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Figure 1: Comparison of BRIDGE images reconstructed using an MLP with (a) positional encoding, (b) grid encoding, (c) local positional
encoding, and (d) the reference. They all use a 64×64 grid with 16-dimensional latent vectors and 4 frequencies in positional encoding. The
MLP has three hidden layers with 64 neurons each. The original and reconstructed image resolutions are both 1,024×1,024.

Abstract
A multi-layer perceptron (MLP) is a type of neural networks which has a long history of research and has been studied actively
recently in computer vision and graphics fields. One of the well-known problems of an MLP is the capability of expressing high-
frequency signals from low-dimensional inputs. There are several studies for input encodings to improve the reconstruction
quality of an MLP by applying pre-processing against the input data. This paper proposes a novel input encoding method,
local positional encoding, which is an extension of positional and grid encodings. Our proposed method combines these two
encoding techniques so that a small MLP learns high-frequency signals by using positional encoding with fewer frequencies
under the lower resolution of the grid to consider the local position and scale in each grid cell. We demonstrate the effectiveness
of our proposed method by applying it to common 2D and 3D regression tasks where it shows higher-quality results compared
to positional and grid encodings, and comparable results to hierarchical variants of grid encoding such as multi-resolution grid
encoding with equivalent memory footprint.

CCS Concepts
• Computing methodologies → Artificial intelligence; Machine learning algorithms; Image representations;

1. Introduction

A multi-layer perceptron (MLP) has been used in many appli-
cations in computer vision and graphics to find a mapping from
a low-dimensional coordinate to other properties at that location.

However, MLPs usually suffer from capturing high-frequency sig-
nals from such low-dimensional inputs, which is known as spectral
bias [RBA∗19]. One approach to handle this issue of an MLP is to
map the input vector to a higher-dimensional space using positional
encoding [TSM∗20,MST∗21]. It applies sinusoidal functions to the
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input vector before passing it to the MLP. Although positional en-
coding is a simple and effective approach, it requires a larger net-
work as it increases the input dimension dramatically. The high-
est reproducible frequency depends on the number of frequencies
which is manually decided as a hyperparameter according to the
use cases. It has to be many enough to represent the desired high-
frequency details. To handle the number of frequencies efficiently,
Hertz et al. [HPG∗21] introduce a novel learning policy, SAPE, to
select proper frequencies according to the local spatial position to
better fit the locally varying signals. Mip-NeRF [BMT∗21] and its
extension, Mip-NeRF 360 [BMV∗22], also try to tune the num-
ber of frequencies automatically by using features approximating
the integral over the positional encoding of all coordinates within a
sub-volume. If a particular frequency has a period which is larger
than the size of the sub-volume, they penalize the encoding of that
frequency as its amplitude gets close to zero. These methods have
a better capability of representing high-frequency signals but still
require high-dimensional inputs which lead to a large MLP.

The other approach to resolve the same problem of an MLP is
to apply grid encoding to the inputs [STH∗19, CAPM20, HCZ21,
KMX∗21, MGB∗21, MLL∗21, MESK22, TET∗22, WZK∗23]. The
core idea of grid encoding is to prepare one or multiple grids over-
laying the input domain and store latent vectors in each grid cell.
We can classify this as another input encoding method, but how
it uses an MLP is different from positional encoding. Grid encod-
ing learns features on grid cells and uses an MLP as a decoder,
which makes its network smaller. This is a reason for the faster
training compared to positional encoding. Another nature of grid
encoding is that it trades off the network complexity for the storage
space. Therefore, it requires a higher-resolution grid or a higher-
dimensional latent vector for each cell to resolve higher-frequency
signals, which need larger memory space. Higher-dimensional
inputs also require a higher-dimensional grid. Even with three-
dimensional inputs such as a position in the 3D space, the mem-
ory overhead is quite significant. This nature makes it memory-
intensive to use grid encoding for a problem with high-frequency
information in the high-dimensional domain. There are some stud-
ies that try to overcome this by using a sparse voxel octree holding
features [TLY∗21], introducing a fixed-size hash table in a pyramid
of grids [MESK22], or storing indices into the feature codebook in
each grid cell [TET∗22]. They lower the memory pressure but do
not solve the fundamental problem of grid encoding which requires
higher-resolution grids to achieve good quality.

Additionally, Zip-NeRF [BMV∗23] tries to combine these two
input encodings to take advantage of both benefits: positional en-
coding offers the simple representation of high-frequency signals
and grid encoding allows us to use a small MLP. It integrates a
pyramid of grids with hash tables [MESK22] into Mip-NeRF 360’s
framework [BMV∗22]. However, it is still memory-intensive to
adopt a set of grids and requires a large MLP. Also, Karnewar et
al. [KRWM22] explore the potential of grid encoding from a differ-
ent perspective. They introduce ReLU Fields where a simple ReLU
function is applied to the interpolated grid values without any neu-
ral network as a decoder, which results in faster training and eval-
uation. However, it cannot model more than one discontinuity on
signals per grid cell, so other signals such as natural images cannot
be represented.

