
Sparse Volume Rendering using Hardware Ray Tracing and
Block Walking

Mehmet Oguz Derin
Morgenrot, Inc.

Turkey
oguz@morgenrot.net

Takahiro Harada
Morgenrot, Inc.

, Advanced Micro Devices,
Inc.
USA

takahiro.harada@amd.com

Yusuke Takeda
Hokkaido Univ.

Japan
ytakeda@sci.hokudai.ac.jp

Yasuhiro Iba
Hokkaido Univ.

Japan
iba@sci.hokudai.ac.jp

Figure 1: Rgb volume datas captured by a tomography scanner rendered using the method on an AMD Radeon ™Pro W6800.
ABSTRACT
We propose a method to render sparse volumetric data using ray-
tracing hardware efficiently. To realize this, we introduce a novel
data structure, traversal algorithm, and density encoding that al-
lows for an annotated BVH representation. In order to avoid API
calls to ray tracing hardware which reduces the efficiency in the
rendering, we propose the block walking for which we store infor-
mation about adjacent nodes in each BVH node’s corresponding
field, taking advantage of the knowledge of the content layout.
Doing so enables us to traverse the tree more efficiently without
repeatedly accessing the spatial acceleration structure maintained
by the driver. We demonstrate that our method achieves higher
performance and scalability with little memory overhead, enabling
interactive rendering of volumetric data.

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing.

KEYWORDS
ray tracing, volume rendering, ray tracing hardware

ACM Reference Format:
Mehmet Oguz Derin, Takahiro Harada, Yusuke Takeda, and Yasuhiro Iba.
2021. Sparse Volume Rendering using Hardware Ray Tracing and Block
Walking. In SIGGRAPHAsia 2021 Technical Communications (SA ’21 Technical

SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
SIGGRAPH Asia 2021 Technical Communications (SA ’21 Technical Communications), December 14–17, 2021, Tokyo, Japan,
https://doi.org/10.1145/3478512.3488608.

Communications), December 14–17, 2021, Tokyo, Japan. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3478512.3488608

1 INTRODUCTION
As the resolution and fidelity of volumetric capture devices increase,
visualization becomes an even more critical component to explore
the content [Takeda et al. 2021]. However, as the data distribution
is unpredictable ahead of time, we need an algorithm that can help
swift through such irregular data fast enough to trace rays for
effects that can simulate real-life interaction of light with these
mediums. Some modern GPU hardware recently started to have
ray-tracing cores that natively support tracing non-uniform, axis-
aligned bounding boxes for triangles [Advanced Micro Devices, Inc.
2020] [NVIDIA 2018].

Although the ray tracing hardware in modern GPUs are designed
to accelerate ray-triangle intersection acceleration, there already
are some works using the hardware to render structured volume
data and unstructured volume data [Ganter and Manzke 2019]
[Wald et al. 2021]. The focus of our paper is the visualization of
the structured volume data, and thus, [Ganter and Manzke 2019]
is relevant for our work. To reduce the number of ray casting
operations invoked to visualize a volume, they group voxels to
make a larger cell whose bounding volume is passed to the GPU.
Our paper approaches the same problem using a different method
that relies on additional information stored in each block to reduce
ray casting operations.

Our approach’s core idea is to facilitate access to the top-level
blocks in our tree structure through hardware ray-tracing while
providing a shortcut for walking into adjacent blocks for visualizing
volumetric data, in our case consisting of RGBA voxels. Thus, our
data does not require a transfer function as the input is not a scalar

https://doi.org/10.1145/3478512.3488608
https://doi.org/10.1145/3478512.3488608


SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan M.Oguz Derin, T.Harada, Y.Takeda and Y.Iba

Figure 2: Blocks and subblocks. We allocate subblocks,
which are uniform three-dimensional grids, each contain-
ing 𝑁 3 voxels, around the voxels where the data exists. 𝑀3

Subblocks are (at most) grouped to make a block, although
it only stores indices of active subblocks for memory and
traversal efficiency.

that needs such. First, we build blocks, which are collections of
subblocks that consist of dense voxels. After, we request an acceler-
ation structure compatible with ray tracing access from API. Then,
we expose each block’s build-time generated adjacency information
to compute kernels to act as shortcuts that improve performance
as the data size grows over exhaustively querying the acceleration
structure through hardware. Finally, we accelerate our algorithm
by utilizing the mask field available in most ray-tracing APIs to
store binned density representation.

