
Real-Time Procedural Generation with GPUWork Graphs
BASTIAN KUTH, Coburg University, Germany
MAX OBERBERGER, AMD, Germany
CARSTEN FABER, Coburg University, Germany
DOMINIK BAUMEISTER, AMD, Germany
MATTHÄUS CHAJDAS, AMD, Germany
QUIRIN MEYER, Coburg University, Germany

(a) Without our system (b) With our system

Fig. 1. Our GPU-only work-graphs system uses 37 nodes to augment an existing scene (a) in real-time. All
new elements in (b) are generated by our system each frame, including the marketplace, the ivy on the walls,
paths, and the grass.

We present a system for real-time procedural generation that makes use of the novel GPU programming model,
work graphs. The nodes of a work graph are shaders, which dynamically generate new workloads for connected
nodes. This greatly simplifies the implementation of recursive procedural algorithms on GPUs. Combined with
GPU ray tracing and procedural mesh shaders, our system makes use of this graph structure to tackle various
common problems of procedural generation. Our system is very easy to implement, requiring no additional
data structures from what would already be available in a modern rendering engine. We demonstrate the
real-time editing capabilities on representative examples. We augment the scene in the teaser image with
79,710 instances in 3.74 ms on an AMD Radeon RX 7900 XTX.

CCS Concepts: • Computing methodologies→Mesh models; Massively parallel algorithms.

Additional Key Words and Phrases: work graphs, geometry generation, ray tracing, mesh shaders

ACM Reference Format:
Bastian Kuth, Max Oberberger, Carsten Faber, Dominik Baumeister, Matthäus Chajdas, and Quirin Meyer.
2024. Real-Time Procedural Generation with GPU Work Graphs. Proc. ACM Comput. Graph. Interact. Tech. 7, 3
(July 2024), 16 pages. https://doi.org/10.1145/3675376

Corresponding author: Bastian Kuth, Coburg University, Germany.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in Proceedings of the ACM on Computer Graphics and Interactive Techniques, https:
//doi.org/10.1145/3675376.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0001-9473-8847
HTTPS://ORCID.ORG/0000-0001-9648-3171
HTTPS://ORCID.ORG/0009-0008-2879-3969
HTTPS://ORCID.ORG/0009-0006-4346-8334
HTTPS://ORCID.ORG/0000-0003-4689-2932
HTTPS://ORCID.ORG/0000-0001-7073-442X
https://doi.org/10.1145/3675376
https://orcid.org/0000-0001-9473-8847
https://doi.org/10.1145/3675376
https://doi.org/10.1145/3675376


2 Kuth et al.

1 INTRODUCTION
Creating highly detailed virtual worlds manually is a labor-intensive task. Procedural design
tools like Blender [Blender Online Community 2024] or Houdini [Side Effects Software Inc. 2023]
accelerate this process. The generated geometry, however, is typically baked to a polygonal format.
While this allows for simple game-engine integration, it comes with multiple disadvantages:

• Data Duplication: For rendering, all baked data has to be stored on disk, loaded by the CPU, and
streamed to the GPU.
• Tool Disparity: Scenes in the design tools usually look and behave differently than in the game-
engine. Hence, artists must reiterate through, often several, tools during design.
• Scene Staticity: The baked data is static and does not allow for the end user to modify a scene.
Baked geometry can only react in a superficial way to dynamic user input, e.g., by disappearing
when in the way of a user-placed object.

Therefore, the generation process is migrating into game engines [Epic Games 2024]. Since most
algorithms are CPU-based, data duplication remains unsolved. Moreover, many techniques are
too slow to run every frame. This prevents real-time interaction, degrades artist productivity, and
even misses out on optimization opportunities, like creating only content relevant for the next
frame. Many graphics problems are accelerated by GPU implementations, unfortunately, generation
algorithms fail to map well to current GPU programming models.

Recently, GPU work graphs expose a newly introduced programming model for real-time graph-
ics [Microsoft Cooperation 2024]. It enables GPU workloads, thus shader invocations, to generate
and launch other GPU workloads. Work graphs improve GPU programmability by enabling multi-
level work amplification with dynamic workloads. To our knowledge, we present the first GPU
work-graphs-based procedural generation and rendering system that creates various geometry
types in real-time. Thereby, we make the following contributions:

• We provide a work-graphs overview, as we are not aware of any scientific publication using them.
• We show that GPU ray tracing is a powerful and convenient tool to achieve dependent generation.
• We utilize mesh shaders for procedural mesh generation.
• We provide an algorithm for work graphs to achieve instancing.
• With a recursive work-graph node, we dynamically generate ivy on existing geometry.
• With work graphs, we solve the straight skeleton of a polygon problem to generate a marketplace.
• We utilize our system to generate frustum-culled ground clutter, such as grass, flowers, and insects.

Our system generates geometry in real-time, is extensible, and easy to implement.

2 RELATEDWORK
Following Direct3D12’s conventions, we call a GPU program shader. It is executed using threads
clustered to thread groups. A wave subdivides a thread group into typically 32 threads that run on a
single instruction, multiple data (SIMD) unit in lockstep. Wave intrinsics are instructions for fast
communication within a wave, group shared memory is used to communicate between waves.

Work graphs tackle the problem of GPU dynamic work creation and processing. It enables many
graphics applications like ray tracing [Parker et al. 2010], REYES rendering [Steinberger et al.
2014a], geometry generation [Steinberger et al. 2014b], vector graphics [Dokter et al. 2019], rasteri-
zation [Patney et al. 2015], and implicit surface rendering [Jazar and Kry 2023].

One way to motivate dynamic work creation for GPU real-time rendering is work amplification.
For example, an object outside the view frustum should be culled. If the object is visible, a single
GPU thread amplifies to a much larger number of threads to further process the object. A second
reason for dynamic work creation is to avoid thread divergence. Execution performance of threads

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 3

in the same SIMD unit degrades when they take different branches in the control flow. A work
creation system may cluster new work items of the same branch to run on the same SIMD unit.

