
WORLD-SPACE SPATIOTEMPORAL RESERVOIR REUSE FOR
RAY-TRACED GLOBAL ILLUMINATION

Guillaume Boissé
Guillaume.Boisse@amd.com
Advanced Micro Devices, Inc.

France

Figure 1: Bistro scene with ~30,000 area lights rendered with indirect lighting only, at 2560x1440 and 1 sample per pixel (spp): diffuse global
illumination with next event estimation (NEE) (left), with our world-space reservoir caching (middle), and a spatiotemporal denoiser (right).

ABSTRACT
Path-traced global illumination of scenes with complex lighting
remains particularly challenging at real-time framerates. Reservoir-
based resampling methods for light sampling allow for significant
noise reduction at the cost of very few shadow rays per pixel. How-
ever, current image-space approaches to reservoir reuse do not scale
to sample lighting at further bounces, as is required for efficiently
evaluating indirect illumination.

We present a novel approach to performing reservoir-based spa-
tiotemporal importance resampling in world space, allowing for
efficient light sampling at arbitrary vertices along the eye path. Our
approach caches the reservoirs of the path vertices into the cells of
a hash grid built entirely on the GPU. Such a structure allows for
stochastic reuse of neighboring reservoirs across space and time
for efficient spatiotemporal reservoir resampling at any point in
space.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9073-6/21/12. . . $15.00
https://doi.org/10.1145/3478512.3488613

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing.

KEYWORDS
global illumination, hash grid, ray tracing, reservoir resampling

ACM Reference Format:
Guillaume Boissé. 2021. WORLD-SPACE SPATIOTEMPORAL RESERVOIR
REUSE FOR RAY-TRACED GLOBAL ILLUMINATION. In SIGGRAPH Asia
2021 Technical Communications (SA ’21 Technical Communications), De-
cember 14–17, 2021, Tokyo, Japan. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3478512.3488613

1 INTRODUCTION
Reservoir-based Spatiotemporal Importance Resampling (ReSTIR)
[Bitterli et al. 2020] recently introduced some exciting improve-
ments for sampling complex scene lighting for ray-traced direct
illumination, which Rearchitecting Spatiotemporal Resampling for
Production [Wyman and Panteleev 2021] further optimizes, mak-
ing the technique suitable for use in real-time applications such as
games.

ReSTIR GI [Ouyang et al. 2021] is an extension of the algo-
rithm for global illumination that resamples the paths themselves to
achieve interesting noise reduction for indirect lighting. However,
the approach does not allow sampling of the lighting distribution for
secondary vertices as effectively as ReSTIR does for direct lighting,
which is desirable to reduce the noise even further.

https://doi.org/10.1145/3478512.3488613
https://doi.org/10.1145/3478512.3488613

SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan Boissé

Fast path-space filtering [Binder et al. 2018] proposes to use
spatial hashing to efficiently find all neighboring path vertices
within a region of world space in a single grid lookup.

Finally, [Jarzynski and Olano 2020] published a study comparing
the performance of many hash functions executing on the GPU
allowing the fastest hash function at a given quality level to be
selected.

We propose combining the path-space filtering approach from
[Binder et al. 2018] with the light sampling of ReSTIR to perform
reservoir reuse at secondary path vertices. We describe how to
adapt the hash-grid structure to achieve efficient reuse in a single
cache lookup resulting in significant noise reduction in the indirect
illumination of complex scenes.

2 PRELIMINARIES
The ReSTIR technique achieves important noise reduction for direct
lighting of complex scenes by sharing sampling decisions across
neighboring pixels via Resampled Importance Sampling (RIS) [Tal-
bot et al. 2005] and Weighted Reservoir Sampling (WRS) [Chao
1982].