2 SPARSE VOLUME RENDERING
We first describe the application of hardware ray tracing to volume
rendering, which is the basis of our method. Then we extend it
by adding block walking to make it efficient alongside hardware-
accelerated space skipping. Finally, we propose block culling in
which density range information is encoded in bits used to mask
the traversal in the ray-tracing API.

2.1 Rendering using Hardware Ray Tracing
2.1.1 Data Structure. Hardware ray-tracing (RT) APIs such as DXR
and Vulkan RT take a list of triangles or Axis aligned bounding
boxes (AABBs) from the user, then it builds an acceleration structure
in the driver, which we use to compute the closest intersection. Ray
query API provides a way to use the ray-tracing hardware inside
the compute stage to obtain the closest hit AABB (or triangle).
We use this ray query API to accelerate the rendering of sparse
volumes. We could pass every single voxel as an AABB which is
too inefficient. Thus, we group voxels into uniform-sized blocks,
whose AABB we pass to the API. We employed a two-level sparse
data structure for a block. A block contains indices of subblocks.
Subblock is a dense representation of voxels as shown in Fig. 4. This
data structure not only allows us to save memory but improve the
rendering efficiency.

2.1.2 Rendering. The rendering is implemented in a compute ker-
nel where we use a hardware ray tracing query to find the first
intersection of the ray against the blocks. After finding the block,
we process the block immediately, although it could be deferred if
preferred. Since our blocks and subblocks make up a two-level hi-
erarchical grid, we use two-level DDA to traverse the voxel data on
the ray [Bresenham 1965] [Museth 2014]. Once we finish traversing
a single block, we launch another ray tracing query to find the next
block, then traverse the voxels in the block. We repeat this until we

exit the volume or reach the user-selected termination condition,
alpha becoming 1, or first hit depending on the rendering mode
specified.

2.2 Block Walking
As data shape is unpredictable, there can be scenes with dense
regions and sparse regions at different points in the grid. In addi-
tion, user-controlled runtime filtering and blending decrease the
predictability of whether the first hit block will yield a hit voxel.
Thus, we need to access AABBs along the ray repeatedly by exe-
cuting multiple ray-tracing queries. This pattern can become very
inefficient as we scale the data.

We propose block walking, which eliminates hardware ray trac-
ing queries to realize an efficient volume rendering. The algorithm
with block walking enabled is illustrated in Fig. 3 (a). Although
the first ray query cannot be avoided, most of the subsequent ray
queries can be avoided by storing adjacency information of each
block. The purpose of this is to take a shortcut into adjacent blocks
without launching another query, whose overhead is not negligi-
ble. As a result, this version, after HDDA, introduces the following
condition: if parametric 𝑡 after HDDA is inside of a neighboring
block, we start an HDDA directly without going back to the ray-
tracing hardware queries as illustrated in Fig. 3 (b). If there is no
adjacent block, we launch a ray query to find the next closest block
if parametric 𝑡 is still less than the maximum 𝑡 .

2.3 Block Culling
In contrast to the lack of acceleration structure access input for
traversal strategy, ray-tracing APIs have a field for guiding the
intersection function to perform runtime culling of top-level ac-
celeration structure elements. This culling mask field is an integer
that API uses as a bit field to allow implementations to flag specific
instances, which are top-level primitives.

We utilize the density member of stored ranges to compute a
culling mask for each block we feed into the RT API. To achieve
this, we bin the density ranges to the maximum number of flags
that API allows. This way, we can skip over blocks that might not
meet the user-specified content thresholds.

Mask calculation happens as follows: we compute max and
min of the voxels in a subblock and block, use them to compute
𝑚𝑖𝑛𝑏 = 𝑓 𝑙𝑜𝑜𝑟 (𝑚𝑖𝑛/𝑑), 𝑚𝑎𝑥𝑏 = 𝑓 𝑙𝑜𝑜𝑟 (𝑚𝑎𝑥/𝑑), then flip the bits
between these, where 𝑑 is the quantization divider. We calculate
this quantization divider by dividing the maximum possible density
value by the maximum number of bits the API allows for acceler-
ation structure annotation. We use the ranges we store in blocks
and subblocks to skip regions during traversal if these values are
not in the range of the interest. This method is effective when the
user removes a large part of the data, but the modification is more
fine-grained than what API allows it to represent.