Persistent threads [Aila and Laine 2009] pioneered dynamic GPU work processing. Later, Tzeng
et al. [2010] add dynamic work creation, Softshell [Steinberger et al. 2012] supports multiple task
types, and Whippletree [Steinberger et al. 2014a] introduces several optimizations. Orr et al. [2014]
demonstrate an abstraction on data-parallel hardware where algorithms are modeled with flow
graphs [Gaster and Howes 2012]. However, a reliable and efficient implementation requires deep
understanding about GPU hardware, scheduling, memory management [Winter et al. 2021], and
data-parallel queues [Kenzel et al. 2023; Kerbl et al. 2018, 2017; Scogland and Feng 2015]. CUDA
Graph API allows to better schedule dependent kernel launches from the CPU. CUDA Dynamic
Parallelism (CDP) enables a GPU thread to launch a full thread grid [NVIDIA 2024]. Unlike work
graphs, this makes the developer responsible for fine work scheduling. Therefore, CDPmay perform
poorly on small grids [Kerbl et al. 2022] and is only supported by one vendor.

In practice, indirect execution is a fairly common technique for dynamic work creation due to its
widespread support. With indirect execution, the CPU still controls which kind of work is executed
in what order, but the amount of work is defined by parameters in GPU memory. Therefore, work
amplification splits into two isolated stages: In the creation stage, GPU threads create a new work
item by incrementing a counter per work-item type with optional parameters stored in a buffer. In
the execution stage, the GPU uses the counter to dispatch as many work items as the creation stage
requested. For frustum culling, the creation stage writes what objects to draw and the execution
stage performs the rendering. The widespread support is shadowed by several limitations:

• Worst Case Memory Allocation. An indirect execution system has to provide enough memory
to hold parameters of all work items that could be created in the creation stage. For frustum
culling, the buffer containing the draw command information needs to be large enough to hold
the parameters for drawing all scene objects that can be visible at the same time.
• Barrier Synchronization. For an indirect execution system to work, there must be a barrier between
the two stages. This stalls the GPU for a brief moment and therefore degrades performance.
• Convoluted Implementation. The implementation of such a system can become convoluted as
soon as the execution stage also creates new work items. Here, a developer must keep track of
all possible execution paths, the worst case memory requirements, and synchronization.

To mitigate the limitations of previous techniques, GPU work graphs were introduced to Di-
rect3D12 [Microsoft Cooperation 2024] and Vulkan [Hector et al. 2023].
Since the topic of procedural geometry generation is vast, we limit the discussion related to the

type of models we generate. Ivy generation falls into the realm of plant generation pioneered by
L-Systems [Prusinkiewicz and Lindenmayer 1990], for which a data-parallel evolver exists [Lipp
et al. 2010]. Shape grammars are another approach to plant generation [Stiny and Gips 1971].
Marvie et al. [2012] propose a GPU system procedurally creating geometry using shape grammars.
Buron et al. [2015] build upon that system to generate ivy. They reach interactive frame-rates with
hardware tessellation and geometry shaders. To generate our market layout, we utilize the straight
skeleton of a polygon [Aichholzer et al. 1996] which is also used as a city parcel generation method
[Vanegas et al. 2012]. In procedural modeling, the skeleton is used for building roofs [Brenner 2000;
Merrell et al. 2010; Müller et al. 2006]. Other use cases include polygon morphing [Barequet and
Yakersberg 2003] or path planning [Oksanen and Visala 2009]. Our market layout is similar to city
planning [Parish and Müller 2001], but see Vanegas et al. [2010] for an overview. Grass modeling
and rendering is a common problem from procedural generation [Boulanger et al. 2009; Fan et al.
2015; Jahrmann and Wimmer 2013]. Papavasiliou [2015] dynamically generates different kinds of
ground clutter on a terrain surface using tessellation and geometry shaders.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



4 Kuth et al.

3 GPUWORK GRAPHS
A work graph [Microsoft Cooperation 2024] is a directed graph with a maximum depth of 32. Its
nodes are compute shaders. Its edges denote which nodes can create work for other nodes. A record
refers to a single entity of work, optionally parameterized with a record struct. A work graph is
entered via entry nodes. Graphic leaf nodes for geometry rasterization are specified, but not yet
available in a public driver. A node is associated with one of three launch modes:
• The broadcasting launch dispatches a 3D grid of thread groups, similar to a compute shader
dispatch. All thread groups receive the same input record. The number of thread groups launched
can optionally be dynamically determined as part of the record, while the thread group size is
static. This launch mode is suitable for massive parallel workloads. Wave intrinsics and group-
shared memory allow for low cost communication between the threads of a work group.
• The thread launch is for workloads that only require a single isolated thread. Thus, there is one
record per thread. For each thread-wise launched node, the GPU scheduler can bundle multiple
records until a sufficient amount is reached, ideally when a full SIMD lane can be occupied or
when no more work items of that type can be produced.
• The coalescing launch extends the thread launch by exposing the number of records provided to a
thread group to the developer. The thread group cooperatively processes the variable number of
input records. However, the work-graphs specification does not guarantee any bundling.

We provide a toy example for generating the Koch snowflake fractal with work graphs:

0 1 2 3

Entry Snowflake
3 line

4
line

struct Line { float2 a, b; };
[Shader("node")]
[NodeLaunch("thread")]
[NodeIsProgramEntry]
void Entry([MaxRecords(3)] NodeOutput<Line> Snowflake) {

ThreadNodeOutputRecords<Line> o =
Snowflake.GetThreadNodeOutputRecords(3);

o.Get(0).a = o.Get(2).b = float2(1., 0.);
o.Get(0).b = o.Get(1).a = float2(-.5, -sqrt(3) * .5);
o.Get(1).b = o.Get(2).a = float2(-.5, +sqrt(3) * .5);
o.OutputComplete();

}

[Shader("node")]
[NodeLaunch("thread")]
[NodeMaxRecursionDepth(3)]
void Snowflake(ThreadNodeInputRecord<Line> record,

[MaxRecords(4)] NodeOutput<Line> Snowflake) {
float2 a = record.Get().a, b = record.Get().b;
bool hasOutput = GetRemainingRecursionLevels() != 0;
ThreadNodeOutputRecords<Line> o =

Snowflake.GetThreadNodeOutputRecords(hasOutput * 4);

if (hasOutput) {
float2 perp = float2(a.y - b.y, b.x - a.x) * sqrt(3) / 6;
o.Get(0).a = a;
o.Get(0).b = o.Get(1).a = lerp(a, b, 1./3.);
o.Get(1).b = o.Get(2).a = lerp(a, b, .5) + perp;
o.Get(2).b = o.Get(3).a = lerp(a, b, 2./3.);
o.Get(3).b = b;

} else { DrawLine(a, b); }
o.OutputComplete();

}

The Entry node outputs three Line records, forming the initial triangle to the recursing Snowflake
node. When visualizing parts of a work graph, we denote the maximum number of output records
at the start of edges and the record struct at the edge center.

