
Spatiotemporal Variance-Guided Filtering for Motion Blur

MAX OBERBERGER, AMD, Germany and Technical University of Munich, Germany
MATTHÄUS G. CHAJDAS, AMD, Germany
RÜDIGER WESTERMANN, Technical University of Munich, Germany

1s
pp

In
pu

t
O
ur

Fi
lte

r
40
96
sp
p

Fig. 1. We reconstruct motion blur from a 1 sample per pixel ray traced input (left). We compare our results
(center) against brute force Monte Carlo motion blur (right) with 4096 samples per pixel.

Adding motion blur to a scene can help to convey the feeling of speed even at low frame rates. Monte Carlo
ray tracing can compute accurate motion blur, but requires a large number of samples per pixel to converge.
In comparison, rasterization, in combination with a post-processing filter, can generate fast, but not accurate
motion blur from a single sample per pixel.

We build upon a recent path tracing denoiser and propose its variant to simulate ray-traced motion blur,
enabling fast and high-quality motion blur from a single sample per pixel. Our approach creates temporally
coherent renderings by estimating the motion direction and variance locally, and using these estimates to
guide wavelet filters at different scales.

We compare image quality against brute force Monte Carlo methods and current post-processing motion
blur. Our approach achieves real-time frame rates, requiring less than 4ms for full-screen motion blur at a
resolution of 1920 × 1080 on recent graphics cards.

CCS Concepts: • Computing methodologies→ Ray tracing.

Additional Key Words and Phrases: motion blur, ray tracing, reconstruction, real-time rendering

Authors’ addresses: Max Oberberger, AMD, Munich, Germany and Technical University of Munich, Munich, Germany,
max.oberberger@tum.de; Matthäus G. Chajdas, AMD, Munich, Germany, chajdas@tum.de; Rüdiger Westermann, Technical
University of Munich, Munich, Germany, westermann@tum.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
2577-6193/2022/7-ART
https://doi.org/10.1145/3543871

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

HTTPS://ORCID.ORG/0000-0001-9648-3171
HTTPS://ORCID.ORG/0000-0003-4689-2932
HTTPS://ORCID.ORG/0000-0002-3394-0731
https://orcid.org/0000-0001-9648-3171
https://orcid.org/0000-0003-4689-2932
https://orcid.org/0000-0002-3394-0731
https://doi.org/10.1145/3543871

2 Oberberger, Chajdas and Westermann

ACM Reference Format:
Max Oberberger, Matthäus G. Chajdas, and Rüdiger Westermann. 2022. Spatiotemporal Variance-Guided
Filtering for Motion Blur. Proc. ACM Comput. Graph. Interact. Tech. 5, 3 (July 2022), 13 pages. https://doi.org/
10.1145/3543871

1 INTRODUCTION
When capturing a still image, objects that move during the exposure time appear blurred. The same
effect also applies to videos and even the human eye. Video games often try to emulate motion
blur to convey the sense of motion, e.g. in racing games. Most modern games and game engines
generate motion blur in a post-process effect [Epic Games 2022; Rosado 2007; Unity Technologies
2021]. Post-process motion blur can produce convincing results, but quality and accuracy is limited,
as disocclusion can not be solved by traditional rasterization-based rendering. Distributed ray
tracing [Cook et al. 1984] in combination with brute force Monte Carlo methods can generate photo-
realistic motion blur at the expense of significantly increased rendering time, thereby exceeding
time constraints for real-time rendering. The introduction of hardware accelerated ray tracing
[Wyman et al. 2018] allowed real-time ray tracing with a limited number of rays per pixel. The
overall increased capabilities of modern graphics cards lead to many contributions in the field of
reconstructing low sample count path traced images.

Based on the works of Schied et al. [Schied et al. 2017], we introduce a novel reconstruction filter
for ray traced motion blur. The filter generates a temporally stable image sequence from a one ray
per pixel input. Rays are only distributed over time and no additional stochastic ray tracing effects
are handled by the filter. Temporal accumulation is used to increase the effective sample count.
The filter follows a hierarchical structure with separate reconstruction of moving object and static
objects/background. Fullscreen motion blur is typically computed in less than four milliseconds,
thus allowing ray traced motion blur to be used in realtime computer graphics.

2 RELATEDWORK
Post-Process Motion Blur. To convey the sense of speed, a post-process effect is used in most games to
simulate motion blur. This effect works through blurring the current framebuffer by accumulating
multiple samples along a line [Ritchie et al. 2010; Rosado 2007]. Orientation and length of this line
are given by a per-pixel motion vector. This causes the blur to only be applied to the visible area of
the moving object, i.e. blurring the object inwards. Some post-process motion blur implementations
[McGuire et al. 2012; Shimizu et al. 2003] extends the blurred object’s visible area to create a more
realistic effect. As all of the above mentioned effects rely on a rasterized framebuffer as an input,
none of them can retrieve information behind the moving object. This disocclusion leads to artifacts,
especially if multiple moving object are overlapping.