3 IMPLEMENTATION
We have implemented our algorithms using Vulkan 1.2 with buffer
device address, acceleration structure, ray query extensions, and
GLSL with corresponding extensions. Ray generation, traversal,
and offscreen target resolve all happen in a compute kernel stage.
Then, depending on launch configuration, this offscreen target



Sparse Volume Rendering using Hardware Ray Tracing and Block Walking SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan

(a) (b) (c)

Figure 3: (a) Hardware Ray tracing algorithm. Single ray tracing is visualized. The blue and pink arrows show the hardware
ray tracing queries and DDA steps. (b) Hardware Ray-tracing algorithm with block walking. Ray traversal with acceleration
structure access, block walking, and re-access of acceleration structure is visualized. We start by accessing the acceleration
structure through hardware to get the closest block to the ray start after the minimum 𝑡 . Once we reach the boundary voxels
found in boundary subblocks, we then walk into the adjacent block directly using the embedded spatial information if it is
present. If not, we inquire about the next closest block through hardware. This process repeats until our traversal reaches
satisfying conditions. (c) Hardware Ray-tracing algorithm with block culling. Ray traversal with a culling mask is visualized.
In addition to our steps for hardware ray-tracing, we provide a culling mask computed from the density range specified by
the user. When building the acceleration structure, the blocks are annotated with cull masks, so the hardware can skip over
these blocks if the 𝐴𝑁𝐷 operation between traversal mask and block mask does not return a value larger than zero.

Figure 4: The number of queries it takes to reach content
value for walking on (left) and walking off (middle), with
desired output (left) for fish and rock data.

gets presented to the screen or exported to an image file. Blocks,
subblocks, and data are all stored in Vulkan buffers. We calculate
AABBs for the Vulkan acceleration structure from the data, which is
accessed through ray queries. We pass the runtime configuration of
the user through a push-constant structure. This structure includes
the culling mask for the ray query besides settings that do not
impact runtime, like clear color.

The addresses of subblocks are stored as unsigned 8-bit inside
blocks. Therefore, the maximum number of subblocks that blocks
contain is 63 (63 ≤ 256). We chose 83 as the size of individual
subblocks with a parametric implementation that makes it possible
to tweak this size. From these 8-bit integers, we access subblocks
by multiplying the stored index with the size of subblock structure,
which we embed voxel data to, appending it to buffer device address
obtained fromAPI and supplied to compute kernel, and access fields
of subblock through this address.

Vulkan ray-tracing API requires cull masks to be 8-bit only. As a
result, we divide our density domain max of 256 (as our data is a

four-component vector of unsigned 8-bit integers where the last
component represents the density) by 32 to represent the density
range of blocks as a bitfield. Thus, blocks correspond to top-level
instances.

Our test data are RGBA volume data captured by a tomography
device. Thus, we do not apply any transfer function to the volume
data during preprocessing but adjust the density cut off for differ-
ent visualization and determine member fields like minimum and
maximum values of regions.

4 RESULTS
We used an AMD Radeon PRO ™W6800 GPU on 21.Q2.1 driver for
our evaluation. The system has a AMD Ryzen Threadripper PRO
3955WX, 512 GBs of RAM, and runs Windows 10, Vulkan 1.2.

We benchmarked our framework with four different scenes that
contain RGBA voxels with 8-bits per channel to evaluate the perfor-
mance of algorithms with a resolution of 2048x2048 pixels. We use
two modes per scene configuration. First, block traversal measures
the direct impact of block-walking and block-culling algorithms
through traversal of all blocks a ray intersects with, starting from
closest to the camera and writing to a scalar at each block visit.
Secondly, blend mode traverses voxels and sums their value until
value accumulation results in enough content, which either means
being opaque for early termination or containing greater than zero
content for blending with the user-specified background.

We measured the performance of the kernel using Vulkan’s
timestamp queries. We write a timestamp before dispatch and an-
other one after barrier post-dispatch and extract runtime from these
according to physical device-reported information. In the tables,
we report the average of 128 such measurement samples.

We observe a 5-10x reduction in the number of queries (acceler-
ation structure accesses) when walking is enabled. This reduction
translates to 1.5x performance improvement on average with per-
formance degradation on sparse cases in block traversal mode.
However, we see the performance improvements shrink in blend
mode due to costly access to individual voxel values. It improved
all the cases except for two cases where sparsity becomes high.
When we enable block culling, we see that it can bring in up to



SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan M.Oguz Derin, T.Harada, Y.Takeda and Y.Iba

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5: Test cases. (a), (b), and (c) are the Fish data with
density thresholds 4, 104, 196, respectively. (d) is the Chip
data. (e), (f), (g), (h) are the Rock data with density threshold
0 (this one is from a different viewpoint from the following
figures), 5, 121, 153, respectively.