4 OUR GENERATION SYSTEM
Our system’s inputs are control parameters. Control parameters consist of anything artists want to
alter during scene design e.g., a point, a line like in our snowflake example, a bounding volume, a
control cage, curve parameters, a threshold value, or a seed for random number generation. Our
system uses the control parameters to dynamically generate geometry for rendering. This is similar
to tessellation, where a parametric surface is dynamically evaluated based on the camera view.
Nodes of a work graph consume these inputs. When a node is launched, it uses the provided

control parameters to create new work records, geometry, or both. Consider the example of a car
generated by a graph: A parent node representing the entire car has a child node for each wheel.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 5

The wheels produce geometry for the rubber tire and in turn, create child nodes that introduce
additional geometric details like nuts or rims. Our system outputs geometry in various ways:

• Draw Instance List. Nodes append draw commands to a draw instance list. A command contains a
predefined index to an asset, i.e., multiple meshes with multiple materials. Instead of a list, we
could also write a scene graph directly from the given hierarchy.
• Ray-tracing Instance List. GPU ray tracing is becoming increasingly more common for lighting.
Therefore, our nodes append to a ray-tracing instance list from which the rendering API create a
top-level acceleration structure (TLAS) of a bounding volume hierarchy (BVH). Furthermore, we
propose using the BVH to adapt our newly generated geometry to preexisting geometry.
• Procedural Mesh. Besides outputting newly arranged predefined assets with draw instance lists,
the system can also output fully procedural geometry made out of vertices and triangles. Mesh
shaders can forward procedural geometry to the rasterization stage directly using graphic leaf
nodes. Until public drivers support graphic leaf nodes, we emulate them with indirect execution.
Alternatively, the system writes a vertex and index buffer to a pre-allocated buffer. This is also
required for generating a bottom-level acceleration structure (BLAS) for procedural meshes.

4.1 Coalesced Instancing with Work Graphs
Instancing is a common technique to improve rendering performance: to reduce state changes and
repeated data fetching when drawing multiple instances of the same geometry, the instances are
bundled together and issued in a single draw call. We contribute two concepts to collect instances
of the same asset coming from different nodes both utilizing the coalescing launch mode.

Per-Asset Coalescing. Per instantiable asset 𝑋 , we create a node CoalesceAsset[𝑋 ] in coalescing
launch mode that bundles draw calls to 𝑋 into an instanced draw call. The node then issues the
combined, instanced draw call to DrawAsset , where 𝑇𝑖 is an instance transformation of 𝑋 :

CoalesceAsset[𝑋 ] DrawAsset

𝑇0 𝑇1 𝑇2

(𝑇0,𝑇1,𝑇2 )
.

DrawAsset is a write to the draw instance list or a graphic leaf node, once available. Note that,
when a GPU scheduler fails to coalesce sufficiently, functionality is not restricted.

Common to all CoalesceAsset[𝑋 ] is their input record type. Node arrays are a work-graphs
feature specifically designed for such situations to improve scheduling and simplify implementation.
For a thread-launch node A , we can save the launch of CoalesceAsset[𝑋 ] : We make use of

the fact that the coalescing launch mode is a super-set of the thread launch mode. Therefore, we
just launch A in coalesced mode and have it issue combined draw records to DrawAsset directly.
All-Asset Coalescing. Instead of one node per asset, we propose a single coalescing node for all

assets. The thread group bundles input draw calls by asset to output one draw call per unique asset.
Depending on the exact use-case, one or the other concept, or a mixture between, are viable. To

simplify our implementation, we utilize a single coalescing node for all assets.

4.2 BVH Markers
To generate geometry on top of existing procedural geometry and to allow for information exchange
between nodes, our system requires a suitable data structure. We propose to utilize a GPU-ray-
tracing BVH for this, which already comes with the graphics API. While this may seem counter-
intuitive, this has two major advantages: First, creating, updating, and accessing the BVH is a

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



6 Kuth et al.

matter of issuing API calls. Therefore, it drastically simplifies the implementation of our system.
Second, hardware is optimized to efficiently handle millions of rays per frame.

Besides visible geometry, the graph can add invisible markers to the BVH. A marker can be any
ray-traceable geometry, but is typically a primitive like a plane, bounding box, or sphere constructed
from a triangle mesh. To make markers invisible for shading, we assign specific instance masking
bit flags which are already part of today’s BVHs. We use this feature to trace a subset of invisible
markers only, a subset of geometry only, or any combination of both.

4.3 Generation Phases
To make use of a newly generated BVH containing procedural geometry and markers, we need to
split the generation into multiple phases. One way to implement this is to dispatch a work graph for
the first phase, and then to wait until it has finished executing. Before launching the graph for the
next phase, the BVH is rebuilt. Frequently rebuilding a BVH is a common requirement for animated
scenes, and thus hardware vendors aim to do this efficiently. Next, a dedicated work graph for the
second phase is dispatched. Note that the work-graphs specification [Microsoft Cooperation 2024]
discusses future features for pausing the execution of a graph and waiting for an event. This is
likely to simplify the implementation of our system.

As an alternative to explicit phases, it is possible to only employ one graph execution and BVH
rebuild per frame, reducing implementation complexity. To distinguish phases, we encode each
phase with a unique phase flag and store them in the BVH instance mask bits. To make this work,
there has to be at least one BVH flag for each generation phase, so that a phase only can hit the
geometry of previous phases. This comes with the restriction that updates of later generation
phases lag one or more frames behind when editing the control parameters. As we found this
update delay to be barely noticeable at real-time frame rates, we use it in our implementation.

