based on Merrill et.
al.[Merrill and Grimshaw 2010].

3.1 Count

The input is an array of keys and the output is a table of counts of
each value in the input. A straightforward implementation is to use
a work item to read a key from the global memory and increment
the counter value of the key on the global memory using an atomic
increment operation. Then the memory read window is moved and
the process repeated until all keys are consumed. However, it is not
efficient because global atomics are expensive compared with other
operations.

An obvious optimization is to move the count table into the local
data share (LDS) or OpenCL local memory in order to reduce the
cost of the atomic operations. We can push it further by preparing
a count table for each work item such that multiple work items do
not try to access to the same memory locations. After processing all
the elements we will have n count tables where n is the number of
work items executed. As each count table is a table for a subsection

Figure 3: Parallel scan algorithm.

of the input, the count table for the entire input is the summation of
the individual tables. We use a work item to sum up all the count
value of the tables and write it to the global memory.

3.2 Scan

As the number of work groups executed is small, single work group
is used to calculate the prefix sum. If the number of items to be
scanned is smaller than the vector length, a simple parallel scan
(Hillis and Steele) is the fastest as it does not require any work item
synchronization although it is not the most work efficient approach.
In the case where the scan size is bigger than the SIMD width, we
can use an in-lane scan and propagation before and after the vector
scan as shown in Fig. 3.

3.3 Reorder

The last step is to write the data back to the appropriate location in
global memory. In order to coalesce the memory writes as much as
possible the keys are sorted in the LDS. During the sorting the ker-
nel performs scattered writes into LDS, but this memory is designed
for efficient random access. Global memory hosted in DRAM is far
less suited to scattered writes than LDS. Once the data is sorted, the
destination address of value n is calculated by

di = i− lon + onm (2)

where i is the local index, lon is the local offset, and onm is the
global offset of the value n processed by work group m.

For sorting in a work group the radix sort algorithm is used as it
is the most efficient sort given a perfect memory system. There
are two options for the method to sort n bits: use a 1 bit sort n
times, or to use an n bit sort once. Each approach has pros and
cons. An advantage of the former option is that it needs 1 counter
but it has to repeat it n times. The rank of an element is efficiently
calculated by using the vector wide scan as described above when
the counter value is 0 or 1. However, because of the serial nature
of radix sort, each pass (1 bit sort and data exchange) has to be
processed in the order of the bits. A drawback of the latter is that
it requires 2n counters but an advantage is that the scan of each
counter is independent so they can be scanned in parallel. If the
total number of inputs is less than 256, the counter value does not
exceed 256, which means the counter can be encoded with an 8
bit value. We can pack 4 counters in a 32 bit value and still scan



Figure 4: The reordering step. It illustrates two steps of a local
sort and a write. A SIMD engine reads 256 keys and sorts locally
and write them back to memory.

only once. When a 2 bit radix sort is used, the former requires 2
scans and 2 data exchanges while the latter does 1 scan (4 scans
are packed into one) and 1 data exchange. So it is obvious that the
latter approach is the better if the cost of packing and unpacking of
the data is ignored. Thus for our implementation we used the latter
implementation for the local sort.

Because the maximum value of the counter is 256 to enable use of
the word packing we need to restrict the number of elements we
try to accumulate. We can restrict the size of the work group and
the number of elements each work item processes to achieve this
restriction. We set the work group size, or the number of work
items in each work group, to 64. This size is equal to the vector
length of AMD’s GPUs. Each work item reads and processes 4
elements from global memory, encodes to 8 bit packed format, and
adds them together. The sum is stored in LDS and the vector wide
scan is performed once. The scanned value is the local offset of the
4 elements and is used to calculate the local offset of each element.

The input data is shuffled using the local offsets and output at the
destination address. As we used 4 bits per pass this process is re-
peated twice to sort 8 bits. In this way, it sorts and writes 256 ele-
ments at a time and this process is repeated until all the elements in
the section are reordered. Because it does not sort the entire input
dataset at once, we have to keep track of the number of elements in
each radix stored to the global memory. It is achieved by counting
the occurrence for each radix again for each set of 256 elements and
accumulating it in LDS. Fig. 4 illustrates the reordering step.

4 Performance

The sorting kernel was implemented using OpenCL and Direct-
Compute. Performance of the sort measured on a PC with Phe-
nom IIX6110T CPU and AMD Radeon HD5870 and AMD Radeon
HD6970 is shown in Fig. 5. They reach 520MKeys/s when the size
of the input is large enough.

References

HA, L., KRUGER, J., AND T.SILVA, C. 2009. Fast 4-way parallel
radix sorting on gpus. Computer Graphics Forum, 28, 2368–
2378.

MERRILL, D., AND GRIMSHAW, A. 2010. Revisiting sorting for
gpgpu stream architectures. Online, February, 1–17.

SATISH, N., HARRIS, M., AND GARLAND, M. 2009. Design-
ing efficient sorting algorithms for manycore gpus. In Pro-
ceedings of the 2009 IEEE International Symposium on Paral-

Figure 5: The radix sort performance on AMD Radeon HD5870
and HD6970 using OpenCL and DirectCompute.

lel&Distributed Processing, IEEE Computer Society, Washing-
ton, DC, USA, 1–10.