Stochastic Motion Blur. Disocclusion can be solved via distributed ray tracing [Cook et al. 1984]. A
random timestampwithin the frame’s shutter is assigned to each ray. Ray origin and direction as well
as the scene geometry is adjusted to match this timestamp. Accumulating multiple samples yields a
converged image. Stochastic rasterization [Akenine-Möller et al. 2007; Enderton and McGuire 2012]
can achieve similar results, whilst using standard rasterization hardware. Triangle geometry is
converted to time-continuous triangles and visibility can be altered by discarding specific fragments
to mimic stochastic ray tracing. Due to performance limitations of the time-continuous triangles,
stochastic rasterization can be seen as superseded by hardware accelerated ray tracing.

Motion Blur Reconstruction.A reconstruction filter generates a noise-free image from a low sample
count Monte Carlo input. As ray tracing is a very time consuming process, minimizing the required
samples can greatly decrease render times. Different ways of reconstructing stochastic motion blur
have already been explored. Egan et al. analyse motion blur in the frequency domain and arrive

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

https://doi.org/10.1145/3543871
https://doi.org/10.1145/3543871

SVGF for Motion Blur 3

at an approximation for the spectrum of moving scenes, which can be used to compute adaptive
sampling rates [Egan et al. 2009]. They also introduce a sheared filter, which is aligned with the
motion direction and allows for an input sample rate of typically four to eight samples per pixel.
Munkberg et al. [Munkberg et al. 2014] present a layered approach for simultaneous reconstructing
of motion blur and defocus blur. Hasselgren, Munkberg, and Vaidyanathan [Hasselgren et al.
2015] add significant performance improvements to this reconstruction approach by leveraging
anisotropic sampling present on modern GPUs. All of the above mentioned contributions are aimed
at accelerating ray traced motion blur by reducing the required sample count to 4-8 samples per
pixel. On current hardware, this still exceeds performance targets for real-time graphics. Lehtinen
et al. [Lehtinen et al. 2011] present a general reconstruction technique, that can also be applied to
motion blur. Their approach is designed with multiple input samples in mind, but can reconstruct
motion blur from a single sample per pixel. With a filter runtime of multiple seconds, this approach
can not be adopted for real-time graphics.
Modern Reconstruction Techniques. The increased interest in real-time ray tracing has lead to

significant contributions in the field of reconstructing realistic light transport from a limited number
of ray traced input samples. Mara et al. present a hybrid approach, which uses rasterization for
direct and two ray traced samples for indirect lighting. Dammertz et al. [Dammertz et al. 2010]
present an edge-avoiding filter using a hierarchical à-trous wavelet transform to reconstruct one
sample per pixel global illumination. The wavelet transform is iteratively applied on the output
of the previous iteration. The filter kernel has a constant number of non-zero coefficient samples,
with a per-iteration increasing number of zero coefficients in between. Schied et al. [Schied et al.
2017] extend this concept by adding a continuously updated variance estimate, which guides the
reconstruction filter. The resulting filter reconstructs global illumination from a single path traced
sample per pixel. Our paper adapts this filtering technique to stochastic motion blur.

Neural Reconstruction Techniques. In recent years, neural reconstruction approaches have become
a viable alternative to classic filtering denoisers. Chaitanya et al. [Chaitanya et al. 2017] present an
autoencoder based denoising filter for global illumination at interactive framerates. Hasselgren et
al. [Hasselgren et al. 2020] use temporal data and guides to generate a neural sample map estimate
for adaptive sampling and subsequent reconstruction. Both methods only focus on reconstructing
global illumination and rely on locally consistent visibility. Thus neither method is suitable or
adaptable to stochastic motion blur reconstruction.

3 RECONSTRUCTION PIPELINE
In the following section, we provide an overview of our reconstruction pipeline, its components
and the data flow between them.

Ray Tracing. The ray tracing implementation used to generate input data for the reconstruction
filter closely follows distributed ray tracing, as described by Cook et al. [Cook et al. 1984]. A
pseudorandom number generator [Blackman and Vigna 2021] is used to generate a timestamp 𝑡
within the interval [0; 1] for each ray. The timestamp describes the ray’s temporal position inside
the frame’s shutter, whereby 𝑡 = 0 and 𝑡 = 1 refer to beginning and end of the frame respectively.
Linear interpolation of camera and object transforms is used to represent the scene at the given
timestamp.

Our ray tracing implementation is based on a DirectX raytracing sample for real-time ray-traced
ambient occlusion provided by Microsoft [Microsoft 2019]. Hardware accelerated ray tracing
[Microsoft 2021; Wyman et al. 2018] is used to achieve interactive framerates.
The ray tracer generates a one sample per pixel color output. An auxiliary framebuffer also

provides the screen-space motion vector, depth and ray timestamp to the subsequent reconstruction
filter. The data in the auxiliary buffer is stored as packed 16-bit floating-point numbers to save

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

4 Oberberger, Chajdas and Westermann

Mean & Variance
Computation

Pre-Filter

Input First Stage Temporal
Accumulation

History
Buffer

Second Stage

3 iterations

Composition

Fig. 2. Data flow in the reconstruction pipeline. Pre-processing computes the mean motion direction and
variance, which is used to guide the filter. The filtering section separates moving (orange) from non-moving
(blue) samples and reconstructs both independently. Temporal accumulation is used to increase effective
sample counts. Composition combines moving and non-moving output of the filtering section.