Figure 2: Problem of using only higher frequencies in positional
encoding. There are multiple points mapped to the same vec-
tor. In this one-dimensional example, x = 0.05,0.30,0.55,0.80 are
mapped to exactly the same vector from which a neural network
cannot handle the difference.

In this work, we propose local positional encoding for an MLP
which is a hybrid of positional encoding and grid encoding. Local
positional encoding can resolve high-frequency signals without us-
ing as many frequencies as positional encoding requires, and with-
out preparing a high-resolution grid as grid encoding requires. Our
method also stores latent coefficients in each grid cell which are
combined with the signal of the local coordinate in the cell mapped
by positional encoding with a few frequencies. Therefore, consid-
ering its local position and scale in each grid cell, our proposed
method can resolve higher-frequency information than positional
encoding with the same number of frequencies and grid encoding
with the same resolution size as shown in Fig. 1. We evaluate local
positional encoding in two applications, 2D image reconstruction
and 3D signed distance functions, to present the advantage of the
proposed method.

2. Method

2.1. Positional Encoding

Positional encoding transforms the input vector x to a higher-
dimensional vector by the following equation:

PE(x) = [cos(20
πx),sin(20

πx), · · · ,

cos(2n−1
πx),sin(2n−1

πx)], (1)

where n is the number of frequencies used to encode the signal.
If we use positional encoding with a limited number of frequen-
cies (e.g. 4 frequencies), it simply fails to encode high-frequency
signals as shown in Fig. 1a. Larger n could be able to capture
higher-frequency details of the input signal but increases the input
dimension of an MLP. An offset to the frequencies (i.e. sin(2o+i

πx)
where o is the offset which we usually start from 0) can decrease
the input dimension; however, this approach lets multiple locations
in the domain mapped to the same vector, as illustrated in Fig. 2.
It leads to training failures since the network cannot distinguish
such inputs. In other words, the uniqueness of each feature vector
is lost with an offset to the frequencies. Another approach to captur-
ing high-frequency information with fewer frequencies would be to
subdivide the domain of the signal into cells and assign a network
with positional encoding to each cell. However, in this case, the to-
tal memory consumption increases proportionally to the number of
cells. Instead, to reduce the size of the entire network, we combine
the ideas of positional and grid encodings to provide hints to the
network to identify the cells.
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2.2. Local Positional Encoding

Our proposed method, local positional encoding, uses a uniform
grid to define cells as other grid encoding methods. In order to cap-
ture high-frequency information with low memory consumption,
we use a single global network for all the cells and introduce a
weight for each element of positional encoding stored in each cell
to utilize the local information in the cell. We call the weights la-
tent coefficients and train them along with other network weights.
Our approach is also inspired by the Short-time Fourier transform
(STFT) which provides the frequency information localized in a
short term when the frequency of a signal varies over time by ap-
plying a window function which spans only for a short period of
time to the Fourier transform. In our method, the latent coefficients
control the amplitudes of sinusoidal encodings in each cell so that
the local frequency information in the cell is captured for the spa-
tially varying signals.

More specifically, local positional encoding starts with a trans-
formation of the global coordinate of the input point to the local
coordinate:

xl = xg ·N − z, (2)

z = ⌊xg ·N⌋, (3)

where xl ,xg ∈ Rd are local and global coordinates, N is the grid
resolution and z is the cell index. The cell index z is also used to
look up the latent coefficients for the cell:

APE(z) = [ac
0(z),a

s
0(z), · · · ,a

c
n−1(z),a

s
n−1(z)], (4)

where the subscripts c and s denote the coefficients for cosine and
sine functions, respectively. Then we apply positional encoding to
the local coordinate xl to generate a feature vector which is mul-
tiplied by the latent coefficients APE(z). We can see that this op-
eration limits the effect of the sinusoidal functions for each cell to
some range where trainable latent coefficients work as a window
function for STFT. Thus, the input to the MLP is computed with
the element-wise multiplication of PE(xl) and APE(z):

PE(xl)⊙APE(z) = [ac
0(z)cos(20

πxl),a
s
0(z)sin(20

πxl), · · · ,

ac
n−1(z)cos(2n−1

πxl),a
s
n−1(z)sin(2n−1

πxl)]. (5)

However, using this feature vector computed with Equation 5
causes visual discontinuities at the cell boundaries. This is be-
cause the cosine function with the lowest frequency (i.e. cos(20

