
1 |

Subspace Culling for Ray-Box Intersection

Atsushi Yoshimura

Takahiro Harada

2 |

Problem - what we want to solve

• AABB is a popular bounding volume, especially, on BVH for ray tracing

• Simple representation ☺

• Cheap intersection ☺

• There are well-matured methods to build a high-quality BVH with a good quality ☺

struct AABB
{

vec3 min;
vec3 max;

};

3 |

Problem - what we want to solve

• AABB is a popular bounding volume, especially, on BVH for ray tracing

• Simple representation ☺

• Cheap intersection ☺

• There are well-matured methods to build a high-quality BVH with a good quality ☺

• AABB may not be able to tightly bound a geometry in some cases

• Ray-BVH intersection can be slower due to traversal of too many nodes

Thin, tilted triangle Sparse triangles

4 |

5 |

How many false Positives Are there?

• A Toy Experiment

1. A triangle enclosed by an AABB

2. Shoot random rays toward the AABB

3. Count how many rays do not hit the triangle

False-positive ratio can be over 70%!

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑊ℎ𝑖𝑡𝑒 𝑅𝑎𝑦𝑠

𝑇𝑜𝑡𝑎𝑙 𝑅𝑎𝑦𝑠

6 |

Alternative Bounding volumes?

There are alternative volumes

• Better culling ☺

• More computational overhead

• Larger memory consumption

• Some of them are struggling to build high quality BVH efficiently
• Nick Vitsas et al. proposed a parallel OBB tree construction - “Parallel Transformation

of Bounding Volume Hierarchies into Oriented Bounding Box Trees”

Our goal

• Culls false positives more than AABB

• Small computational overhead for culling

• Small memory footprint

• Simple and Fast BVH construction

OBB

K-DOPs

Ellipsoid

Capsule

Convex Hull

7 |

Voxel data structure

• It can fit densely to the primitive ☺

• As long as the grid resolution is fine

enough

• Simple representation

• 1 bit per cell to represent its occupancy

• Fast Intersection with Rays

• 𝐃𝐃𝐀𝟏-like iterative method?

• We use LUT-based approach
• O(1)

• Only a few arithmetic operations

4x4x4

1. Digital Differential Analyzer

8 |

Small voxels vs Ray

• Intersection with a bitwise AND

• Holger Gruen, “Block-Wise Linear Binary Grids for Fast Ray-Casting Operations” in GPU Pro 360

• A ray vs small grid test can be conservatively replaced by “bitwise AND”

• Ray mask can be precomputed as a look-up table ☺, so we can make it O(1)

0 1 0 0

1 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

9 |

Ray Mask Build

• In general cases, it takes linear time complexity to build a voxel pattern from a ray

• DDA-like method. e.g. John Amanatides, Andrew Woo, “A Fast Voxel Traversal Algorithm for Ray Tracing”

• But we can use a look-up table approach - O(1) as an approximation ☺

lookup

lookup

E

S

S

E

value

E

S

S

E

key

Conservative

Case A

Case B

10 |

Our Approach – in a nutshell

• Use voxels for one step more culling after the AABB intersection

Step 2. Voxel CullingStep 1. AABB Intersection

Rejected ☺

 A few memory lookups

 A few bitwise ANDs

11 |

Classical Traversal

Traversal

Loop
Pop a node

Process a leaf node

AABB tests and

pushing if it hits

12 |

Our Traversal

13 |

Hierarchical Construction

• The best voxels

• Traverse all of the triangles below

• It is expensive

The voxels on the top nodeA bvh hierarchy

14 |

Hierarchical Construction

• Approximate the occupancy by voxels

Calculated mask from the

children’s voxels

1

1

1

1

1 1

1

101

1 1

1 1 1

0 0

0

15 |

Hierarchical Construction

• Approximate the occupancy by voxels

• don’t have to traverse lower level of the data structure ☺

1
1 1
1 1 1

0 0
0 1

1

1

1

1 1

1

10

? ? ? ?

1

1

1

1

1 1

1

101

1 1

1 1 1

0 0

0

top node

Direct children

16 |

Exact Occupancy vs Approximated Occupancy

1
1 1
1 1 1

0 0
0

1
1

1

1
1 1

1

10

Approximated OccupancyExact Occupancy

• Similar result with the approximated occupancy with lower cost ☺

• Trade-offs

17 |

Exact Occupancy vs Approximated Occupancy

• Similar result with the approximated occupancy with lower cost ☺

• Trade-offs

• How many levels we will go down

1
1 1
1 1 1

0 0
0 1

1

1

1

1 1

1

10

? ? ? ?

1 Level

1
1 1
1 1 1

0 0
0

0
1 1
0 0 1

0 1
0

1
1 0
1 1 1

0 0
0

1
0 1
0 0 1

0 1
0

? ? ? ? ? ? ? ?

2 Levels

Rough Approximation 1 step more accurate, but need more nodes to visit

18 |

Voxel Compression

• How much memory do we need for the voxels?