memory bandwidth. Further frame data, such as normals or mesh ids are not required. No secondary
rays (shadows, reflections) are traced.
Reconstruction. Figure 2 visualizes data flow inside the reconstruction filter. We first use the

per-pixel motion vector to compute a local variance estimate, which is later used to control the
filtering process. Next, the first iteration of the wavelet transform filter separates moving pixel
from the static background. We refer to this step as the first stage. The filtered results are stored
in separate textures, referred to as moving and non-moving texture/channels. This separation is
critical, as the à-trous wavelet transform is applied in multiple, subsequent iterations. Schied et al.
[Schied et al. 2017] demodulate surface albedo from lighting reconstruction for the same reason.
Filtering and storing moving and non-moving pixel together would thus either result in blurring
non-moving samples or insufficient blurring of moving samples. Moving pixels are processed by
an additional pre-filter, which increases the effective sample count. After this initial filtering step,
the history buffer is re-projected onto the current frame. Re-projected samples are integrated into
both channels. The moving texture is processed by three more iterations of the à-trous wavelet
transform, each with increasing filter kernel footprint. We refer to this as the second stage. Lastly,
the moving texture is composited on top of the non-moving texture. A blending factor, which is
computed as a bi-product of the variance estimate, is used to correctly layer both textures.

4 SPATIOTEMPORAL FILTER
4.1 Variance Estimate
In their seminal work, Schied et al. [Schied et al. 2017] introduce the idea of using a variance estimate
to control or guide the filtering process. Temporal variance of the color luminance, accumulated
over multiple frames, is used as a proxy for detecting noise. For motion blur, temporal accumulation
is challenging, as geometric consistency can not be ensured for raw stochastic inputs. In addition,
a per pixel temporal variance estimate does not yield correct results if a moving object passes over
a static pixel and no samples from the moving object have been recorded yet. Variance in the input
signal is directly caused by motion. Thus the motion vector, or rather its length, can be used as a
variance estimate instead.

We filter a 15 × 15 pixel area of the motion vector in the full-resolution input and compute the
mean motion vector length. To increase performance, the filtering is done in 2 × 2 tiles, i.e. at half
resolution. Non-moving pixels are ignored and a depth threshold is used to retain sharp edges of
occluding geometry. In order to align the subsequent reconstruction filter with the motion vector,
the mean motion direction is also computed as the angle between the motion vector and the 𝑥-axis.
Discontinuity between 0◦ and 360◦ negatively impacts both mean and variance computation. Thus
a local approach, with angles relative to the first sample (center of the filter region) was chosen

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

SVGF for Motion Blur 5

0◦

30◦

60◦90◦120◦

150◦

±180◦

−150◦

−120◦ −90◦ −60◦

−30◦

(a) 𝜇 = −86.6◦, 𝜎 = 84.9

−30◦

0◦

30◦60◦±90◦

−60◦

−30◦

0◦

30◦ 60◦ ±90◦

−60◦

(b) 𝜇 = 3.3◦, 𝜎 = 20.5

Fig. 3. Computing mean motion angle as angle between motion vector and 𝑥 axis can lead to undesired
results and high variance (left). A rotated, wrap-around coordinate system (right) is used to compute the
mean motion angle (orange) and variance relative to the first motion vector (dotted, 30◦).

instead. Back-facing directions with relative angles outside the [−90◦;+90◦] interval are flipped by
180◦. The filter does not differentiate between motion in a single direction and motion in opposite
direction. Note that the direction (i.e. sign) of the angle is important and thus computing the relative
angles via the dot product in not possible. Figure 3 compares the computation using relative angles
to a naive approach. The angle variance 𝜎2

𝜃
is normalized to the interval [0; 1].

Mean motion vector length and angle define scale and rotation of the à-trous wavelet transform.
Additionally, the local variance of both motion vector length and motion vector angle is used to
adjust reconstruction filter parameters. As the variance estimate is not dependent on the color
input, updating the estimate during filtering is not needed.

4.2 Pre-Filter
Our implementation of the hierarchical à-trous wavelet transform, as presented by Dammertz
et al. [Dammertz et al. 2010], deviates from the fixed step sizes for each level. Instead the kernel
footprint is adjusted to match the motion vector magnitude. This way not every pixel is guaranteed
to be directly included in the hierarchical filter. We apply a pre-filter to collect up to 18 random
contributions along the current pixel’s motion vector. This filter mimics the effect of rendering the
image with multiple samples per pixel, by accumulating select samples onto the current one.

