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Figure 1: Diffuse and specular global illumination estimated in 5.83 ms at 1080p on an AMD Radeon™ RX 7900 XTX GPU.

ABSTRACT
Estimation of glossy reflections remains a challenging topic for
real-time renderers. Ray tracing is a robust solution for evaluating
the specular lobe of a given BRDF; however, it is computationally
expensive and introduces noise that requires filtering. Other solu-
tions, such as light probe systems, offer to approximate the signal
with little to no noise and better performance but tend to introduce
additional bias in the form of overly blurred visuals. This paper in-
troduces a novel approach to rendering reflections in real time that
combines the radiance probes of an existing diffuse global illumina-
tion framework with denoised ray-traced reflections calculated at a
low sampling rate. We will show how combining these two sources
allows producing an efficient and high-quality estimation of glossy
reflections that is suitable for real-time applications such as games.
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1 INTRODUCTION
Radiance and irradiance probes are widely adopted techniques
that approximate diffuse and specular indirect lighting in real-time
applications and engines. Such techniques propose to pre-calculate
the lighting in the scene at specific locations of space and store the
result in structures generally referred to as light probes [Majercik
et al. 2019]. One issue that arises with such systems is that the
illumination is estimated at the probe rather than the pixel location.
This leads to artifacts such as leaking and over-occlusion. Such
problems can be alleviated to some extent through a better probe
placement, either manual [Hooker 2016] or automated [Wang et al.
2019].

Alternative placement strategies, such as screen-space radiance
caching, fix most leaking and over-occlusion issues by placing
the probes directly onto screen pixels [Wright 2021]. Such probes
can then be used to evaluate indirect diffuse and indirect specular
illumination. However, due to the low-resolution nature of their
representation, these are unsuitable for evaluating reflections on
smooth surfaces. Indeed, the specular lobe can be significantly
smaller than the angular resolution of the probe, resulting in overly
blurred visuals.

On the other hand, ray tracing offers a robust way of estimating
glossy reflections. Indeed, Monte Carlo integration allows us to
approximate the lighting integral better as the sample count in-
creases. Unfortunately, this comes at a significant performance cost,
forcing real-time renderers to typically use less than one sample
per pixel to meet the performance target. The noisy signal needs
to be upscaled and denoised before being presented to the viewer
[Stachowiak 2018]. Furthermore, the rougher the surface, the more
divergent the rays, resulting in poorer overall performance.

This paper proposes to combine the probe system from an exist-
ing real-time diffuse global illumination framework [Boissé et al.
2023] with reduced rate ray tracing and a dedicated denoiser for
estimating glossy reflections of a scene. We will demonstrate how
this approach enables evaluating the specular lobe of a BRDF in an
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(a) (b)

Figure 2: Blurred rendering results when using screen probes
for low-roughness surfaces. (a) shows the result when using
screen probes. (b) shows the result when using ray tracing.

efficient way that is suitable for use in real-time applications such
as games.

2 OUR METHOD
As mentioned in Section 1, one of the methods used in our approach
for rendering glossy reflections builds upon an existing probe sys-
tem initially meant to estimate diffuse global illumination [Boissé
et al. 2023]. As [Wright 2021], the system spawns the probes directly
on the screen onto the visible pixels. We, therefore, refer to these
as screen probes. In our implementation, each screen probe encodes
the incoming radiance across the oriented hemisphere into an 8x8
storage. We leverage hardware-accelerated ray tracing to estimate
the content of each of the probes and rely on a second technique
for storing the outgoing radiance at hit points, which makes use of
spatial hashing to maintain the caching data structure [Boissé et al.
2023]. We, therefore, refer to this data structure as hash grid cache,
and its individual elements as hash cells.

In this section, we show how we can leverage both caching
techniques to accelerate the rendering of our glossy reflections and
our denoiser to reduce noises in estimated glossy reflections.

2.1 Glossy reflection rendering
Given the incoming radiance 𝐿𝑖 (𝜔𝑖 ), we temporally accumulate
the incoming radiance in each frame. 𝐿𝑎𝑐𝑐

𝑖
(𝜔𝑜 ) = 1

𝑛

∑𝑛
𝑡=0 𝐿𝑖 (𝜔𝑖 ,𝑡 ).