4 × 4 × 4 = 64 𝑏𝑖𝑡𝑠 = 8 𝑏𝑦𝑡𝑒𝑠
6 × 6 × 6 = 216 𝑏𝑖𝑡𝑠 = 27 𝑏𝑦𝑡𝑒𝑠

child 0 child 1 child 2 child 3

AABB 0 AABB 1 AABB 2 AABB 3

mask 0 mask 1 mask 2 mask 3

4 bytes

19 |

Voxel Compression

• Good news: The bit patterns are not just random

• There are some “frequently used mask patterns”

Look-up table approach

Index Mask

[0] 11111111

[1] 01100111

[2] 11000000

[3] 11010101

…. ….

child 0 child 1 child 2 child 3

AABB 0 AABB 1 AABB 2 AABB 3

1 2 8 3

256 elements

frequently used masks

Just 1 byte per box always ☺

Voxel resolution independent

A BVH node

Masks by SAH-based prioritization

20 |

Results

• We measured:

• Number of intersections to see culling efficiency

• Entire rendering performance

Bedroom (462.8 K tris) San Miguel (9.9 M tris) Ninja (1.3 M tris)

Bistro (2.8 K tris) Classroom (606.1 K tris) Hairball (2.8 M tris)

Curly Hair (12.1 M tris) Classroom (7.3 M tris) Victorian Trains (884.1 K tris)

21 |

Results: Number of Intersection

• Voxel resolutions
• 4x4x4, 6x6x6

• Object Mask
• Only 1 byte per AABB by the LUT-based compression

• Culling
• DDA-based exact culling for measuring the voxel culling capability

• From 9 to 38% of the intersections are reduced with R=4 ☺

• From 12 to 46% of the intersections are reduced with R=6 ☺

• Good reduction for thin and tilted geometries ☺

• LUT-based compression for the voxel mask works very well ☺

Resolution = 6, Compressed Voxels

Resolution = 4, Compressed Voxels

Scene Relative Intersections

Bedroom 90.7%

San Miguel 83.2%

Ninja 90.0%

Bistro 78.2%

Classroom 88.3%

Hairball 73.2%

Curly Hair 66.3%

Straight Hair 62.1%

VictorianTrains 86.9%

Scene Ratio of Intersection

Bedroom 86.9%

San Miguel 76.5%

Ninja 87.7%

Bistro 71.5%

Classroom 85.1%

Hairball 74.3%

Curly Hair 60.4%

Straight Hair 53.6%

VictorianTrains 81.1%Curly Hair (12.1 M tris) Straight Hair (7.3 M tris)

The same

Memory

Size

22 |

• Voxel resolutions
• 4x4x4, 6x6x6

• Object Mask
• Naïvely keep 8 bytes, and 27 bytes respectively without compression

• Culling
• LUT-based approach

• Unfortunately, we observed some scenes get worse

• Hair scenes got performance improvements ☺
• 12%, 13% faster than the baseline with R=4

• 13%, 14% faster than the baseline with R=6

Scene Relative Rendering Time (𝑹𝒓𝒂𝒚 = 𝟒)

Bedroom 103.6%

San Miguel 97.6%

Ninja 101.0%

Bistro 94.9%

Classroom 106.0%

Hairball 97.9%

Curly Hair 86.9%

Straight Hair 88.0%

VictorianTrains 104.3%

Scene Relative Rendering Time (𝑹𝒓𝒂𝒚 = 𝟔)

Bedroom 106.5%

San Miguel 98.2%

Ninja 104.5%

Bistro 97.3%

Classroom 107.1%

Hairball 102.0%

Curly Hair 87.1%

Straight Hair 85.6%

VictorianTrains 110.0%

Resolution = 4, Ray Mask LUT

Resolution = 6, Ray Mask LUT

Results: Entire performance

23 |

Summary

• Culls false positives more than AABB

✔ Voxel-based culling reduces the number of intersections very well

• Small computational overhead for culling

✔ LUT-based fast intersection

• Small memory footprint

✔ LUT-based compression significantly reduces memory size but keep culling efficiency

• Simple and Fast BVH construction

✔ A simple occupancy approximation for efficient voxel builds in BVH

✔ Trade-off control

24 |

Limitations and Future work

• It’s still hard to see improvement with all scenes

• Dynamic scenes

• Animated geometries requires the voxel data update

• GPU measurement & optimization

• The voxel compression algorithm is still sub-optimal

	Slide 1: Subspace Culling for Ray-Box Intersection
	Slide 2: Problem - what we want to solve
	Slide 3: Problem - what we want to solve
	Slide 4
	Slide 5: How many false Positives Are there?
	Slide 6: Alternative Bounding volumes?
	Slide 7: Voxel data structure
	Slide 8: Small voxels vs Ray
	Slide 9: Ray Mask Build
	Slide 10: Our Approach – in a nutshell
	Slide 11: Classical Traversal
	Slide 12: Our Traversal
	Slide 13: Hierarchical Construction
	Slide 14: Hierarchical Construction
	Slide 15: Hierarchical Construction
	Slide 16: Exact Occupancy vs Approximated Occupancy
	Slide 17: Exact Occupancy vs Approximated Occupancy
	Slide 18: Voxel Compression
	Slide 19: Voxel Compression
	Slide 20: Results
	Slide 21: Results: Number of Intersection
	Slide 22
	Slide 23: Summary
	Slide 24: Limitations and Future work
	Slide 25