For each pixel 𝑝 with motion vector 𝑣𝑝 and timestamp 𝑡𝑝 , a random sample
𝑠 = 𝑝 + 𝑣𝑝 (𝑡 ′ − 𝑡𝑝) + 𝑗

with random value 𝑡 ′ ∈ [0; 1] and jitter offset 𝑗 ∈ [−1.5; 1.5]2 is generated. Two samples are taken
for each pixel. Neighboring samples are shared across a 3 × 3 area via local data share memory. We
evaluate the distance 𝑑 (𝑝, 𝑠) between 𝑝 and the motion vector line segment of 𝑠 (see eq. 1). Samples
below the threshold of 2.5 are accumulated. The pre-filter is skipped for pixels with a motion vector
magnitude less than 3. Figure 4 shows the processed output of the pre-filter as well as the final
filter output with and without the pre-filter enabled. The pre-filter helps reduce input variance and
filter outputs more closely match ground truth data, especially along object edges.

4.3 Spatial Filter
Spatial filtering is done in two stages. The first stage separates moving and non-moving pixels
and applies the first iteration of the wavelet transform separately to both channels. The output of
the first stage is enhanced by temporal accumulation (see sec. 4.4). The second stage applies three
iterations of the wavelet transform to the moving channel. The filter is only applied in region with
a mean motion vector length greater than zero.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

6 Oberberger, Chajdas and Westermann

1spp Pre-Filter 4spp Output
w/o pre-filter

Output
w/ pre-filter

4096spp

Fig. 4. The pre-filter increases the effective sample rate by collecting contributions from distant samples.
Filtered images resemble inputs with 4 − 8 samples per pixel. Crytek Sponza by Frank Meinl [McGuire 2017],
CC BY 3.0

À-trous wavelet transform. We use a 5×5 cross-bilateral filter kernel with a single weight function
𝑤 (𝑝, 𝑞) between kernel center 𝑝 and sample 𝑞. The weight function determines, whether the sample
𝑞 could be found at position 𝑝 with a different timestamp. Given the sample position 𝑞, motion
vector 𝑣𝑞 and timestamp 𝑡𝑞 , we can compute the line segment 𝑞0𝑞1, along which 𝑞 moves during
the frame as follows:

𝑞0 = 𝑞 − 𝑣𝑞𝑡𝑞

𝑞1 = 𝑞 + 𝑣𝑞 (1 − 𝑡𝑞)
The weight function is based on the distance 𝑑 (𝑝, 𝑞) between 𝑝 and this line segment.

𝑙 =
(𝑝 − 𝑞0) · (𝑞1 − 𝑞0)

| |𝑞1 − 𝑞0 | |2
𝑑 (𝑝, 𝑞) = | |𝑝 − (𝑞0 + 𝑙 (𝑞1 − 𝑞0)) | | (1)

If 𝑙 exceeds the interval [0; 1], the sample is assigned a zero-weight.
The weight function is inversely proportional to 𝑑 (𝑝, 𝑞) and is computed via linear mapping.

The mapped interval is defined by the local motion vector length variance 𝜎2
| |𝑣 | | and normalized

motion angle variance 𝜎2
𝜃
. Parameters 𝛽𝑙 and 𝛽𝑎 adjust influence of each variance respectively.

𝑐𝑎 = 1 +min{1, 𝛽𝑎𝜎2
𝜃
}

𝑐𝑙 = 1 +min{1, 𝛽𝑙𝜎2
| |𝑣 | | }

𝑤 (𝑝, 𝑞) = 1 − 𝑑 (𝑝, 𝑞) 1
𝑐𝑎𝑐𝑙

In testing 𝛽𝑙 = 10 and 𝛽𝑎 = 1 were found to yield good results. Figure 5 visualizes our weight
function as a distance field.

First Stage. The first stage applies the à-trous wavelet transform with the aforementioned weight
function to all moving pixels. The wavelet transform filters both color and motion vector values.
No scaling or rotation is applied to the filter kernel. Non-moving pixels are filtered using the same
5 × 5 cross-bilateral filter kernel, but without any weight functions. A depth threshold is used to
not filter any moving samples, that are occluded by non-moving geometry.
Second Stage. The second stage only filters the moving channel. The filter kernel is rotated to

align with the local mean motion angle (see sec. 4.1). Scaling factor 𝑠𝑥 controls filter kernel step
width along the motion vector and 𝑠𝑦 orthogonally. We deviate form the fixed kernel size and
exponential 2𝑖−1 increase in zero-weight contribution, as presented by [Dammertz et al. 2010] and
scale the kernel step by the local mean motion vector length 𝑙 . 𝑠𝑥 for iteration 𝑖 is calculated as

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

SVGF for Motion Blur 7

q

q0

q1

p

p′
d(p, q)

q

q0

q1

Fig. 5. Sample 𝑞 is weighted proportional to the shortest distance 𝑑 (𝑝, 𝑞) between the motion line segment
of 𝑞 and the kernel center 𝑝 (left). If the projection 𝑝′ is not on the segment 𝑞0𝑞1, 𝑞 receives a zero-weight.
The resulting weight function is shown as a distance field on the right.

