
Compression and Interactive Visualization of Terabyte Scale
Volumetric RGBA Data with Voxel-scale Details

Mehmet Oguz Derin
Morgenrot, Inc.

Türkiye
oguz@morgenrot.net

Takahiro Harada
Morgenrot, Inc.

, Advanced Micro Devices,
Inc.
USA

takahiro.harada@amd.com

Yusuke Takeda
Hokkaido Univ.

Japan
ytakeda@sci.hokudai.ac.jp

Yasuhiro Iba
Hokkaido Univ.

Japan
iba@sci.hokudai.ac.jp

ABSTRACT
We present a compressed volumetric data structure and traversal
algorithm that interactively visualizes complete terabyte-scale sci-
entific data. Previous methods rely on heavy approximation and
do not provide individual sample-level representation when going
beyond gigabytes. We develop an extensible pipeline that makes
the data streamable on GPU using compact pointers and a compres-
sion algorithm based on wavelet transform. The resulting approach
renders high-resolution captures under varying sampling charac-
teristics in real-time.

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing.

KEYWORDS
compression, sparse volumes, data structures, ray tracing, render-
ing, visualization
ACM Reference Format:
Mehmet Oguz Derin, Takahiro Harada, Yusuke Takeda, and Yasuhiro Iba.
2022. Compression and Interactive Visualization of Terabyte Scale Vol-
umetric RGBA Data with Voxel-scale Details. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Posters (SIG-
GRAPH ’22 Posters), August 07-11, 2022. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3532719.3543256

1 INTRODUCTION
In scientific visualization, capturing and rendering high-resolution
volumetric data is an active area of research for both Earth and
extraterrestrial material samples. Although there are developments
in compression and rendering [Graciano et al. 2021] [Aleksandrov
et al. 2021] [Wald et al. 2017], no work has been there which en-
ables the display of RGBA volumes with sizes exceeding 19,000 x
12,500 x 4,000 on 8K screens, where the preservation of voxel-level
structures is crucial for findings through interactive exploration.
We propose a method that scales to terabyte-scale volumetric data,
where our main contributions are a data structure that captures
sparsity and compresses, a construction approach that parallelizes
the demanding aspects of the building of our data structure, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’22 Posters, August 07-11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9361-4/22/08.
https://doi.org/10.1145/3532719.3543256

Figure 1: Render of a high-resolution volumetric capture of a
rock sample with annotation of statistics and performance.

finally, a rendering approach that reuses stack and hierarchical
DDA [Museth 2021] to accelerate content on GPU while streaming.

2 METHOD
For interactive visualization at this scale with high unpredictability
of fetch patterns, we process our data into an efficient format.

2.1 Data Structure
Our data structure is a tree where each internal node contains,
depending on the build-time configuration, 𝑁 3(23 to 63) children,
which can be null, and minimum color, average color, andmaximum
color attributes for our compression, besides offsets for children (see
Fig. 2). Since we compress the node offset to 8-bits, the maximum
value we can use for 𝑁 is 6. These pointers are offsets to a 32-bit
address stored within the node, introducing the primary challenge
of parallelization with children exporting to a linear buffer at each
level needing to be sequential, besides the secondary challenge
with the need for recursive color attributes to achieve wavelet
compression. At the bottom level, we contain similarly sized arrays
to obtain voxel color values, enabling storage of values starting
from 4-bit channels. Reconstruction of a value at a single level
is either 𝑥𝑖𝑟 = (𝑚𝑎𝑥𝑖+1 − 𝑎𝑣𝑒𝑖+1)𝑥𝑖𝑐 + 𝑎𝑣𝑒𝑖−1 or 𝑥𝑖𝑟 = (𝑎𝑣𝑒𝑖+1 −
𝑚𝑖𝑛𝑖+1)𝑥𝑖𝑐 +𝑚𝑖𝑛𝑖−1, where 𝑥𝑖𝑟 , 𝑥𝑖𝑐 are reconstructed and compressed
values respectively. We select one equation depending on the sign
bit we store. This is executed recursively from the root to the bottom
to reconstruct voxel values.

2.2 Construction
2.2.1 First Pass. The first pass is a bottom-up process that starts
with building nodes at level 0. To achieve parallelization, which
is necessary due to the scale of the data, we first run a pass over
the data to build nodes at level 0. Since our input data measures
in terabytes, for which it is difficult to allocate all the nodes in the
tree on the RAM, we use a hashmap to keep track of nodes we

https://doi.org/10.1145/3532719.3543256
https://doi.org/10.1145/3532719.3543256


SIGGRAPH ’22 Posters, August 07-11, 2022, Vancouver, BC, Canada M.Oguz Derin, T.Harada, Y.Takeda and Y.Iba

Figure 2: Our data structure with N=3.

created to store them efficiently. The hash key is computed using
level, index.x, index.y, index.z as the inputs. Note that the node data
we write here uses 32-bit or 64-bit types, which is different from
the node data we store in the end. It is compressed using a single
bit for a node existence rather than an expanded offset. Depending
on the system configuration, our preprocessor can store the node
data in RAM or disk. We use a single thread to process N images
at the very first pass so it can conclude the build of a level 0 node
by itself. It computes the maximum, minimum, and average from
the input data and child masks. Then it stores the node data to
the location looked up by the hash map. After processing level 0,
we build level 1, where we launch the number of jobs equal to the
number of nodes we may get if we use a dense grid. A thread goes
through the nodes of its children to compute max, min, and average
child masks. The hash of a child can be calculated from the level
index and index in the 3D coordinate. This process is repeated until
we reach the root node.