πx))
has discontinuities at the edges of the range [0,1]. Therefore, in-
stead of using the sinusoidal encodings with the lowest frequency,
ac

0(z)cos(20
πxl) and as

0(z)sin(20
πxl), we use the two-dimensional

latent coefficient AG(z) = [ag
0(z),a

g
1(z)] stored in the grid cell for

the input of the MLP. AG(z) works as the feature vector of grid
encoding without being multiplied by sinusoidal functions. As a
result, local positional encoding transforms the input vector xg as
the following equation:

LPE(xg) =[AG(z),a
c
1(z)cos(21

πxl),a
s
1(z)sin(21

πxl), · · · ,

ac
n−1(z)cos(2n−1

πxl),a
s
n−1(z)sin(2n−1

πxl)].
(6)

And the trainable latent coefficients stored in each cell are:

A(z) = [AG(z),a
c
1(z),a

s
1(z), · · · ,a

c
n−1(z),a

s
n−1(z)]. (7)

Figure 3: Illustration of local positional encoding in a two-
dimensional image reconstruction problem.

Additionally, assigning one set of the latent coefficients in a cell
causes discontinuities at the edges of the cell. Thus, we store the
latent coefficients at each corner vertex of the cell and they are lin-
early interpolated based on the local coordinate xl to avoid discon-
tinuities. Fig. 3 illustrates the example of local positional encoding
in a 2D image reconstruction problem.

2.3. Network

Our network is a small MLP with three hidden layers with 64 neu-
rons each. We can use any activation in the MLP, but we experi-
mentally choose a leaky ReLU activation function with α = 0.01 in
all the examples in this paper, except for the output layer to which
we apply a sigmoid activation function for the image reconstruc-
tion and none for signed distance functions. The dimension of the
input layer is given by 2 · n · d where d is the dimension of the in-
put vector. When we use 4 frequencies in local positional encoding,
for example, each cell in the grid stores an 8-dimensional feature
vector for each dimension, following Equation 7. Therefore, the in-
put to the network is also an 8-dimensional vector computed with
Equation 6 in a one-dimensional problem.

The weights of the neural network are initialized with Xavier
initialization procedure [GB10]. The latent coefficients in grid cells
are initialized with the uniform distribution U(−10−4,10−4).

2.4. Optimization

Local positional encoding does not add any trainable parameter to
the network. However, we introduce the latent coefficients, A(z), in
the grid which are trainable parameters to be updated during the
training using the following equations:

∂L
∂ac

i
=

∂L
∂ni

· ∂ni

∂ac
i
= cos(2i

πxl) ·
∂L
∂ni

, (8)

∂L
∂as

i
=

∂L
∂ni

· ∂ni

∂as
i
= sin(2i

πxl) ·
∂L
∂ni

, (9)

where L is a reconstruction loss and ni is the corresponding si-
nusoidal encoding of the input vector to the MLP in Equation 6.
We jointly optimize the network and the grid using gradient de-
scent with the Adam optimizer [KB15], where we set β1 = 0.9,
β2 = 0.999 and ε = 10−15. For the image reconstruction task, we
use the L2 loss function with a learning rate of 0.02. And for the
signed distance functions, we use the mean absolute percentage er-
ror (MAPE) similar to [MESK22] with a learning rate of 10−4.
These hyperparameters are chosen experimentally.
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Table 1: Comparisons of PSNR and SSIM for the images shown in Fig. 1 and Fig. 6. "PE" is short for "Positional Encoding", "GE" is for
"Grid Encoding" and "LPE" is for "Local Positional Encoding". The bold numbers show the best results for each image.

BRIDGE KEYBOARD FISH MARKET TREES

PE GE LPE PE GE LPE PE GE LPE PE GE LPE

PSNR [dB] 25.58 30.37 31.40 27.98 35.26 35.98 18.80 23.12 24.03 20.56 24.20 24.54
SSIM 0.7915 0.9133 0.9229 0.8375 0.9359 0.9367 0.4608 0.7065 0.7071 0.4629 0.7090 0.7167

(a) PE (b) GE (c) LPE (d) Ref.

Figure 4: Detailed comparison of KEYBOARD images. (a) Posi-
tional encoding, (b) grid encoding, (c) local positional encoding,
and (d) the reference.

3. Results

We implemented an MLP with different encodings using C++ and
HIP for GPU programming language [AMD21]. All the evaluations
are done by executing the codes on AMD Radeon™ RX 7900 XT
or AMD Radeon™ RX 7900 XTX GPU on Windows machines.
All the training weights are stored in 32-bit floating point values.
We evaluate local positional encoding against other input encod-
ings, such as positional encoding and grid encoding, in the image
reconstruction task (Sec. 3.1) and in the task of representing signed
distance functions (Sec. 3.2). Also, we compare our encoding with
multi-resolution grids for signed distance functions (Sec. 3.3).