Direct lighting samples are generated for every pixel on the
screen by drawingM samples xi from a poor-quality distribution p,
which is resampled against a higher-quality distribution p̂. [Bitterli
et al. 2020] proposes to use power sampling for p as an easy-to-
sample distribution, but it is interesting to note that any other light
sampling technique can be used to improve the quality of the initial
sample generation. For p̂ we typically want the distribution to be
as close as possible to the lighting function f used for shading.
However, calculating f accurately requires tracing a ray to evaluate
the visibility term, which is prohibitively expensive. Instead, we can
define p̂ as the full lighting termwithout visibility, otherwise known
as the unshadowed illumination. This process allows the generation
of an initial reservoir for each pixel, as shown in Algorithm 1.

class Reservoir
y ← 0 // The currently best light sample

wsum ← 0 // The sum of resampling weights

M ← 0 // The number of streamed samples

W ← 0 // The final resampling weight

functionWRS(xi ,wi)
wsum ← wsum +wi
M ← M + 1
if rand () <

wi

wsum
y ← xi

function RIS(pixel q)
Reservoir r
for i ← 1 to M do

generate xi ∼ p

r .WRS (xi ,
p̂(xi)
p(xi)

)

r .W ←
1

p̂(r .y)
· (

1
r .M

· r .wsum)

return r

foreach pixel q ∈ Imaдe do
Reservoir r ← RIS (q)
Imaдe[q] ← f (r .y) · r .W

Algorithm 1: Initial reservoir generation and shading

An interesting property of reservoirs is that they can be com-
bined with one another in a single WRS operation that is mathe-
matically equivalent to having resampled the two combined input
streams while remaining computationally efficient. This allows the
correlations between neighboring pixels to be efficiently leveraged
by reusing reservoirs across space and time in image space.

3 WORLD-SPACE RESERVOIR CACHING
To extend the reservoir reuse to further path vertices, we require a
mechanism to find neighboring vertices efficiently in world space.
Path-space filtering introduces the use of a hash grid to perform fil-
tering of radiance samples by averaging all the values within a cell
[Binder et al. 2018]. This approach is particularly well suited to the
massively parallel nature of GPUs, making it a good candidate for
our reservoir cache. For reservoir reuse however, we want to recom-
bine multiple reservoirs within the vertex neighborhood to achieve
high counts of streamed samples and reduce noise appropriately.

We propose adapting the data structure and, instead, storing lists
of reservoirs in each cell of the hash grid. As we will demonstrate,
this allows for efficient sharing of reservoirs across path neighbors
in world space, thus achieving high numbers of streamed samples
with a low performance overhead. To build this structure efficiently
on the GPU, we have broken the process down into steps as shown
in Algorithm 2.

foreach V er tex v ∈ Paths do
Reservoir r ← RIS (v)
Paths[v] ← r // Store initial reservoir

cell_index ← F indOr Inser tCell (v) // See Section 5

index_in_cell ← atom_inc(cell_counters[cell_index])
append_buf f er .Append (< v, cell_index, index_in_cell >)

index_buf f er ← ParallelPref ixSum(cell_counters)

foreach tr iplet ∈ append_buf f er do
base_of f set ← index_buf f er [tr iplet [1]]
scatter_of f set ← base_of f set + tr iplet [2]
cell_storaдe[scatter_of f set] ← tr iplet [0]

Algorithm 2: Building a reservoir hash grid on the GPU

Incrementing the per-cell counters. For each path vertex v , we
resolve the cell_index within the hash grid and atomically incre-
ment the number of reservoirs in the cell. Additionally, we save
out the return value from the atomic operation; this is the index at
which to scatter the reservoir within the cell storage, which we call
index_in_cell . We store all the required information by appending
the triplet < v, cell_index , index_in_cell > to an append_bu f f er .

Parallel prefix sum. We perform a parallel prefix sum operation
over the cell counters [Harris et al. 2007] and write the results to an
index_bu f f er which effectively stores the base offset for each cell.

