Combining GPU Tracing Methods within a Single Ray Query

Pieterjan Bartels
Advanced Micro Devices, Inc.
Brussels, Belgium
Pieterjan.Bartels@amd.com

HWRT only

GI-1.0 Time: 5.66 ms

Combined (Ours)

Takahiro Harada
Advanced Micro Devices, Inc.
Santa Clara, USA
Takahiro.Harada@amd.com

4.55 ms 3.58 ms

Figure 1: Our combined tracing method applied within GI-1.0 [Boissé et al. 2022], shown with the per-frame time of the GI
algorithm. Notice that with our method, we do not have the obvious artefacts in corners and in shadows. These artefacts are due
to inaccuracies in the distance field, which we avoid, while saving 1.2 ms compared to the hardware ray tracing only solution.
While not visually identical, our result is much closer and more perceptually pleasing without paying the full cost of HWRT.
Full resolution images can be found in our supplemental material.

ABSTRACT

A recent trend in real-time rendering is the utilization of the new
hardware ray tracing capabilities. Often, usage of a distance field
representation is proposed as an alternative when hardware ray
tracing is deemed too costly, and the two are seen as competing
approaches. In this work, we show that both approaches can work
together effectively for a single ray query on modern hardware.
We choose to use hardware ray tracing where precision is most
important, while avoiding its heavy cost by using a distance field
when possible. While a simple approach, in our experiments the
resulting tracing algorithm overcomes the associated overhead and
allows a user-defined middle ground between the performance of
distance field traversal and the improved visual quality of hardware
ray tracing.

CCS CONCEPTS

« Computing methodologies — Ray tracing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SA °22 Technical Communications, December 6-9, 2022, Daegu, Republic of Korea

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9465-9/22/12...$15.00
https://doi.org/10.1145/3550340.3564231

KEYWORDS

distance field, global illumination, ray tracing

ACM Reference Format:

Pieterjan Bartels and Takahiro Harada. 2022. Combining GPU Tracing Meth-
ods within a Single Ray Query. In SIGGRAPH Asia 2022 Technical Commu-
nications (SA "22 Technical Communications), December 6-9, 2022, Daegu,
Republic of Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3550340.3564231

1 INTRODUCTION & RELATED WORK

Ray tracing is a commonly used technique in both offline and real-
time rendering algorithms [Akenine-Miiller et al. 2018]. While of-
fline rendering has seen adoption of ray tracing-based techniques
for many years, real-time rendering has not been able to resolve
many ray queries per frame until the relatively recent introduction
of hardware ray tracing (HWRT), allowing the traversal of a ray
tracing acceleration structure on GPU [Keller et al. 2019]. Unfortu-
nately, within the context of a commercial game engine, HWRT is
still too costly to be adopted without constraints, and these engines
often have a maximum number of ray queries they can send out
per frame, e.g. one query per pixel [Barré-Brisebois et al. 2019].
Introduction of HWRT thus becomes a complex balancing exer-
cise where engineers need to maintain the required frame-rates
by designing algorithms that use small numbers of HWRT queries.
When a rendering technique requires more ray queries, or the target
platform does not support HWRT, many authors propose tracing

https://orcid.org/0000-0001-5342-4841
https://orcid.org/0000-0001-5158-8455
https://doi.org/10.1145/3550340.3564231
https://doi.org/10.1145/3550340.3564231
https://doi.org/10.1145/3550340.3564231

SA *22 Technical Communications, December 6-9, 2022, Daegu, Republic of Korea

against a distance field representation of the scene instead [Hu
et al. 2021]. While this is much faster, artefacts and inaccuracies
are introduced as we now no longer trace against the true scene
surface.

In this work, we propose the use of both techniques together
to handle a single ray query, allowing more efficient resolution of
queries within a given budget. To the best of our knowledge we are
the first to combine HWRT and distance field tracing in this way.
In short, our contributions are as follows:

e We show that maintaining two data structures and breaking
one query into several queries can be worthwhile.

e We show that the obvious artefacts introduced by using a
lightweight distance field representation can be alleviated
by careful selection of the parts of the ray that can instead
be hardware ray traced.

It is common to combine HWRT with screen-space tracing to
improve performance, which is similar to our technique [de Macedo
and Rodrigues 2018]. However, screen-space tracing is dependent
on what is visible in the frame and is usually used to trace the
beginning of rays. Our technique has no dependence on the frame
whatsoever and allows HWRT for any part of the ray query. Finally,
some authors try to improve the performance of ray tracing by
avoiding ray divergence through ray sorting [Meister et al. 2020].
This research direction is orthogonal to our work.