5 IVY
For the first example, we use our system to generate ivy on top of existing geometry. This demon-
strates two aspects: node recursion, when the ivy branches into multiple strands, and the use of ray
tracing for procedural generation on top of existing geometry. In cases where the ivy should gener-
ate on top of generated geometry, the respective phase flags have to be used. The ivy generation
nodes place two different assets, one for an ivy stem and one for a leaf.

Branch. In its most simple form, the control parameter of an IvyBranch is defined by a trans-
formation, thus a position ®𝑝 and a rotation. ®𝑝 defines the start of the branch and the rotation
contains the forward vector ®𝑓 denoting the growth direction, as well as the down vector ®𝑑 pointing
towards the surface the ivy is growing on. We launch the IvyBranch in broadcasting mode with

(a) 1 (b) 20 (c) 50

Fig. 2. Ivy Steps. We allow ivy to grow a maximum amount of steps. Thus, (a) shows the initial input
transformations for multiple ivy strands. (b) and (c) show the generation for higher ivy length limits.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 7

a fixed group grid size of (1, 1, 1), i.e., a single thread group. We use its 32 threads of a SIMD unit to
cooperatively shoot multiple rays and use wave intrinsics to find the closest hit. The IvyBranch
runs the following algorithm, where 𝑏 is the length of the stem asset, 𝑟 the distance to the ray hit,
and 𝑠 the maximum user specified distance of the ivy from the surface it grows on:

for 𝑛 times do
Query ray into ®𝑓 with length 𝑏.
if there is a hit at 𝑟 then

Draw the stem asset scaled to a length of 𝑟 .
if 𝑟 > 𝑏

2 then
Add leaves to the stem.

end if
Set the transformation to the hit position.
Set ®𝑑 to the inverted surface normal.
Set ®𝑓 randomly perpendicular to ®𝑑 .

else
Draw the stem and leaves.
Set the transformation to where the ray ended.
Query ray with length 𝑠 in direction ®𝑑 with thread 0,
and into random directions with threads 1..31.
if ®𝑑 was a hit then

Adjust ®𝑑 according to the surface normal.
Randomly mutate ®𝑓 according to the new ®𝑑 .

else if thread 1..31 found new surface then
Bias transformation towards closest hit position.

else
Bias transformation towards gravity vector.

end if
end if
if random event and not branched yet then
Launch child with ®𝑓 rotated clockwise around ®𝑑 .
Rotate own forward counter-clockwise around ®𝑑 .

end if
end for
if random continue event and recursion depth left then

Recurse with current transformation.
end if

We find 𝑛 = 4 a good trade-off: For lower 𝑛, the node needs to launch itself more often and the
work-graph overhead becomes more apparent. For higher 𝑛, the output requires more memory.

Volume. To spawn multiple ivy branches at once, e.g., to cover a large surface with ivy, we
introduce the IvyVolume node as a parent to a recursing IvyBranch node:

IvyVolume IvyBranch

(
®𝑝, ®𝑓 , ®𝑑

)
2 (

®𝑝, ®𝑓 , ®𝑑
)
.

IvyVolume receives an oriented box and a density as a control parameter. In our implementation,
the box only seeds the ivy, but can outgrow it. To find start points for ivy branches, IvyVolume
randomly traces rays inside the box to find surfaces the ivy can grow on. The number of rays is
defined by the size of the bounding box and the density input value. Their direction is defined
by the orientation of the bounding box, e.g., from top to bottom. For all rays that hit a suitable
surface, we launch an IvyBranch . The ivies of Fig. 8d and Fig. 2 were generated by placing a
single IvyVolume .

Extensions. To extend our ivy generation algorithm, we propose the following extensions:
Generation Culling. To only generate ivy when it has a chance to be visible, we require a culling
bounding volume. We suggest to use a bounding sphere for this. The position of the sphere is the
initial position of the branch. To control the growth of the ivy, the user provides a maximum number
of segments the IvyBranch recursion chain is allowed to spawn, see Fig. 2. This determines the
worst-case radius. We use the worse-case radius to implement culling by making each individual
IvyBranch terminate early when its bounding sphere is outside the camera frustum.
Growth Bias. To provide additional artist control, we add a growth bias position to the control
parameters. Here, whenever the algorithm uses random values to adjust its transformation, the
random values get biased towards the desired growth direction.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



8 Kuth et al.

Blocking Material. We flag specific areas and materials in the BVH to prevent ivy from growing
onto them. When GPU ray tracing in the generation hits a surface, it checks for that flag, and the
generation reacts accordingly.

6 MARKETPLACE
To build a marketplace, the Market node launches BoothIsland nodes which surround a Center
node. A booth island gets separated from other islands with paths and consists of multiple booths
with fitting props. The Market node recursively launches itself until the remaining area is filled.
The node graph looks like the following:

Market BoothIsland

Booth GarlandAnchorCenterPath

2
polygon

1
polygon

32
(line, tier) transformation

transformation

32 quad

.

To define the shape of the marketplace, the Market node receives a simple polygon on a terrain
surface as a control parameter. We use a modified version of the straight skeleton [Aichholzer et al.
1996] of the polygon to create the market layout. The skeleton lines define where paths go in
between the booths, as shown in Fig. 3.
A polygon’s straight skeleton gets generated by shrinking all edges parallel to themselves at

constant speed. During the shrinking process, the number of edges of the polygon decreases until
it is fully collapsed. The straight skeleton is then given by the trajectory that the points of the
polygon take while shrinking. We place paths along the straight skeleton. Additional paths are
placed in parallel to the edges of the polygon to separate rings of booth islands. When the polygon
becomes too small for additional rings, we terminate the generation by launching a Center node
that fills the remaining space with a fitting asset like a well. See Fig. 4 for an overview.

Events. During shrinking, the polygon must remain simple. Therefore, our straight skeleton
algorithm handles two events:

(a) (b)

Fig. 3. Market Layout. (a) The straight skeleton of the input polygon (red) defines the market layout. While
shrinking the polygon, rings of booth islands (blue) are placed. When no more ring fits, the recursion
terminates with a market center (green). The areas are separated with paths (gray). (b) From the straight
skeleton layout, we generate the final market with our generation system. For demonstration purposes, the
figure does not use random shrinking values.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 9

Fig. 4. Market Assets. We show a subset of the assets used to generate the marketplace, including the assets
for (left to right) the booth tents, booth fillings, center, path segments, and garlands.