Scattering the reservoirs into a compacted stream. We scatter the
reservoirs into their respective locations within the cell_storaдe
buffer. This is done by loading the triplets stored in append_bu f f er ;
we retrieve the cell’s base_o f f set by reading from index_bu f f er
at cell_index to which we add index_in_cell to get the memory
location at which to scatter the reservoir. Note that we only scatter
the index of the reservoir to save on the memory bandwidth.

World-Space ReSTIR SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan

4 WORLD-SPACE SPATIOTEMPORAL
RESERVOIR REUSE

Weperform spatiotemporal reservoir reuse similarly to [Bitterli et al.
2020] but use our hash grid rather than an image-space kernel for
finding the neighboring reservoirs. For temporal reuse, we simply
keep the hash grid from the last frame to reuse previous reservoirs.

The most obvious way to reuse reservoirs from the hash-grid
cache is to resolve the cell index of the current path vertex and per-
form weighted reservoir sampling on all reservoirs within the cell.
However, this yields strong visual artefacts due to all neighboring
vertices reusing the same set of reservoirs as shown in Figure 2.
These tiling artefacts are particularly undesirable in the context of
rendering as they tend to produce structured noise that is typically
very difficult to filter with a denoiser. Additionally, cells can contain
varying numbers of reservoirs depending on the number of path
vertices landing in a given region of space resulting in potentially
poor performance during reuse.

(a) Naïve reuse (b) Stochastic selection (c) Jittered descriptors

Figure 2:World-space reservoir resampling used for direct lighting

Stochastic reservoir reuse. Instead, we opt for a stochastic se-
lection of reservoirs within the cell therefore resampling only a
random subset ofmax_count elements from the reservoir list. This
is made possible by the flattened nature of the lists inside each grid
cell allowing for random access to any element. Stochastic reservoir
reuse helps break down the tiling artefacts, as shown in Figure 2.

foreach V er tex v ∈ Paths do
Reservoir s ← Paths[v]
M ← s .M
< cellstart, cellend >← F indCell (v) // See Section 5

count ← cellend − cellstart
increment ← (count +max_count − 1)/max_count
of f set ← Rand (0, increment − 1)
for i ← 0 to count − 1 by increment do

Reservoir
r ← cell_storaдe[cellstart + ((i + of f set)%count)]

s .WRS (r .y, p̂(r .y) · r .W · r .M)
M ← M + r .M

s .M ← M

s .W ←
1

p̂(s .y)
· (

1
s .M

· s .wsum)

Paths[v] ← s // Store resampled reservoir

Algorithm 3: Stochastic world-space reservoir reuse

Jittered descriptors. Similarly to [Binder et al. 2018], we jitter the
hash-grid descriptors during both insertions and lookups of the
reservoir cache. We implement this by simply jittering the position
of the path vertex in the tangent plane proportional to the cell size
prior to inserting or searching the hash grid. This finishes breaking
down the tiling artefacts, resulting in denoiser-friendly noise that
can be filtered.

Adaptive cell size. At a distance, the projected size of a cell be-
comes smaller making it less likely to be hit by multiple rays, there-
fore reducing the resampling quality due to the lack of reservoir
availability. We modify our cell definition and apply an adaptive cell
size, aiming to obtain a roughly constant projected size in pixels.

We derive a formula listed in Algorithm 4 that calculates the
optimal cell size for a given position in spacev and a virtual camera
positioned at eye , with a vertical field of view of f ovY radians and a
sensor size ofwidth by heiдht pixels. We introduce two parameters;
min_cell_size describing the minimum cell size in world space and
projected_size the targeted cell size projected to pixels.

function CalculateCellSize(V er tex v)
cell_size_step ← distance(v, eye) ·

tan(projected_size · f ovY ·max (
1

heiдht
,
heiдht
width2))

loд_step ← f loor (loд2(
cell_size_step
min_cell_size

))

returnmin_cell_size · exp2(loд_step)

Algorithm 4: Calculating an adaptive cell size

Figure 3 shows a comparison with and without adaptive cell size,
highlighting the additional noise at a distance due to insufficient
reservoirs being available for effective reuse.