2 CONCEPT

Our basic principle is very straightforward. We are interested in
processing ray queries of the following form:

(O, d, tmin, tmax,f)- (1)

That is, we are interested in finding out whether there are in-
tersections along a ray r with origin o and normalized direction
d, thatis r = 0 + t * d, where ¢ is used to indicate distance along
the ray relative to the origin. The parameters t;;,, and tyqx place a
constraint on the query to only take into account intersections that
have a distance ¢ from the origin within the interval [tmin, tmax]-
In principle, both t,in and tpaex can be within the interval (-inf,
+inf), although in practice they are usually positive. In what follows
we assume, without loss of generality, that f,,in < tmax. Finally,
the f parameter is a flag indicating whether the query needs to find
the intersection within the interval that is closest to the origin, or
if it suffices to find any intersection within the interval.

We propose to break up the query by dividing the interval [¢pin,
tmax] into several, mutually exclusive, intervals. For example, for
three sub-queries, we would process the following sub-queries:

(0,d, tmin, t1, f), (0,d, t1, tz,f), (0,d, 12, tmax f)- (2

We can then process each sub-query separately with a different trac-
ing technique. While the idea itself is simple, this would normally
not be implemented as the overhead of using several tracing calls
would be deemed too costly. We further optimize our technique
based on the f flag: if any hit suffices, sub-queries can be processed
out of order, starting with the parts traced against the distance field.
If the first hit is needed, we process sub-queries in order and avoid
remaining sub-queries once an intersection is found.

Bartels and Harada

Determination of t; & tracing technique. The key issue is how to
determine where to use each technique, i.e. how to determine the
intervals [#;, t;+1]. The objective is to use each tracing technique to
its strengths: we want to use HWRT where we require high preci-
sion (or alpha testing, for example), and distance field tracing where
we want fast traversal but precision is less important. High perfor-
mance is achieved by limiting HWRT to short and low-divergent
ray queries, which depends on the context in which ray tracing is
used. In the next section we provide two examples of determining
such intervals for specific use cases.

Surface information. The information returned from a ray tracing
query depends on the specific needs of the algorithm. An important
consideration for our technique is whether the necessary surface
information is available in both tracing techniques. Notably, re-
trieving material information from a distance field is non-trivial.

3 EXPERIMENTS & RESULTS

In this section, we apply our concept to two types of very typical
ray tracing queries found in common rendering algorithms: Oc-
clusion queries and Shadow rays. We run our experiments on an
AMD Radeon RX 6800 XT, with the algorithms implemented in
a DX12/DXR-based research rendering framework. In both cases,
the ray count is proportional to the pixel count, where the ray
origin for each pixel is based on an initial rasterization of the scene.
Shader invocations are tiled across the viewport image and ray
directions are randomized or otherwise divergent within each tile,
a very common set-up for stochastic ray tracing algorithms. For
both algorithms, we compare our combined tracing method against
the pure techniques, where all overhead is circumvented.

Distance Field Generation. In both algorithms described below,
we prepend a pass to the frame that builds a distance field repre-
sentation of the scene. The representation is computed through a
rasterization-based voxelization algorithm based on the work by
Pantaleoni [Pantaleoni 2011], after which the voxelization is con-
verted to a distance field using both the jump flooding algorithm
and the fast sweeping method for optimization. The distance field is
built in cascades centered around the camera position, to allow for
smaller, more accurate voxel-sizes close to the camera. We use this
distance field in two different set-ups. When we perform combined
tracing, we tune the cascades to a lower resolution: in this case we
expect accuracy from HWRT. In practice, our smallest voxel-size
is set to 0.1 m in this case, with 5 cascades of 64 voxels in each
dimension. This also keeps the memory and performance overhead
related to the distance field building and storage smaller in the
combined case. When we trace against the distance field only, we
double the resolution (i.e. halve the voxel-size) while keeping the
same number of cascades, resulting in a larger overhead but more
accurate results. Despite this, our results are more visually accurate
because of our sparse use of HWRT, as we are going to show below.