Here, 𝐿𝑖 (𝜔𝑖 ,𝑡 ) is an evaluated incoming radiance in the 𝑡th frame.
We denoise the accumulated radiance 𝐿𝑎𝑐𝑐

𝑖
(𝜔𝑜 ) and evaluate the

lighting at the shading point by using a split-sum approximation as
done in [Karis 2013]. 𝐿𝑠𝑝𝑒𝑐 (𝜔𝑜 ) = BRDF LUT(𝜔𝑜 ) × 𝐿𝑑

𝑖
(𝜔𝑜 ) . Here,

𝐿𝑑
𝑖
(𝜔𝑜 ) is a denoised result of temporally accumulated radiance,

and BRDF LUT(𝜔𝑜 ) is a lookup table that stores the directional
albedo of the GGX BRDF. Using split-sum approximation, we can
decouple the lighting from the material evaluation, and it allows us
to simplify our algorithms for evaluating incoming radiance and
denoising. We explain the evaluation of incoming radiance and our
denoising algorithm in Sections 2.2 and 2.4, respectively.

2.2 Radiance evaluation
To evaluate the incoming radiance, we generate a random direction
𝜔𝑖 by importance sampling the GGX lobe of the BRDF at the shading
point using [Heitz 2018]. We then evaluate the incoming radiance
using screen probes or ray tracing. To clarify, we call radiance
evaluation using screen probes by specular interpolation and we
call radiance evaluation using ray tracing by ray-traced reflection.

Direction sampling can introduce significant variance when the
roughness at the shading point is very high. To remove this variance,
we fall back to the diffuse rendering when the roughness at the
shading point is higher than the threshold 𝑟𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 .

(a) (b)

Figure 3: Comparison of jittering the hit point when access-
ing the hash grid cache. (a) shows the result of no jittering.
There are some grid-like artifacts. (b) shows the result of
jittering. Jittering can reduce grid-like artifacts.

(a) (b)

Figure 4: Comparison of placement strategy of hash grid
cells. (a) shows the rendering without considering the BRDF
at the shading point. The failure to fetch radiance from the
hash grid cell creates grid-like black artifacts. (b) shows the
rendering considering the BRDF at the shading point. Con-
sidering the BRDF can reduce black artifacts.

2.2.1 Specular interpolation. Given the direction sample 𝜔𝑖 , we
fetch the radiance value from the corresponding texel in the 8x8
storage of screen probes. Since the resolution of the screen probes
is limited, we cannot use them for rendering reflections with a low
roughness value. Indeed, this can create blurred rendering results
(Figure 2). To avoid this, we use screen probes for the surfaces
with roughness higher than the specified threshold 𝑟𝑟𝑡 . When the
roughness is below 𝑟𝑟𝑡 , we fall back to ray-traced reflection.

2.2.2 Ray-traced reflection. Given the direction sample 𝜔𝑖 , we ray-
trace along 𝜔𝑖 and get a hit point. To achieve higher rendering
performance, we do ray-traced reflection in half resolution, and the
rendering will be 2x-upscaled later. For the details of upscaling, see
Section 2.4. When the hit point is visible in the previous frame, we
use the pixel color of the previous frame as an incoming radiance
at the shading point. The pixel color from the previous frame can
give us a higher-quality result than the hash grid cache since the
resolution of the hash grid cache is limited. Also, this can simulate
multi-bounce lighting. When the previous frame is unavailable, we
fetch the radiance from the area light or hash grid cache at the hit
point. We jitter the hit point when fetching the radiance from the
hash grid cache to reduce grid-like artifacts. See Figure 3 for the
comparison. When the hit point is in the sky, we fetch the incoming
radiance from the environment map.

2.3 Hash grid cell placement
The placement of hash grid cells is important for rendering glossy
reflections correctly. In ray-traced reflection, if there is no hash grid
cell at the hit point, we fail to fetch the incoming radiance, and the
rendering will be black (Figure 4a).