Table 1: Render time in milliseconds (block mode).

RT RT+Cull RT+Walk RT+Walk+Cull
Fish (a) 9.745 9.740 5.543 5.543
Fish (b) 9.469 8.978 5.985 5.602
Fish (c) 7.375 4.823 10.260 6.945
Chip (d) 2.310 2.309 1.612 1.612
Rock (e) 7.949 7.949 4.294 4.294
Rock (f) 8.376 8.378 4.456 4.455
Rock (g) 8.449 8.385 4.686 4.639
Rock (h) 9.009 7.897 6.772 6.017

2x performance gains in block traversal mode, and it consistently
improved performance, except for when there were no blocks it
could impact due to user-requested content range being greater
or equal to the actual content range, and in such cases, we do not
see significant performance regression. The combination of block
walking and culling results in the best performance on average.

4.1 Limitations
We observe that when the content becomes too sparse, block walk-
ing is not effective and can have a high cost. On the other hand,
in such scenarios, block culling has a high gain if the original con-
tent is dense, and sparsity results from runtime parameters like
narrower allowed density ranges. The possibility of reduction in
this block walking overhead requires further investigation. We also

Table 2: Render time in milliseconds (blend mode).

RT RT+Cull RT+Walk RT+Walk+Cull
Fish (a) 113.983 113.780 107.930 107.725
Fish (b) 70.741 70.074 68.102 67.596
Fish (c) 10.798 8.079 15.347 11.892
Chip (d) 15.098 15.132 14.332 14.268
Rock (e) 92.331 92.304 87.040 87.041
Rock (f) 92.623 92.462 87.242 87.320
Rock (g) 49.117 49.020 44.837 44.793
Rock (h) 34.060 32.677 36.088 35.166

Table 3: Data set.

Resolution Data size in VRAM
Fish 2172x1448x1020 5.06GB
Rock 1425x950x1208 4.38GB
Chip 2172x808x460 0.58GB

observe that the high cost of voxel access can shrink or invert per-
formance gains of block walking and culling; preservation of gains
in upper levels can also be a topic of further investigation.

5 CONCLUSION
We presented block walking and block culling algorithms that re-
duce the time to reach content values inside RGBA volumes on
pipelines that utilize ray-tracing hardware capabilities. We have
demonstrated that our method manages to improve performance
under varying user configurations with different datasets consis-
tently. Furthermore, compared to straightforward utilization of
ray-tracing APIs, our method does up to 2x better and, as such,
improves the stability of interactive experience.

REFERENCES
Advanced Micro Devices, Inc. 2020. RDNA 2 Instruction Set Architec-

ture. https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_
November2020.pdf.

Jack E. Bresenham. 1965. Algorithm for Computer Control of a Digital Plotter. IBM
Systems Journal 4, 1 (1965), 25–30.

David Ganter and Michael Manzke. 2019. An Analysis of Region Clustered BVH
Volume Rendering on GPU. Computer Graphics Forum 38, 8 (2019), 013–021.

Ken Museth. 2014. Hierarchical digital differential analyzer for efficient ray-marching
in OpenVDB. In SIGGRAPH ’14, Talks. ACM, 40:1.

NVIDIA. 2018. NVIDIA Turing GPU Architecture. https://www.nvidia.com/
content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

Yusuke Takeda, Kazuki Tainaka, Takeshi Hoshino, Ryota Fukai, Tomohiro Usui, Shin-
taro Sasaki, Shin Ikegami, and Yasuhiro Iba. 2021. 3D visualization of large image
data: JSS3 large-scale challenge. In Proc. of 53rd Fluid Dynamics Conference / 39th
Aerospace Numerical Simulation Symposium, Tokyo, Japan, June 30-July 2, 2021,
JSASS-2021-2091-A-2C02.

Ingo Wald, Stefan Zellmann, and Nate Morrical. 2021. Faster RTX-Accelerated
Empty Space Skipping using Triangulated Active Region Boundary Geometry.
In Eurographics Symposium on Parallel Graphics and Visualization.

https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_November2020.pdf
https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_November2020.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

	Abstract
	1 Introduction
	2 Sparse Volume Rendering
	2.1 Rendering using Hardware Ray Tracing
	2.2 Block Walking
	2.3 Block Culling

	3 Implementation
	4 Results
	4.1 Limitations

	5 Conclusion
	References