(a) Constant cell size (b) Adaptive cell size

Figure 3: Reservoir reuse with and without adaptive cell size

Bias reduction. The original ReSTIR algorithm proposes using
the depth and normal information to filter neighboring reservoirs
during reuse to reduce some of the over darkening caused by the
bias. In the case of our hash grid, the spatial proximity is guaranteed
due to sampling from cells on a grid. Therefore, we only store the
world-space normal used to generate each reservoir and compare
with the vertex normal during reuse. If the normals differ too much,
we skip the reservoir and move on to the next one, helping to reduce
the amount of bias introduced in the image as shown in Figure 4.

(a) No bilateral filtering (b) Normal-based bilateral threshold

Figure 4: Bias reduction via normal-based bilateral thresholding

SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan Boissé

5 IMPLEMENTATION AND RESULTS
Wehave implementedworld-space ReSTIR for single-bounce diffuse
global illumination (GI). We spawn GI rays from the primary visible
surfaces by cosine-weighted sampling of the hemisphere using blue
noise [Heitz et al. 2019]. We then generate reservoirs by resampling
16 initial samples and insert the outcome into the hash grid.

Inserting into the hash grid. Using spatial hashing may introduce
conflicts where two distinct locations of world space that should
resolve to different cells end up at the same index. To solve this issue,
we use a secondary hash function and calculate a 32-bit checksum;
this is compared with all entries within the cell to find the correct
memory location, a process usually referred to as linear probing.
In our implementation, we allocate 100,000 cells and allow for up
to 32 entries in each cell. Additionally, we leverage the study by
[Jarzynski and Olano 2020] and find that using pcд() as the primary
hash function (referred to as h1) and xxhash32() as the secondary
hash function (referred to as h2) gives good entry distribution.

function FindOrInsertCell(V er tex v)
psize ← CalculateCellSize(v)
p ← f loor (v/psize)
cell_index ← h1(psize + h1(p .z + h1(p .y + h1(p .x))))%100, 000
checksum ←max (h2(psize + h2(p .z + h2(p .y + h2(p .x)))), 1)
for i ← 0 to 31 do

idx ← i + cell_index ∗ 32
checksumprev ←
atom_cmpxchд(checksum_buf f er [idx], 0, checksum)

if checksumprev = 0 or checksumprev = checksum
break // Found or inserted an entry :)

if i = 32
return −1 // Out of memory :(

return i + cell_index ∗ 32

Algorithm 5: Inserting into the hash grid

For looking up the hash grid, we define a FindCell() variation
of the function listed in Algorithm 5 which simply compares every
entry with the desired checksum, without using atom_cmpxchд().

Results. We have tested our technique on diffuse global illumina-
tion rendered at half resolution from 1080p using one temporal and
four spatial world-space reuse passes. We set the reusemax_count
to 4 and achieve significant noise reduction in the scene indirect
illumination as shown in Figure 5.

(a) Hangar scene #1
(7,832 area lights) (b) Bistro exterior #1

(30,672 area lights) (c) Bistro interior #1
(37,436 area lights)

Figure 5: Top: 1spp GI with NEE, bottom: world-space ReSTIR

We realize real-time levels of performance on complex scenes
featuring many area lights using only ¼ sample per pixel and our

world-space resampling technique.We report the overhead ofworld-
space ReSTIR for a single frame of animation in Table 1.