Ours EAW 4096spp

Fig. 6. Fast (Sponza) and slow (San Miguel) sideways camera movement. Comparison of our kernel step
scaling against the original edge-avoiding à-trous wavelet transform (EAW) [Dammertz et al. 2010]. The fixed
size kernel does not cover the entire motion vector length of fast moving objects. For slow movement, EAW
does not collect enough close-by samples, resulting in remaining variance, while our filter slightly overblurs
the image. San Miguel by Guillermo M. Leal Llaguno [McGuire 2017] CC BY 3.0

follows:

𝑠𝑥 =
1
5

𝑙

23−𝑖
The constant 1

5 converts the filter kernel footprint scale to kernel step scale for a 5 × 5 filter kernel.
The scaling factor 1

23−𝑖 mimics the exponential increase of 2𝑖−1 zero weights in the original à-trous
filter implementation. To account for contributions with different motion direction, the normalized
angle variance 𝜎2

𝜃
is used to determined the orthogonal kernel step, by means of linear interpolation

between 1 and 𝑠𝑥 . Scaling and rotation are computed as floating points and rounded to whole pixels.
This modified kernel scaling mostly affects areas with high motion vector magnitude, as distant
samples would not be reached by a fixed size kernel (see fig. 6).

4.4 Temporal Filter
To increase the effective sample count used in the reconstruction, we use temporal accumulation to
reuse samples from previous frames. We store partially filtered results from the previous frame in a
history buffer an re-project it to fit the current frame. Traditional re-projection methods use the
motion vector to find candidate samples in the history buffer and validate them using consistency
checks based on depth and normals [Karis 2014; Schied et al. 2017]. For motion blur, primary
visibility is not consistency between frames, thus these consistency checks may not yield correct

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

8 Oberberger, Chajdas and Westermann

pq

q′

− 1
2vp

−vp

1
2vq

δ

δ

Fig. 7. Temporal re-projection uses the difference 𝛿 between back-projecting the current sample 𝑝 and
forward-projecting the sample candidate 𝑞 to generate the next sample candidate 𝑞′. Updates are applied
iteratively until | |𝛿 | | is below a set threshold.

(a) 1 Iteration (b) 2 Iterations

Fig. 8. Temporal re-projection of camera rotation. Pixel colored in pink indicate failed re-projection. The
iterative back- and forwards-projection (right) can re-project challenging scenarios, like camera rotation.
Simple back-projection (i.e. 1 iteration; left) can only re-project a smaller subset of samples in the same
situation.

results. Instead we implement an iterative search algorithm to find and evaluate candidate samples
in the history buffer.
Given the current pixel 𝑝 , we use its motion vector 𝑣𝑝 to find an initial guess 𝑞. If 𝑞 is a valid

sample, using 𝑣𝑞 to forward-project it should yield 𝑝 . We use the filtered motion vector output of
the first stage for the initial guess and refinement, as raw samples from the ray tracer contain too
much variance. As filtered timestamps converge towards 0.5, we compute the difference 𝛿 between
this backward- and forward projection at the half-way point (using 1

2𝑣𝑝 and 1
2𝑣𝑞 instead). We use a

lower threshold to accept valid samples and an upper threshold to cancel the re-projection process.
If neither threshold is met, 𝛿 is used to update the sample position.

𝑞 = 𝑝 − 𝑣𝑝

𝛿 =

(
𝑝 − 1

2𝑣𝑝
)
−
(
𝑞 + 1

2𝑣𝑞
)

𝑞′ = 𝑞 + 𝛿

Figure 7 visualizes this process. In testing we found an iteration limit of 2 to be sufficient for most
scenarios.
The final 𝑞′ is expected to better connect with 𝑝 , i.e. forward-projection of 𝑞′ using the actual

timestamp would result in a samples that moves through or close to the current sample. In most
situations, one iteration, i.e. no update step, is sufficient for re-projection. Difficult to re-project
scenarios, such as rotation are handled by at most two iterations (see fig 8).
To integrate the re-projected samples into reconstruction pipeline, we recreate the value sum

and weight sum for both moving and non-moving channels from the output of first stage. The same

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

SVGF for Motion Blur 9

SVGF 4096spp FLIP SVGF 4096spp FLIP

Fig. 9. Motion blur reconstruction introduces a slight
overall blur to the image (left). Fine details can not
be fully reconstructed, even with temporal accumu-
lation (right).

4096spp SVGF FLIP
(SVGF)

Post-
Process

FLIP (Post-
Process)

Fig. 10. Two spheres moving in different directions.
Disocclusion occurs at the edge between the spheres.

non-rotated, non-scaled filter kernel from the first stage is used and samples are directly added to
the output of the prior filter. The filtered output is copied into the history buffer.

5 RESULTS
We evaluate our reconstruction filter under the following metrics: image quality, temporal stability
and performance. Image quality is evaluated in comparison to 4096 samples per pixel ray traced
motion blur. All tests were conducted on an AMD Radeon RX 6800 XT. Frame rates were locked at
60 frames per second.

5.1 ImageQuality
We evaluate the quality of our reconstruction filter by comparing filtered images to brute force
Monte Carlo images with 4096 samples per pixel. We use the difference evaluator FLIP [Andersson
et al. 2020], as it is specifically designed for such comparisons. Our test scenes include a mixture of
camera and object movements.