Finally, the distance field has support for incremental updates:
we do not update the distance field when everything remains static.
When the camera moves, we use a rolling scheme to update the
changed cascade slices only, which never takes more than 0.1 ms
when movement is limited to one slice per frame in each dimension,

Combining GPU Tracing Methods within a Single Ray Query

oy

Tracing Time:

Tracing Time:

1.72 ms

Tracing Time:

Combined (Ours)

SA ’22 Technical Communications, December 6-9, 2022, Daegu, Republic of Korea

DF Only

3.16 ms

1.35 ms

1.64 ms

1.14 ms

Figure 2: Our combined tracing method applied to a basic ray traced Ambient Occlusion calculation. In the top row, we see the
Bistro scene where the AO max distance is set to 100 for testing purposes. Notice that our result avoids the obvious darkening
artefacts from blobbing within the distance field, while being traced twice as fast as with hardware ray tracing only. When we
render simpler scenes with shorter AO distances such as in the bottom two rows (max AO distance: 10), we maintain consistent
results: faster tracing without problematic artefacts. Full resolution and error images can be found in our supplemental

material.

even on the Bistro scene (Figure 2). When the scene is dynamic, we
update the whole distance field every frame which takes between
0.5 and 2 ms, depending on the scene and distance field resolution.
This scheme amortizes the overhead of building a second data-
structure beside the BVH as much as possible.

Occlusion Queries. We implement a ray tracing based ambient
occlusion (AO) algorithm. For each pixel, we send an occlusion ray
from the point visible in the frame in a randomized direction to a
user-defined maximum AO distance tg, (i.€. t € [0, tg0]). The AO
values are accumulated over time through temporal reprojection.

To apply our technique, we need to determine appropriate ¢;.
For ambient occlusion, we want the high precision of HWRT close
to the origin, where missing high frequency details can lead to
objectionable artefacts. On the other hand, inaccuracies at a greater
distance get blurred and can therefore be traced against the distance
field. Thus, we define a single value #1, resulting in two intervals
[0,#1] and [#1,40]. Since intersection distance is typically used
in AO calculation, we use first-hit tracing. We compute #; auto-
matically based on voxel-size, and we introduce a user-defined

multiplier to increase or decrease t1, giving the user control over
the trade-off between performance and quality that our technique
introduces. For more information on the selection of t;, we refer to
our supplemental material.

Figure 2 compares our technique with pure tracing on different
scenes from various viewpoints. To avoid skewing the results with
effects from temporal reprojection or denoising algorithms, we
focus on the visual results on static scenes after several frames of
accumulation. On a more complex scene such as Bistro, and with
long and divergent AO rays, we manage a speed-up of 2.6 in tracing
time. Note that this speed-up is dependent on the complexity of the
scene, the ray length, and the divergence of the rays. The influence
of ray length is shown separately in our supplemental material.
When we set a shorter AO distance on simpler scenes (second and
third row of Fig. 2), we get speed-ups between 1.05 and 1.5. Even
for these basic scenarios, the overhead of performing both tracing
calls is overcome. An important caveat here is that this speed-up
needs to be balanced with the additional overhead of updating the
distance field, however, we see an advantage is easily achieved on

SA *22 Technical Communications, December 6-9, 2022, Daegu, Republic of Korea

HWRT only
o =

Combined (Ours)
/ i /

DFOnly

Figure 3: Close-ups of the type of darkening artefacts our
method improves in the Bistro scene from Figure 2 as well
in GI-1.0 from Figure 1. In the bottom right, we see that the
front of the tree is too bright. This is caused by the large
normal bias we introduce to avoid self-intersection artefacts.
We can also see an incorrect shadow due to blobbing.

the more complex Bistro scene or for static scenes. In all scenarios,
our results are visually much closer to the hardware ray traced
reference images, as can be seen in the supplemental material. While
some of the overall darkening remains, objectionable artefacts are
removed. This can also be seen in more detail in Figure 3. Overall,
we find the desired middle ground between the two pure techniques.

GI & Shadow Rays. We also validate our technique with shadow
rays in the context of Global Illumination, specifically by imple-
menting it within the recently released GI-1.0 Global Illumination
pipeline [Boissé et al. 2022]. We focus our attention on the two
passes of this pipeline that generate hardware ray queries: one pass
emits rays to compute indirect illumination and a later pass com-
putes shadow rays to the sampled light sources. The origin of both
rays is related to the point seen through the viewport, although
both these passes run at a lower resolution than the framebuffer.
For the first pass, a disadvantage of our method is that the accuracy
of the material information retrieved at the intersection point de-
pends on the tracing technique. In the context of GI-1.0, however,
this discrepancy is not problematic, as we are retrieving material
information that will be mollified. Hence, for our experiment, we
make assumptions (i.e. constant albedo), but for best results the
distance field could be supplemented with a surface cache.