Table 1: World-space ReSTIR performance results (in ms)

Reservoir
generation

Hash grid
building

Temporal
reuse (1x)

Spatial
reuse (4x)

AMD
Radeon™

RX 6900 XT

NVIDIA
GeForce

RTX™ 3080

AMD
Radeon™

RX 6900 XT

NVIDIA
GeForce

RTX™ 3080

AMD
Radeon™

RX 6900 XT

NVIDIA
GeForce

RTX™ 3080

AMD
Radeon™

RX 6900 XT

NVIDIA
GeForce

RTX™ 3080
Hangar
scene #1 0.298 0.429 0.252 0.265 0.318 0.509 1.051 1.698

Hangar
scene #2 0.294 0.441 0.262 0.278 0.286 0.449 1.023 1.537

Bistro
exterior #1 0.313 0.394 0.196 0.184 0.304 0.444 1.115 1.918

Bistro
exterior #2 0.239 0.307 0.153 0.165 0.237 0.276 0.799 1.278

Bistro
interior #1 0.285 0.356 0.126 0.164 0.342 0.523 1.303 2.553

Bistro
interior #2 0.201 0.251 0.097 0.128 0.280 0.427 0.861 1.531

6 CONCLUSION
We have presented a novel way of caching reservoirs in world
space using spatial hashing. We have shown that our technique
allows for efficient reservoir-based spatiotemporal resampling for
light sampling at secondary vertices, thus bringing significant noise
reduction to indirect lighting calculations for a small performance
overhead.

Limitations and future work. We have implemented world-space
ReSTIR for single-bounce global illumination. In the future, wewant
to look at updating the hash grid as opposed to rebuilding it each
frame, so that further vertices can be added as the paths bounce
around. Eventually, we see using the hash-grid structure for direct
lighting sampling as well, resulting in a single unified reservoir
cache for all illumination. Finally, our approach should combine
well with both the ReSTIR improvements brought by [Wyman and
Panteleev 2021] and the path resampling technique presented by
[Ouyang et al. 2021].

REFERENCES
Nikolaus Binder, Sascha Fricke, and Alexander Keller. 2018. Fast Path Space Filtering

by Jittered Spatial Hashing. In Proc. SIGGRAPH. ACM, 1–2.
Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, andWojciech

Jarosz. 2020. Spatiotemporal reservoir resampling for real-time ray tracing with
dynamic direct lighting. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
39, 4 (July 2020).

Min-Te Chao. 1982. A General Purpose Unequal Probability Sampling Plan. Biometrika
69, 3 (Dec 1982), 653–656.

Mark Harris, Shubhabrata Sengupta, and John D. Owens. 2007. Parallel Prefix Sum
(Scan) with CUDA. In GPU Gems 3, Hubert Nguyen (Ed.). Addison Wesley, Chap-
ter 39, 851–876.

Eric Heitz, Laurent Belcour, Victor Ostromoukhov, David Coeurjolly, and Jean-Claude
Iehl. 2019. A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a
Blue Noise in Screen Space. In ACM SIGGRAPH Talk.

Mark Jarzynski and Marc Olano. 2020. Hash Functions for GPU Rendering. Journal of
Computer Graphics Techniques (JCGT) 9, 3 (17 October 2020), 20–38.

Yaobin Ouyang, Shiqiu Liu, Markus Kettunen, Matt Pharr, and Jacopo Pantaleoni. 2021.
ReSTIR GI: Path Resampling for Real-Time Path Tracing. Computer Graphics Forum
(2021).

Justin Talbot, David Cline, and Parris Egbert. 2005. Importance Resampling for Global
Illumination. In Eurographics Symposium on Rendering (2005), Kavita Bala and Philip
Dutre (Eds.). The Eurographics Association.

Chris Wyman and Alexey Panteleev. 2021. Rearchitecting Spatiotemporal Resampling
for Production. In High-Performance Graphics - Symposium Papers, Nikolaus Binder
and Tobias Ritschel (Eds.). The Eurographics Association.

	Abstract
	1 Introduction
	2 Preliminaries
	3 World-space reservoir caching
	4 World-space spatiotemporal reservoir reuse
	5 Implementation and results
	6 Conclusion
	References