As no state-of-the-art reconstruction algorithm, which generates motion blur from a one sample
per pixel input within the same time budget (i.e. real-time) is known to us, we chose to only
compare our implementation against ground truth data. In addition, we draw comparisons to a
simple post-process motion blur implementation based on [Ritchie et al. 2010; Rosado 2007] and
the state-of-the-art post-process motion-blur in Epic Games’ Unreal Engine 4 [Epic Games 2022],
in order to demonstrate core limitations of post-process techniques.

In general, our filter reduces variance in the input signal to an indistinguishable amount, when
viewed as a continuous image sequence. In still images, some remaining noise can be seen mostly
along edges of objects. These regions do not contain enough information for complete reconstruction
and are also challenging for our temporal re-project algorithm. The filter introduces a slight overall
blurring to all moving areas, even slow moving ones (see fig. 9). This can be traced back to slight
errors in temporal re-projection and the distance threshold in the filter weight function.
Ray traced motion blur solved the disocclusion problem typically associated with post-process

motion blur. Figure 10 compares disocclusion along the edge of two object moving in different
directions. Our filter closely matches ground truth results, whilst the post-process effects fails
to generate the smooth blending of both objects. Similar artifacts are also visible in Epic Games’
Unreal Engine [Epic Games 2022] (see fig. 11).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

10 Oberberger, Chajdas and Westermann

Fig. 11. Post-process motion blur rendered in Unreal Engine 4.27. Spheres moving in horizontal (red) and
vertical (blue) direction. The post-process motion blur effect can not resolve disocclusion artifacts.

5.2 Temporal Stability
Evaluating temporal stability of moving images is difficult. Traditional difference evaluators, such
as FLIP, only compare one frame against a ground truth reference. Differences between frames
can not be used, as the content changes due to motion. The ground truth data is assumed to be
temporally stable. Individual frames are compared to their respective ground truth and the mean
FLIP error is measured over time. This error is used as a proxy for determining temporal stability.
Figure 12 shows the mean and weighted median error over time. A consistent low error rate is
maintained and visual inspection concluded with no temporal inconsistencies.

5.3 Performance
Our reconstruction filter is aimed at reconstructing ray traced motion blur with interactive framer-
ates. Figure 13 shows filter execution time in different scenarios. Runtime consistently remains
below 4 milliseconds in all test cases. Performance is directly bound by the screen-space area with
visible motion (see figure 13). Motion vector magnitude and orientation have a negligible effect
on performance. In scenarios without any visible motion, the filter runtime is 1 − 1.5ms. This can
mostly be attributed to the variance estimate, which filters the entire framebuffer. In general, filter
performance is limited by the available memory bandwidth.

Average runtime of the post-process motion blur filters is 0.4ms in the case of the simple reference
implementation and 1.5 milliseconds in Unreal Engine 4. The performance advantages of the post-
process filters can be attributed to the reduced algorithmic complexity and reduced number of
texture reads as compared to the presented filter.

6 LIMITATIONS AND FUTUREWORK
Our filter can reduce variance in a noisy, one sample per pixel input. Nevertheless, we identify the
following limitations and opportunities for future contributions.
Shadows & Reflections. The current filter implementation does not account for secondary ray

effects, such as reflections or shadows. Our ray tracer supports both shadows and glossy reflections.
Reflections on moving objects mostly remain stationary, while shadows cast by moving objects
introduce additional variance on non-moving surfaces (see figure 14). As these effects are directly
part of the color information, the filter can not differentiate between primary and secondary rays.
Additional variance introduced by stochastic secondary rays, such as global illumination or soft
shadows is also not handled by our reconstruction filter. Passing separate color and motion vector
information for each secondary ray and filtering them separately could solve this issue.
Lighting. Similar to shadows and reflections, lighting is baked into the color information. Thus

lighting, or rather the movement of lights, can not be inferred from the input signal. By providing

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

SVGF for Motion Blur 11

0 20 40 60
0

2

4

·10−2

Frame Index

FLI
P
Er
ro
r

Mean Weighted median

Fig. 12. Mean and weighted median FLIP error mea-
sured for 60 individual frames. We compare the filter
output to a 4096 samples per pixel reference. Error
rates remain low for the entire duration of the se-
quence. In combination with a visual inspection, the
reconstructed output seen as a temporally stable im-
age sequence.

Sa
n M

igu
el
(10

0%
, s
low

)

Sa
n M

igu
el
(10

0%
, fa

st)

Sp
on
za
(10

0%
)

Sp
on
za
(10

0%
)

Sp
on
za
(11

%)

Sp
on
za
(10

0%
)

0

2

4 3
.6

6
m
s

3
.7

1
m
s

3
.7

2
m
s

3
.6

9
m
s

1
.7

9
m
s

3
.6

6
m
s

Re
co
ns
tru

ct
io
n
Fi
lte

rR
un

tim
e
[m

s]

Fig. 13. Reconstruction filter times in different
scenes and with different motion. Numbers in brack-
ets indicate screen-space area with moving pixels.
Measurements were taken at a resolution of 1920 ×
1080 pixels on an AMD Radeon RX 6800 XT.