2.2.2 Second Pass. After the first pass is complete, the second pass
parallelizes over the nodes at any level to perform the compression
of the max, min, and average. The reason why we can take any
node at a time to process in the second pass is using the nature of
our compression algorithm, which is local. In order to compress
the max, min, and average value of a single node, we only need to
know one level above, where the preprocessor quickly seeks the file
handle to the determined file positions and recursively calculates
the wavelet compressed value. After all the nodes are compressed,
we can reconstruct the node value by simply traversing the nodes
from the root to the leaf.

2.3 Traversal
Our compact representation stores data in a way where we can
load specific voxels on-demand without complete block-wise de-
compression, which is necessary for the exposed parameters of
radius and user-determined custom path direction functions. Two
important aspects that enable our rendering approach are fast ray
traversal and fast host memory access for individual voxel values
in this setting. Accessing a specific voxel on GPU is trivial where
the desired voxel position needs to be scaled down and modulated
accordingly at each level while descending, but since our data struc-
ture captures sparsity and then represents both color and memory
location recursively, it is essential to skip empty space and reuse
value already fetched for higher levels when traversing along a
ray. To achieve this, we implement a hierarchical DDA for skipping
empty space. Also, we avoid traversing the tree from the root as
much as possible in our novel traversal algorithm. Specifically, we

Figure 3: A 19, 008 × 12, 672 pixel image is reconstructed from
our data structure. The tiles on the right are 256 × 256 pixels.

keep a stack of the values we computed when we traversed at the
very first time to the bottom. When we access other voxel data,
we backtrack the structure to find the node where we can start
descending. In this way, we primarily traverse the entire data struc-
ture from the root once at the very beginning. At runtime, we store
all data except for the bottom level directly on the GPU memory.
We expose the bottom level by registering host memory.

3 RESULTS
We show in Fig. 1 that our work manages to build a compressed
tree of 0.7 TB from 2.5 TB of data (3.7 TB decoded) at 45 dB PSNR,
interactively visualize 8K at 33 ms per frame, and allow exploration
of voxel-scale details through 3D navigation system that displays
structures in all dimensions. We use an AMD Radeon PRO ™W6800
GPU on 21.Q4 driver for the evaluation of our implementation. The
system has an AMD Ryzen Threadripper PRO 3955WX, 1536 GBs of
RAM, and runs Windows 10, Vulkan 1.2, and HIP through Orochi.

We demonstrate that our approach enables visualization of vol-
umes that are: larger in grid size, denser in content, and more vary-
ing in modes of render retrieval. Our method builds a more tight-
fit tree structure that captures sparsity and compresses through
wavelet transform, resulting in a compact representation. We find
that it works interactively with recent hardware while relying on
generic system memory streaming methods to render on GPU. We
also show that it is possible to exploit the hierarchical nature of this
data structure to accelerate traversal and that hardware-specific
utilization of register spills is a differentiator in performance.

In future, we would like to explore ray-tracing hardware in
higher levels of the tree for traversal, subgroups and workgroup
sharedmemory for datamovement, directed acyclic graphs, frequency-
domain transformations, and neural methods for compression, and
new web APIs with alternative streaming methods for mobile.

REFERENCES
Mitko Aleksandrov, Sisi Zlatanova, and David J. Heslop. 2021. Voxelisation Algorithms

and Data Structures: A Review. Sensors (Basel, Switzerland) 21 (2021).
Alejandro Graciano, Antonio J. Rueda-Ruiz, Adam Pospísil, Jiří Bittner, and Bedrich

Benes. 2021. QuadStack: An Efficient Representation and Direct Rendering of
Layered Datasets. IEEE Transactions on Visualization and Computer Graphics 27
(2021), 3733–3744.

Ken Museth. 2021. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For
Real-Time Rendering And Simulation. ACM SIGGRAPH 2021 Talks (2021).

Ingo Wald, Gregory P. Johnson, Jefferson Amstutz, Carson Brownlee, Aaron Knoll,
J. Jeffers, Johannes Günther, and Paul A. Navrátil. 2017. OSPRay - A CPU Ray
Tracing Framework for Scientific Visualization. IEEE Transactions on Visualization
and Computer Graphics 23 (2017), 931–940.


	Abstract
	1 Introduction
	2 Method
	2.1 Data Structure
	2.2 Construction
	2.3 Traversal

	3 Results
	References