• The edge event occurs when an edge of the polygon degenerates, thus when two points merge
into one. After the merge, the shrinking process continues with the 𝑛 − 1-gon until the three
points of a triangle merge into one.
• The split event occurs when a concave vertex intersects with an opposing edge, thus when the
polygon splits into two. After the split, the two polygons are handled independently from each
other. This is easy to implement, since GPU work graphs support tail-recursion.

Let 𝑡 be the distance the polygon can shrink before the next event occurs. Further, we require a
user-defined path width𝑤 and a minimum and maximum depth 𝑑min and 𝑑max of a booth island.
When 𝑡 ≥ (𝑤 + 𝑑min), we place a ring by launching a Path node per polygon point along the

shrinking trajectory. In between the paths, we launch a BoothIsland node per edge of the polygon.
BoothIsland fills the input area with booth assets. This area is always a quadrilateral, passed as a
record. We compute the quadrilateral from the polygon’s original edge and its shrunk counterpart.
To make the layout appear more chaotic, we randomly vary the amount of shrinkage per point and
ring between𝑤 + 𝑑min and min(𝑡,𝑤 + 𝑑max). Finally, we recursively launch the market node with
the now shrunk polygon.
Otherwise, when 𝑡 < (𝑤 + 𝑑min), thus when one of the two events is too imminent for another

ring to fit, we handle the event instead. Here, we found that simply shrinking the polygon by 𝑡

leaves too much empty space. Instead, we handle the event in a way that fills more of the market
area, without exiting the bounds of the original polygon as shown in Fig. 5.

Market Group Implementation. We launch the market node in broadcasting mode with a fixed
grid size of (1, 1, 1), thus a single thread group. A thread 𝑖 of the group is responsible for the point
𝑖 of the polygon. First, we check for the termination condition of the market recursion, which is
given when the area 𝐴 of the input polygon falls below a threshold and is thus too small for a ring.
As the input polygon usually has less than 32 points, and a SIMD lane on a GPU is typically 32
threads wide, we apply wave intrinsics for the area computation using the shoelace formula:

𝐴← 1
2
WaveActiveSum(𝑥𝑖 · 𝑦𝑖+1 − 𝑥𝑖+1 · 𝑦𝑖 ) ,

where 𝑥𝑖 , 𝑦𝑖 are polygon points, and 𝑖 + 1 wraps around the polygon if at the last point.
Next, when𝐴 is still sufficiently large, the thread checks at what shrinking value 𝑡𝑖 the next event

occurs for this point. For this, each thread checks for a merge event with the counter-clockwise
adjacent point. If the point is concave, the thread additionally checks for a split event with all

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



10 Kuth et al.

(a) (b) (c)

Fig. 5. Market Event Handling. For the edge event, we distinguish between two cases: (a) If both points that
are about to merge are convex, we set the position of the merged point to the mean between the two. (b) If
one of the points is concave, we project it onto the edge leading to the convex point, clipping away the ear of
the polygon. (c) For the split event, we separate the new two polygons with a new edge. The edge starts at
the concave point with the event and ends at the closest position from the point to edge the point collides
with in the event.

opposing edges. Threads then synchronize to determine the earliest event for the whole polygon,
denoted by 𝑡 = min(𝑡0, 𝑡1, ...). Again, we can use a wave intrinsic:

𝑡 ←WaveActiveMin(𝑡𝑖 ) .
Multiple events can occur at the same 𝑡 , e.g., for polygons with symmetry. Therefore, we prioritize
the event from the lowest thread by finding the minimum 𝑖 of all 𝑖 that have an event at 𝑡 using
wave intrinsics. Finally, the threads cooperatively write the required output records.

Paths. The control parameters for the Path node consists of the start- and end-point, a width, a
random seed, and a quality tier. The tier defines the kind of assets placed along the pathway, e.g.,
sandy trail or a paved road. As shown in Fig. 3b, the paths along the rings have a lower tier than
the paths leading to the market center. To handle path intersections and integrate paths placed by
the market with existing paths, we introduce a two phase system: For the first phase, the path node
only places an invisible rectangular ray-tracing marker along its trajectory. For the second phase,
the path node checks for other paths on its trajectory, using GPU ray tracing. For the intersections
shown in Fig. 3b, we place a special asset to improve the look of the intersection. To avoid double
placement, only one of the intersecting Path nodes handles the intersection, e.g., the one with
the higher quality tier and lower instance index. With this concept, more complex intersection
scenarios can be solved, such as bridges over other paths, or smoothing out paths with splines. This
is out of scope of our market example and part of future work. As previously stated, for simplicity
reasons, we perform both phases at once by using the slightly outdated BVH of the previous frame.

Garlands. For additional detail, we place garlands across the market booths, as shown in Fig. 1b.
Again, we employ a two phase system. For the first phase, the GarlandAnchor node places markers
to indicate its location to others. In the second phase, the node shoots multiple rays into its vicinity
to find other anchors. The number of rays is based on the anchor object size so that they cannot
miss an adjacent anchor. When a suitable adjacent anchor is found, an additional ray is launched
between the two anchor points. The ray assures, no geometry collides with the garland. Then,
the GarlandAnchor node with the lower instance index spawns the garland assets. Ray-tracing
markers from different nodes can also interact, e.g., a garland could turn into a clothesline when
the ray-tracing finds a path beneath that is of a low quality tier.