(a) Reconstruction Filter (b) 4096spp

Fig. 14. Reflections and shadows cast by moving object are currently not handled by the reconstruction filter.
Variance in the shadows can not be filtered without blurring the static background. The reconstruction filter
can not preserve stationary reflections on moving objects.

additional surface information, lighting could be demodulated from the input color and could be
filtered separately. Motion between frames is usually rather small. One could argue, that stochas-
tically moving lights would not yield significant improvement to photorealistic images and can
therefore be omitted.

Non-Linear Motion. Currently motion is defined as linear interpolation between two transforms.
Epic Games’ Unreal Engine 4 includes a special version of their post-process motion blur filter,
which also supports radial motion blur [Epic Games 2019]. Adding similar functionality to the
reconstruction filter could improve results, especially in challenging scenarios, such as the spinning
propellers of the Buster Drone. Significant changes to the ray tracer and reconstruction filter are
needed to integrate non-linear motion.

Adaptive & Reservoir Sampling As explained in section 5.1, the one sample per pixel input provides
sufficient information to reconstruct most scenarios. Areas with exceedingly high variance can not
be fully reconstructed. Increasing the number of input samples in these areas would improve the

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

12 Oberberger, Chajdas and Westermann

reconstruction. Finding high variance areas prior to the ray tracing step is challenging. Under the
assumption that motion is mostly continuous, the variance estimate of the previous frame could be
forward-projected onto the current frame. Alternatively a second ray tracing pass could be used
after the current variance estimate is available. Hasselgren et al. [Hasselgren et al. 2020] present a
neural sample map estimator based on temporal and auxiliary data. It may be possible to adapt this
technique to use a non-stochastic, rasterized image, possibly at a lower resolution, to generate a
sample map estimate for motion blur.
Reservoir sampling [Ouyang et al. 2021] collects and evaluates a set of samples with high

contributions in reservoirs. Reservoir are filled with both neighboring and temporally accumulated
samples. Unfortunately, we see limited applicability of this techniques for motion blur. Samples are
distributed over time, resulting in a very limited sample space and every sample yielding the same
contribution. Therefore no reservoir can be build or shared between neighboring pixels.

7 CONCLUSION
In this paper, we present a novel reconstruction filter for ray traced motion blur. Our filter generates
a temporally stable image sequence of accurate motion blur from a one sample per pixel stochastic
input. The required processing time consistently remains below four milliseconds, making the filter
ready for real time applications, such as games.
We adapted spatiotemporal variance-guided filtering to stochastic motion blur. Our filter uses

motion as a variance estimate. We also introduce an iterative algorithm for re-projecting a partially
filtered, noisy history buffer.
Image quality of our filter does not fully match ray traced ground truth data. Variance in the

input signal is reduce to an indistinguishable amount when viewed as an image sequence, but is
visible in a still image. Compared to traditional post-process motion blur, our filter creates better
consistency between frames, which leads to a more convincing effect.
Performance of our filter is suitable for real-time applications. At a framerate of 30 frames per

second, filtering consumes less than 15% of the total frame time. This brings interactive applications,
such as games, closer to fully ray traced rendering.

REFERENCES
Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren. 2007. Stochastic Rasterization Using Time-Continuous

Triangles. In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware (GH ’07).
Eurographics Association, Goslar, DEU, 7–16.

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Aström, and Mark D. Fairchild. 2020.
FLIP: A Difference Evaluator for Alternating Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020). https:
//doi.org/10.1145/3406183

David Blackman and Sebastiano Vigna. 2021. Scrambled Linear Pseudorandom Number Generators. ACM Trans. Math.
Softw. 47, 4 (2021). https://doi.org/10.1145/3460772

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai,
and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoen-
coder. ACM Trans. Graph. 36, 4, Article 98 (jul 2017), 12 pages. https://doi.org/10.1145/3072959.3073601

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing. In Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’84). Association for Computing Machinery,
New York, NY, USA, 137–145. https://doi.org/10.1145/800031.808590

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010. Edge-Avoiding À-Trous Wavelet
Transform for Fast Global Illumination Filtering. In Proceedings of the Conference on High Performance Graphics (HPG
’10). Eurographics Association, Goslar, DEU, 67–75.

Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Fredo Durand, and Ravi Ramamoorthi. 2009. Frequency Analysis and
Sheared Reconstruction for Rendering Motion Blur. ACM Transactions on Graphics (SIGGRAPH 09) 28, 3 (2009). http:
//graphics.cs.berkeley.edu/papers/Egan-FAS-2009-07/

Eric Enderton and Morgan McGuire. 2012. Stochastic Rasterization.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
https://doi.org/10.1145/3460772
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/800031.808590
http://graphics.cs.berkeley.edu/papers/Egan-FAS-2009-07/
http://graphics.cs.berkeley.edu/papers/Egan-FAS-2009-07/

SVGF for Motion Blur 13

Epic Games. 2019. Radial Motion Blur. https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Materials/
HowTo/RadialMotionBlur/