For the first pass, we use the same division scheme as above: we
decide on a single splitting value t1, and trace with HWRT from
the origin to this value, and against the distance field after. For the
shadow rays in the second pass, we want accurate tracing both at
the start of the ray and at the end, near the light source. This is
because deformations of the geometry around the light source in

Bartels and Harada

the distance field could lead to obvious artefacts in the shadows.
Therefore, we define two splitting values, #; and ¢, where we use
distance field tracing for the interval [#1, £2], and use HWRT for
the other two intervals. In this case, we can use any hit tracing. To
choose the values of t; and t3, we again base this on the voxel-size
at the origin and end point of the ray, respectively. We again allow
the user to alter this distance by way of a user-defined multiplier.

The results of our technique with GI-1.0 are shown in Figure
1. The speed-up is lower in this case, since the GI-1.0 algorithm
contains various other passes, but we see a solid performance gain
nonetheless. Without paying the full cost of HWRT, we again avoid
the major visual artefacts stemming from the use of the distance
field, which is also shown in more detail in Figure 3.

4 CONCLUSION

We have shown that it is possible to achieve a similar visual quality
to hardware ray traced results, with no artefacts and at lower cost,
by breaking up a single ray query into two, or even three, separate
tracing calls and processing a subset of those traces with distance
field tracing. By intelligently choosing where to use hardware ray
tracing and where to fall back to distance field tracing, we create a
user-controllable middle ground between the advantages of these
two techniques that overcomes the associated overhead. We mini-
mize this overhead by decreasing the resolution of the distance field,
which is permissible in our combined tracing method as it impacts
visual results far less. In general, combined tracing becomes more
viable as tracing time starts to dominate, such as when the scene
gets more complex, the rays become longer, or more divergent.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their helpful comments.
We also thank Guillaume Boissé for the voxelization and distance
field generation code, and Joel Jordan and Héloise Dupont de Dinechin
for valuable feedback during the writing process. AMD, AMD
Radeon and the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies.

REFERENCES

Tomas Akenine-Miiller, Eric Haines, and Naty Hoffman. 2018. Real-Time Rendering,
Fourth Edition (4th ed.). A. K. Peters, Ltd., USA.

Colin Barré-Brisebois, Henrik Halén, Graham Wihlidal, Andrew Lauritzen, Jasper
Bekkers, Tomasz Stachowiak, and Johan Andersson. 2019. Hybrid Rendering for
Real-Time Ray Tracing. 437-473. https://doi.org/10.1007/978-1-4842-4427-2_25

Guillaume Boissé, Sylvain Meunier, Heloise Dupont de Dinechin, Matthew Oliver,
Pieterjan Bartels, Alexander Veselov, Kenta Eto, and Takahiro Harada. 2022. GI-1.0:
A Fast and Scalable Two-level Radiance Caching Scheme for Real-time Global
Ilumination. https://gpuopen.com/research/

Daniel Valente de Macedo and Maria Andréia Formico Rodrigues. 2018. Real-time
dynamic reflections for realistic rendering of 3D scenes. The Visual Computer 34, 3
(2018), 337-346.

Jinkai Hu, Milo K Yip, Guillermo Elias Alonso, Shihao Gu, Xiangjun Tang, and Xiaogang
Jin. 2021. Efficient real-time dynamic diffuse global illumination using signed
distance fields. The Visual Computer 37, 9 (2021), 2539-2551.

Alexander Keller, Timo Viitanen, Colin Barré-Brisebois, Christoph Schied, and Morgan
McGuire. 2019. Are we done with ray tracing?. In SIGGRAPH Courses. 3-1.

Daniel Meister, Jakub Boksansky, Michael Guthe, and Jiri Bittner. 2020. On ray re-
ordering techniques for faster GPU ray tracing. In Symposium on Interactive 3D
Graphics and Games. 1-9.

Jacopo Pantaleoni. 2011. VoxelPipe: A Programmable Pipeline for 3D Voxelization. In
Proc. of the ACM SIGGRAPH Symposium on High Performance Graphics. 99-106.

https://doi.org/10.1007/978-1-4842-4427-2_25
https://gpuopen.com/research/

	Abstract
	1 Introduction & Related Work
	2 Concept
	3 Experiments & Results
	4 Conclusion
	Acknowledgments
	References