7 GROUND CLUTTER
We utilize our system to generate ground clutter in the camera view frustum. This example shows
procedural mesh shaders, world grid-based frustum culling, and clutter type classification with ray

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 11

ClutterGrid

ClutterTile

MushroomPatch

GrassPatch

Flower

InsectSwarm

1
(gridX, gridY, offset)

64

3 4

2

(a)

grid
X

gridY

offset

(b)

grid
XgridY

offset

(c)

Fig. 6. Clutter Generation Culling. (a) A work graph creates clutter entirely on the GPU. (b) The eight corners
of the view frustum (blue) are projected onto the terrain grid plane (red). The required grid of tile nodes to
be launched is the intersection of the quantized world-axis-aligned bounding box of the projected corners
and the object bounds receiving clutter (green). (c) The individual threads then perform fine grained frustum
culling using the height map information.

tracing. The ClutterGrid node of Fig. 6a launches a grid of thread groups of the ClutterTile node,
which places different kinds of ground clutter. ClutterGrid is dispatched for the whole scene, or
even from other nodes for fine-grained clutter generation in case of multiple isles, for example.
The ClutterGrid node issues a ClutterTile node for all terrain tiles that are potentially within
the view frustum of Fig. 6b. This is done using a broadcasting launch for ClutterTile . We keep the
grid size dynamic by passing it as record together with an offset for one corner of the grid.
A ClutterTile group consists of an (8, 8, 1) grid of threads, where each thread is responsible

for their sub-tile. First, to break up with the regular grid, each thread adds a random offset to its
sub-tile position. Then each thread finds the height to its position by sampling the respective height
map, and a terrain type map specifying whether to place clutter. Next, fine grained culling is done
by each thread individually, as shown in Fig. 6c. Finally, the individual threads, or the entire thread
group, decide which of four assets to place as ground clutter.
In case a sub-tile requires grass clutter, we launch a GrassPatch mesh shader node. We use

the procedural grass mesh shader by Faber et al. [2024]. To avoid grass poking through other low
assets, we adjust the height of the grass patch based on the free space upwards. For this, each
thread placing a grass patch shoots a ray up and chooses the grass patch height accordingly.

Mushrooms are placed depending on how much sun hits the terrain tile on average. To find this
average, all threads of a group trace rays into their positions vicinity: one for where the sun is at 8
am, one for noon, and one for 4 pm. The result of these light rays are then parallely add-reduced
in the thread group. If the thread group is dark enough, up to three threads of the group spawn
a mushroom patch instead of a grass patch. Similar to the grass patch, a mesh shader uses the
parameters of Fig. 7a to create the mushrooms in Fig. 7b.
Flower assets are placed conversely to mushroom patches in light places. They are instanced

from a list of predefined flower assets.
Insects are placed depending on the other conditional placements: Near a generated flower, there

is a chance to additionally spawn a swarm of bees. When the whole thread group decides to launch
grass patch shaders, there is a chance to spawn a swarm of butterflies. As can be seen in Fig. 7c, one
mesh shader group generates and renders an insect swarm. To make the insects move convincingly,
we add temporal Perlin Noise [Perlin 2002] to their positions. The mesh shader does not receive or
load any other external data, except the swarm’s location and a time value.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



12 Kuth et al.

𝑟1

𝑟0

ℎ0
ℎ1ℎ1

Edges: 8

𝑟Stem

ℎStem

(a) mushroom parameters (b) final mushroom patches (c) bees (d) flower

Fig. 7. Stylized Procedural Patches. Parameters for the cap and stem (a) describe the geometry of the
mushrooms. In (b) and (c), one mesh shader group creates one type of clutter patch.

8 RESULTS AND DISCUSSION
On our AMD Radeon RX 7900 XTX test system, we use GPU timers to isolate timing measurements
for generation and rendering. Note that most of our examples on their own do not fully occupy a
GPU, especially because they generate more parallelizable work after running for some time. This
will further speed our system once graphic leaf nodes become available. Then, generation algorithms
can overlap rendering. To evaluate the performance and adaptability of the ivy generation, we
consider different scenarios. Fig. 8 shows that even for an ivy area that covers the majority of
the preexisting geometry, the generation is fast enough for real-time editing. Furthermore, the
figure demonstrates that the generation adapts to different choices of assets: Figs. 8a - 8c show

(a) 216 instances, 0.51 ms (b) 216 instances, 0.47 ms

(c) 284 instances, 0.75 ms (d) 75,058 instances, 4.17 ms

Fig. 8. Ivy Evaluation. From a start point (red spheres), a single branch adapts to (a) no surface to hang on
to, (b) a wall, or (c) a complex surface. (d) A large amount of high-poly branches grow on a detailed surface.
Instances count each leaf and branch object separately; timings are generation only.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 13

(a) 525 instances, 0.20 ms (b) 1,230 instances, 0.21 ms(c) 1,624 instances, 0.23 ms(d) 10,145 instances, 0.43ms

Fig. 9. Market Evaluation for Different Polygons. We measure the number of generated object instances, as
well as the generation time.

(a) height clipping (b) bright environment

(c) dark environment (d) high density

Fig. 10. Clutter Evaluation for Different Scenarios. In (a) some grass patches are obstructed by an object,
causing shorter grass. In (b) and (c) different lighting conditions change the kind of clutter. For (d) our system
places 79,674 grass patches, 3,359 flowers, 1,038 bee swarms, 3 butterfly swarms, and 281 mushroom patches.
The total generation of the draw list takes 0.39 ms.

stylized low-poly assets. In contrast, Fig. 8d uses high-poly ivy assets from Intel Sponza [Meinl
et al. 2022] growing on a complex building from Amazon Lumberyard Bistro [Lumberyard 2017].
For comparison, we implemented a feature-equivalent ivy generation with the still experimental
Unreal Engine PCG system [Epic Games 2024], where generating a similar amount of ivy as Fig 8d
takes over 30 seconds.

Similar to the ivy measurements, we evaluate the market generation for different input polygon
configurations. Fig. 9 starts with a small market and increases the polygon size, as well as the
number of polygon edges. A plausible layout is generated for all inputs. Even for our largest
configuration, where we place over ten-thousand instances of various objects, the generation time
is well below what is required for real-time rendering.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



14 Kuth et al.

View Mode Generation Render Draw Calls

Overview
79,710 / 79,710

Baseline 3.24 ms 27.74 ms 79,710

Coalescing 3.14 ms 0.62 ms 965

Market
20,859 / 24,068

Baseline 2.34 ms 8.06 ms 20,859

Coalescing 2.29 ms 0.51 ms 493

(a) (b)

Fig. 11. Coalescing Benchmarks. We measure the time to generate and render the augmentation of our test
scene. To evaluate our coalescing-based instancing, we measure with and without it. To demonstrate frustum
culling, we render the scene from two perspectives: Nothing can be culled for the overview as shown in (b),
neither for the generation, nor for rendering. Market, see Fig. 1, where the generation of 55,642 objects can be
omitted. Another 3,209 generated objects are culled before rendering.