To avoid this, we place hash grid cells according to the BRDF
at the shading point visible from a camera (Figure 4b). We first
stochastically choose the diffuse or specular BRDF by the weight of
each BRDF. If the diffuse BRDF is selected, we do ray guiding the
outgoing direction by screen probes [Boissé et al. 2023]. If specular
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Figure 5: White boxes describe inputs and outputs. The À-
Trous bilateral filter is computed over several frames using
temporal accumulation.

BRDF is selected, we importance-sample the outgoing direction
from GGX BRDF [Heitz 2018].

After sampling the outgoing directions, we ray-trace along the
outgoing direction and allocate a hash grid cell at the hit point. We
do this process every frame to handle dynamic lighting.

2.4 Denoising and upscaling
Our denoising pipeline can be divided into three components: an À-
Trous bilateral filter [Dammertz et al. 2010], a dual-source temporal
accumulation step [Stachowiak 2018] and a cleanup pass, as shown
in Figure 5.

2.4.1 À-Trous bilateral filter. We propose to denoise and upscale
reflections using bilateral filtering. Our bilateral filter is based on a
variation of the À-Trous transform using an edge-stopping weight
function𝑤𝑡 tailored for reflections. In previous works [Dammertz
et al. 2010; Schied et al. 2017], the À-Trous transform is a discrete
transform operating on pixel grids, and upscaling is not consid-
ered. We modify the À-Trous transform to use input samples from
randomized and/or jittered positions, which helps with upscaling
where jittering is commonly used for filtering subpixel details. Let
us assume 𝑅𝑡 and𝑤𝑡 are continuous functions, 𝑡 ∈ [0, 𝑘 − 1] being
the iteration index, we define the À-Trous transform as:

𝑅𝑡+1 (𝑥,𝑦) =

∫
𝑢,𝑣

𝑤𝑡 (𝑥,𝑦,𝑢, 𝑣)𝑅𝑡 (𝑥 + 𝑢,𝑦 + 𝑣)𝑑𝑢𝑑𝑣∫
𝑢,𝑣

𝑤𝑡 (𝑥,𝑦,𝑢, 𝑣)𝑑𝑢𝑑𝑣

𝑅0 represents our initial noisy reflections rendered at a low sampling
rate. After 𝑘 iterations, the continuous function 𝑅𝑘 is sampled at
upscaled pixel centers so that we obtain a denoised reconstruction
of reflections at a high resolution.

In previous works, weight functions rely on a discrete spline
kernel ℎ𝑡 with holes. We propose to replace ℎ0 with a truncated
Gaussian 𝑔0 and ℎ1 to ℎ𝑘 by a sum of truncated Gaussians 𝑔1 to
𝑔𝑘 as illustrated in Figure 6. 𝑤𝑡 is tailored to preserve reflection
details as shown in Figure 7. As most reflection details come from
the variation of roughness and normals across the surface, we define
𝑤𝑡 as the product of the reflection sampling PDF 𝑝 , a scaled and
saturated distance 𝑑 parameter between the tangent plane at the
filtered and the sample position and our hole function 𝑔𝑡 . Scale 𝑔0 is
an important parameter that controls performance and quality. In
practice, we use a 5x5 pixel footprint at an upscaled resolution. The
second trade-off between performance and quality is the number
of filtering iterations 𝑘 . We found 𝑘 = 4 to work well on all our
test scenes. See Figure 8 for the comparison. Finally, we observed

Figure 6: The kernels proposed in this paper. We replace the
common à-trous spline kernels (blue) with sums of truncated
Gaussians (orange). Gaussians are chosen to match the à-
trous transform kernel. Gaussian scales can be increased for
first frames so no upscaled pixel remains black.

(a) (b) (c)

Figure 7: Comparison of the choice of𝑤𝑡 . (a)𝑤𝑡 = 𝑔𝑡 . Every-
thing is blurred in the range. (b)𝑤𝑡 = 𝑔𝑡 · 𝑑 . Object edges are
preserved. (c)𝑤𝑡 = 𝑔𝑡 · 𝑑 · 𝑝. Object edges and roughness are
preserved.

(a) (b) (c)

Figure 8: (a) uses 2 iterations, shiniest surfaces aren’t sta-
ble (ground and heater body). (b) uses 3 iterations, shiniest
surfaces are stable for others not (heater base). (c) uses 4 iter-
ations, most surfaces are stable including the matte wall.