Epic Games. 2022. Motion Blur. https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/PostProcessing/1_
12/

Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn. 2020. Neural Temporal Adaptive Sampling
and Denoising. Computer Graphics Forum (2020). https://doi.org/10.1111/cgf.13919

Jon Hasselgren, Jacob Munkberg, and Karthik Vaidyanathan. 2015. Practical Layered Reconstruction for Defocus and Motion
Blur. Journal of Computer Graphics Techniques (JCGT) 4, 2 (2015), 45–58. http://jcgt.org/published/0004/02/04/

Brian Karis. 2014. High-Quality Temporal Supersampling. In SIGGRAPH Courses: Advances in Real-Time Rendering in Games.
Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011. Temporal Light Field Reconstruction for

Rendering Distribution Effects. ACM Trans. Graph. 30, 4 (2011).
Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data
Morgan McGuire, Padraic Hennessy, Michael Bukowski, and Brian Osman. 2012. A Reconstruction Filter for Plausible

Motion Blur. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’12). Association
for Computing Machinery, New York, NY, USA, 135–142. https://doi.org/10.1145/2159616.2159639

Microsoft. 2019. D3D12 Raytracing Real-Time Denoised Ambient Occlusion sample. https:
//github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/
D3D12RaytracingRealTimeDenoisedAmbientOcclusion

Microsoft. 2021. DirectX Raytracing (DXR) Functional Spec. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
Jacob Munkberg, Karthik Vaidyanathan, Jon Hasselgren, Petrik Clarberg, and Tomas Akenine-Möller. 2014. Layered

Reconstruction for Defocus and Motion Blur. Computer Graphics Forum 33, 4 (2014), 81–92. https://doi.org/10.1111/cgf.
12415

Y. Ouyang, S. Liu, M. Kettunen, M. Pharr, and J. Pantaleoni. 2021. ReSTIR GI: Path Resampling for Real-Time Path Tracing.
Computer Graphics Forum 40, 8 (2021), 17–29. https://doi.org/10.1111/cgf.14378

Matt Ritchie, Greg Modern, and Kenny Mitchell. 2010. Split Second Motion Blur. In ACM SIGGRAPH 2010 Talks (SIGGRAPH
’10). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1837026.1837048

Gilberto Rosado. 2007. Motion Blur as a Post-Processing Effect. In Gpu Gems 3, Hubert Nguyen (Ed.). Addison-Wesley
Professional, 575–582. https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-27-motion-blur-
post-processing-effect

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla Chaitanya, John Burgess, Shiqiu
Liu, Carsten Dachsbacher, Aaron Lefohn, and Marco Salvi. 2017. Spatiotemporal Variance-Guided Filtering: Real-Time
Reconstruction for Path-Traced Global Illumination. In Proceedings of High Performance Graphics (HPG ’17). Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3105762.3105770

Clement Shimizu, Amit Shesh, and Baoquan Chen. 2003. Hardware accelerated motion blur generation. In EUROGRAPHICS,
Vol. 22. 2003.

Unity Technologies. 2021. Post Processing Effects: Motion Blur. https://learn.unity.com/tutorial/post-processing-effects-
motion-blur-2019-3

Chris Wyman, Shawn Hargreaves, Peter Shirley, and Colin Barré-Brisebois. 2018. Introduction to DirectX Raytracing. In
ACM SIGGRAPH 2018 Courses (SIGGRAPH ’18). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3214834.3231814

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 3, Article . Publication date: July 2022.

https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Materials/HowTo/RadialMotionBlur/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Materials/HowTo/RadialMotionBlur/
https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/PostProcessing/1_12/
https://docs.unrealengine.com/4.27/en-US/Resources/ContentExamples/PostProcessing/1_12/
https://doi.org/10.1111/cgf.13919
http://jcgt.org/published/0004/02/04/
https://casual-effects.com/data
https://doi.org/10.1145/2159616.2159639
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12Raytracing/src/D3D12RaytracingRealTimeDenoisedAmbientOcclusion
https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html
https://doi.org/10.1111/cgf.12415
https://doi.org/10.1111/cgf.12415
https://doi.org/10.1111/cgf.14378
https://doi.org/10.1145/1837026.1837048
https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-27-motion-blur-post-processing-effect
https://developer.nvidia.com/gpugems/gpugems3/part-iv-image-effects/chapter-27-motion-blur-post-processing-effect
https://doi.org/10.1145/3105762.3105770
https://learn.unity.com/tutorial/post-processing-effects-motion-blur-2019-3
https://learn.unity.com/tutorial/post-processing-effects-motion-blur-2019-3
https://doi.org/10.1145/3214834.3231814
https://doi.org/10.1145/3214834.3231814

	Abstract
	1 Introduction
	2 Related Work
	3 Reconstruction Pipeline
	4 Spatiotemporal Filter
	4.1 Variance Estimate
	4.2 Pre-Filter
	4.3 Spatial Filter
	4.4 Temporal Filter

	5 Results
	5.1 Image Quality
	5.2 Temporal Stability
	5.3 Performance

	6 Limitations and Future Work
	7 Conclusion
	References