For the ground clutter in Fig. 10, timings highly depend on the camera placement. Fig. 10a shows
the system adjusting the grass patch height based on the available height. Figs. 10b and 10c show
how light rays influence the generation by spawning mushrooms where it is dark, and flowers in
light areas. Fig. 10d shows that placement with high density is fast enough for real-time rendering.
To evaluate the performance of the coalescing-based instancing, we choose to procedurally

augment a scene with all presented examples. Fig. 11 shows the results. As can be seen, using a
draw-merging coalescing node greatly reduces the number of draw calls and thus the rendering
time. Furthermore, as expected, omitting non-visible generation speeds up the generation stage.

Limitations. Creating geometry directly on the GPU might bear disadvantages: CPU-simulations,
like collision detection, must happen on the GPU or the generated data must be transferred. Further,
as draw-node scheduling is not deterministic, the element order differs every frame for both the
generated draw list and launched mesh nodes. This may cause artifacts when two triangles overlap
and makes frame times less predictable. Currently, the maximum work-graph depth is 32, which
we occasionally reach. For example, we had to reduce the maximum number of market iterations.
Further, there are only eight BVH instance flag bits. This limits our system to eight generation
phases. We suggest to use multiple BVHs for different tasks, but this may degrade performance.
Finally, geometry generated in a mesh shader is not part of any BVH. Thus, our ground clutter
does not use ray-tracing effects.

9 CONCLUSION AND FUTUREWORK
We presented the first system for real-time procedural geometry generation using GPUwork graphs.
Our approach directly maps generation algorithms into a node-graph hierarchy compatible with
work graphs. By utilizing multiple generation phases and GPU ray tracing, we achieve dependent
generation. We demonstrated and evaluated our system on three generation examples.
While this work started exploring the possibilities for work-graph-based real-time generation

on GPUs, more work is needed to fully realize the potential. We anticipate the emergence of
work-graph-based grammars, new work-graph algorithms for planets, terrain, city-layout, building,
and road generation, and recursive higher-order surface evaluations. Once graphics leaf nodes
become available, we want to explore how to build a BLAS from the output.

ACKNOWLEDGMENTS
We thank Niels Fröhling, Pirmin Pfeifer, Marc Stamminger and the reviewers.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.



Real-Time Procedural Generation with GPU Work Graphs 15

REFERENCES
Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. 1996. A novel type of skeleton for polygons.

Springer.
Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray traversal on GPUs. In Proceedings of the conference on

high performance graphics 2009. 145–149.
Gill Barequet and Evgeny Yakersberg. 2003. Morphing between shapes by using their straight skeletons. In Proceedings of

the nineteenth annual symposium on Computational geometry. 378–379.
Blender Online Community. 2024. Blender 4.1 - a 3D modelling and rendering package. http://www.blender.org
Kévin Boulanger, Sumanta N. Pattanaik, and Kadi Bouatouch. 2009. Rendering Grass in Real Time with Dynamic Lighting.

29, 1 (2009), 32–41.
Claus Brenner. 2000. Towards fully automatic generation of city models. International Archives of Photogrammetry and

Remote Sensing 33, B3/1; PART 3 (2000), 84–92.
Cyprien Buron, Jean-Eudes Marvie, Gaël Guennebaud, and Xavier Granier. 2015. Dynamic on-mesh procedural generation.

In Proceedings of Graphics Interface. Canadian Human-Computer Communications Society, 17–24.
Mark Dokter, Jozef Hladky, Mathias Parger, Dieter Schmalstieg, Hans-Peter Seidel, andMarkus Steinberger. 2019. Hierarchical

Rasterization of Curved Primitives for Vector Graphics Rendering on the GPU. Computer Graphics Forum 38, 2 (2019),
93–103.

Epic Games. 2024. Procedural Content Generation Framework. (2024). https://dev.epicgames.com/documentation/en-
us/unreal-engine/procedural-content-generation--framework-in-unreal-engine

Carsten Faber, Max Oberberger, Bastian Kuth, and Quirin Meyer. 2024. Procedural grass rendering. GPUOpen, March (2024).
https://gpuopen.com/learn/mesh%5Fshaders/mesh%5Fshaders-procedural%5Fgrass%5Frendering/

Zengzhi Fan, Hongwei Li, Karl Hillesland, and Bin Sheng. 2015. Simulation and rendering for millions of grass blades. In
Proceedings of the 19th Symposium on Interactive 3D Graphics and Games (San Francisco, California) (i3D ’15). ACM, New
York, NY, USA, 55–60.

Benedict R. Gaster and Lee Howes. 2012. Can GPGPU Programming Be Liberated from the Data-Parallel Bottleneck?
Computer 45, 8 (2012), 42–52.

Tobias Hector, Matthäus Chajdas, Maciej Jesionowski, Robert Martin, Qun Lin, Rex Xu, DominikWitczak, Karthik Srinivasan,
Nicolai Haehnle, and Stuart Smith. 2023. VK_AMDX_shader_enqueue.

Klemens Jahrmann and Michael Wimmer. 2013. Interactive Grass Rendering Using Real-Time Tessellation. In WSCG 2013
Full Paper Proceedings (Plzen, CZ), Manuel Oliveira and Vaclav Skala (Eds.). 114–122.

Kavosh Jazar and Paul G. Kry. 2023. Temporal Set Inversion for Animated Implicits. ACM Trans. Graph. 42, 4, Article 134
(jul 2023), 18 pages.

Michael Kenzel, Stefan Lemme, Richard Membarth, Matthias Kurtenacker, Hugo Devillers, Markus Steinberger, and Philipp
Slusallek. 2023. AnyQ: An Evaluation Framework for Massively-Parallel Queue Algorithms. In 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 736–745.

Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, and Markus Steinberger. 2018. The Broker Queue: A
Fast, Linearizable FIFO Queue for Fine-Granular Work Distribution on the GPU. In Proceedings of the 2018 International
Conference on Supercomputing (Beijing, China) (ICS ’18). ACM, New York, NY, USA, 76–85.