(a) (b)

Figure 9: When roughness details are smaller than the À-
Trous hole size, grid patterns can appear (a). Using jittering
and temporal accumulation for these areas remove this issue,
trading artifacts for additional blurriness (b). When rough-
ness is varying slowly, jittering isn’t used and no additional
blur affects the roughness appearance.

that using the upscaled resolution during the last iteration and a
lower resolution for the previous ones presented little quality loss
and better performance. A choice of 𝑤𝑡 can create grid patterns,
as shown in Figure 9. These patterns are visible when the details
created by the roughness and normal maps are roughly the hole size.
We mitigate this issue by jittering sample positions proportional to
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(a) (b)

Figure 10: (a) are input noisy reflections, black reflections are
missing or just dark reflections. (b) is after cleanup, missing
and darker reflections are replaced by filtering valid sur-
rounding value (noise is lower at the heater base, some dark
details are moved).

(a) Breakfast Room (b) Kitchen (c) Salle de bain (d) Sponza

Figure 11: Scenes used for creating performance results

this size. In practice, we enable this during the last iteration and
limit its use to surfaces with highly varying roughness.

2.4.2 Dual-source temporal accumulation. The À-Trous bilateral
filter is computed over several frames using temporal accumulation
[Yang et al. 2020]. In practice, we upscale reflections with a constant
scale factor of 2, and samples are placed following a Z-curve cycle
between upscaled pixel centers. This method covers all upscaled
pixels with the same number of samples over time. Reflections do
not have proper motion vectors available for tracking them, so
we rely on a dual-source reprojection method [Stachowiak 2018].
This method considers two reprojection points, one on the surfaces
and the other at the hit positions, and outputs a color by blending
both reprojected colors using a distance based on the brightness
difference between the current color and the reprojected ones. It
also mitigates ghosting by clamping reprojected colors according to
the current color neighborhood. The reflection average and variance
are provided by the À-Trous bilateral filter.

2.4.3 Cleanup pass. Fireflies and missing reflections are common,
so we mitigate noise by replacing them before denoising and up-
scaling reflections. Cleanup is important for using the dual-source
temporal reprojection, which needs a good enough estimation of
the reflection neighborhood, or clamping reprojected colors will
introduce noise and/or aliasing as shown in Figure 10. Missing re-
flections are marked using input flags we compute during reflection
estimation described in Section 2.2. Inspired by [Mara et al. 2017],
fireflies are marked by counting darker and brighter samples in a
neighborhood and testing if there is enough brighter neighbors.
Then marked samples are replaced by filtering non-marked neigh-
bors using a 3x3 bilateral filter. If all neighbors are marked, we just
use a pass-through. This is important for handling near constant
areas where the counting method does not work and there are no
fireflies.

3 RESULT
Here we show the performance of our method measured at 1080p
in AMD Radeon™ RX 7900 XTX GPU. We used 𝑟𝑟𝑡 = 0.2, 𝑟𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑒 =

Table 1: Performance results (in ms) at 1080p.

Fig 11a Fig 11b Fig 11c Fig 11d
Diffuse/Specular interpolation 0.31 0.31 0.37 0.33
Ray-traced reflection 0.28 0.26 0.18 0.18
Denoising&Upscaling 0.60 0.85 0.96 0.46
GI-1.0 [Boissé et al. 2023] 3.09 3.66 3.10 3.14
Total 4.28 5.08 4.61 4.11

(a) Our method (b) Path tracing

Figure 12: Comparison of our method with path tracing (3-
bounce).
0.6 for the roughness threshold. Figure 11 shows scenes used for
measuring the performance. Table 1 shows the performance result.

As shown in Figure 1, our method can render glossy reflections
for surfaces with varying roughness. Table 1 shows our method
works around 5 ms in total, and the overhead of the reflection is
around 1 ms. This is enough for real-time rendering purposes.

Figure 12 compares our method with path tracing. Our method
cannot handle multi-bounce lighting precisely since the hash grid
cache only contains the direct lighting at the hit point. Due to this,
our method gives a darker result than that of path tracing. In future
work, we want to handle multi-bounce lighting more accurately.
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