Bernhard Kerbl, Michael Kenzel, Dieter Schmalstieg, Hans-Peter Seidel, and Markus Steinberger. 2017. Hierarchical Bucket
Queuing for Fine-Grained Priority Scheduling on the GPU. Computer Graphics Forum 36, 8 (2017), 232–246.

Bernhard Kerbl, Michael Kenzel, Martin Winter, and Markus Steinberger. 2022. CUDA and Applications to Task-based
Programming. Full-day tutorial, presented at Eurographics ’22 (Reims, France).

Markus Lipp, Peter Wonka, and Michael Wimmer. 2010. Parallel generation of multiple L-systems. Computers & Graphics
34, 5 (2010), 585–593. CAD/GRAPHICS 2009 Extended papers from the 2009 Sketch-Based Interfaces and Modeling
Conference Vision, Modeling & Visualization.

Amazon Lumberyard. 2017. Amazon Lumberyard Bistro, Open Research Content Archive (ORCA). http://developer.nvidia.
com/orca/amazon-lumberyard-bistro

Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice Hirtzlin, and Gaël Sourimant. 2012. GPU Shape Grammars.
Computer Graphics Forum (2012).

Frank Meinl, Katica Putica, Cristiano Siqueria, Timothy Heath, Justin Prazen, Sebastian Herholz, Bruce Cherniak, and
Anton Kaplanyan. 2022. Intel Sample Library. https://www.intel.com/content/www/us/en/developer/topic-technology/
graphics-processing-research/samples.html

Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated residential building layouts. In ACM SIGGRAPH
Asia 2010 papers. 1–12.

Microsoft Cooperation 2024. DirectX-Specs. Microsoft Cooperation. https://github.com/microsoft/DirectX-Specs
Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. 2006. Procedural modeling of buildings. In

ACM SIGGRAPH 2006 Papers. 614–623.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

http://www.blender.org
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation--framework-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation--framework-in-unreal-engine
https://gpuopen.com/learn/mesh%5Fshaders/mesh%5Fshaders-procedural%5Fgrass%5Frendering/
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://www.intel.com/content/www/us/en/developer/topic-technology/graphics-processing-research/samples.html
https://www.intel.com/content/www/us/en/developer/topic-technology/graphics-processing-research/samples.html
https://github.com/microsoft/DirectX-Specs


16 Kuth et al.

NVIDIA 2024. CUDA C++ Programming Guide. NVIDIA.
Timo Oksanen and Arto Visala. 2009. Coverage path planning algorithms for agricultural field machines. Journal of field

robotics 26, 8 (2009), 651–668.
Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and David A. Wood. 2014. Fine-grain task aggregation and

coordination on GPUs. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). 181–192.
Dimitris Papavasiliou. 2015. Real-time grass (and other procedural objects) on terrain. Journal of Computer Graphics

Techniques (JCGT) 4, 1 (2015), 26–49.
Yoav IH Parish and Pascal Müller. 2001. Procedural modeling of cities. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques. 301–308.
Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David Luebke, David McAllister, Morgan

McGuire, Keith Morley, Austin Robison, and Martin Stich. 2010. OptiX: a general purpose ray tracing engine. ACM Trans.
Graph. 29, 4, Article 66 (jul 2010).

Anjul Patney, Stanley Tzeng, Kerry A. Seitz, and John D. Owens. 2015. Piko: a framework for authoring programmable
graphics pipelines. ACM Trans. Graph. 34, 4, Article 147 (jul 2015), 13 pages.

Ken Perlin. 2002. Improving noise. In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. 681–682.

P. Prusinkiewicz and Aristid Lindenmayer. 1990. The algorithmic beauty of plants. Springer-Verlag, Berlin, Heidelberg.
Thomas R.W. Scogland and Wu-chun Feng. 2015. Design and Evaluation of Scalable Concurrent Queues for Many-Core

Architectures. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering (Austin, Texas,
USA) (ICPE ’15). ACM, New York, NY, USA, 63–74.

Side Effects Software Inc. 2023. Houdini 20. https://www.sidefx.com/products/houdini/
Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner, Michael Kenzel, and Dieter Schmalstieg. 2012.

Softshell: dynamic scheduling on GPUs. ACM Trans. Graph. 31, 6, Article 161 (nov 2012), 11 pages.
Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl, Mark Dokter, and Dieter Schmalstieg. 2014a. Whip-

pletree: task-based scheduling of dynamic workloads on the GPU. ACM Trans. Graph. 33, 6, Article 228 (nov 2014),
11 pages.

Markus Steinberger, Michael Kenzel, Bernhard Kainz, Jörg Müller, Peter Wonka, and Dieter Schmalstieg. 2014b. Parallel
Generation of Architecture on the GPU. Computer Graphics Forum (2014).

George Stiny and James Gips. 1971. Shape Grammars and the Generative Specification of Painting and Sculpture. IFIP
Congress 71, 1460–1465.

Stanley Tzeng, Anjul Patney, and John D. Owens. 2010. Task management for irregular-parallel workloads on the GPU. In
Proceedings of the Conference on High Performance Graphics (Saarbrucken, Germany) (HPG ’10). Eurographics Association,
29–37.

Carlos A Vanegas, Daniel G Aliaga, Peter Wonka, Pascal Müller, Paul Waddell, and Benjamin Watson. 2010. Modelling the
appearance and behaviour of urban spaces. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 25–42.

Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and Pascal Müller. 2012. Procedural generation of
parcels in urban modeling. In Computer graphics forum, Vol. 31. Wiley Online Library, 681–690.

Martin Winter, Mathias Parger, Daniel Mlakar, and Markus Steinberger. 2021. Are dynamic memory managers on GPUs
slow? A survey and benchmarks. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 219–233.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 3, Article . Publication date: July 2024.

https://www.sidefx.com/products/houdini/

	Abstract
	1 Introduction
	2 Related Work
	3 GPU Work Graphs
	4 Our Generation System
	4.1 Coalesced Instancing with Work Graphs
	4.2 BVH Markers
	4.3 Generation Phases

	5 Ivy
	6 Marketplace
	7 Ground Clutter
	8 Results and Discussion
	9 Conclusion and Future Work
	Acknowledgments
	References