3.1. Image Reconstruction

In this task, we train the network to map a two-dimensional input
coordinate to the RGB color of an image at that location. Fig. 1
and Fig. 6 compare the images reconstructed using the MLP with
different input encodings, which are trained for 1k iterations. To
make the comparison fair, we used the same condition for all the
encodings. Local positional encoding uses a grid with N = 64 and
positional encoding with n = 4. We choose these parameters ex-
perimentally. A parameter study can be found in the supplemental
document. For the equivalent memory consumption, grid encoding
also uses a grid with N = 64 which stores a 16-dimensional la-
tent vector in each cell, and positional encoding uses 4 frequencies.
All these encodings result in a 16-dimensional input vector to the
MLP. All the images we used for training are 1,024×1,024 resolu-
tion and the network reconstructs images with the same resolution.
As illustrated in Fig. 1 and Fig. 6, we can see that local positional
encoding produces visually finer results for all images compared
to other encodings while we can clearly observe that the results

PSNR: 24.03, SSIM: 0.7071 PSNR: 23.28, SSIM: 0.6776
Different coefficients Same coefficients

Figure 5: Comparison of FISH MARKET images reconstructed us-
ing the different coefficients (Left), and the same coefficients which
halve the number of parameters (Right), for sinusoidal functions.

from grid encoding and positional encoding cannot capture high-
frequency details. More detailed comparisons with close-up images
can be found in Fig. 1 and Fig. 4. Additionally, Table 1 shows the
quantitative comparisons with PSNR and SSIM [WBSS04] where
a higher value indicates better quality. Local positional encoding
achieves the highest values in both PSNR and SSIM for all images.

Note that we also tried to use the same coefficient for sinusoidal
functions with the same frequency (i.e. ac

i = as
i = ai) in order to

decrease memory consumption for the grid of local positional en-
coding. However, this trades off the image quality for memory con-
sumption. As shown in Fig. 5, using the same coefficients decreases
memory usage by roughly half, but it leads to worse results. In this
paper, we recommend that the different coefficients are used for
each sinusoidal function as discussed in Sec. 2.2, but the optimal
selection of approaches depends on the specific use case.

3.2. Signed Distance Functions

Signed Distance Functions (SDFs) define the closest distance to
surfaces for any spatial location to represent a shape. SDFs can be
defined by discretized grid representation; however, they require
a lot of memory for dense grids. We evaluate our method by let-
ting the network learn three-dimensional SDFs and comparing the
accuracy of the reconstructed SDFs with a small grid resolution.
Local positional encoding uses a grid with N = 32 and positional
encoding with n = 3 which results in an 18-dimensional input vec-
tor to the MLP. As with the image reconstruction task, a param-
eter study for SDFs also can be found in the supplemental docu-
ment. For a fair comparison, grid encoding also uses a grid with
N = 32 which stores an 18-dimensional latent vector in each cell
to make the memory consumption equivalent, and positional en-
coding uses 3 frequencies to align the input vector dimension. As
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Figure 6: Qualitative comparison among different encodings for an MLP. They all use a 64×64 grid with 16-dimensional latent vectors and
4 frequencies in positional encoding. The MLP has three hidden layers with 64 neurons each. The resolutions of all images are 1,024×1,024.

a qualitative evaluation, we render a shape by SDFs with shading
to emphasize high-frequency differences of the surface among the
encodings. We use the Lit Sphere [SMGG01] for shading for con-
sistent and reproducible results. Fig. 7 shows rendered images with
the THAI STATUE model with different encodings along with the
intersection-over-union (IoU) metric for a quantitative comparison,
which is a ratio between the intersection and union of two volumes.
We calculate IoUs by taking a sign of 128 million sampling points
around the bounding box of the shape on the reference SDFs. Com-
parisons with more geometries can be found in the supplemen-
tal document. The close-up views of our method (Fig. 7c) show
high-frequency details well while grid encoding (Fig. 7b) fails to
capture them. However, it is not reflected in IoU values in Fig. 7
where grid encoding gave the highest IoUs. Additionally, local po-
sitional encoding has another benefit of faster convergence in the
early training phase. Fig. 8 compares grid encoding and local posi-
tional encoding with three different training iterations. Our method
converges faster and captures the fine details even in the earlier

training stages, such as 64 and 1,024 training iterations, compared
to grid encoding.

3.3. Comparison with Multi-resolution Grid

We compared our local positional encoding only with the sin-
gle low-resolution grid in Sec. 3.1 and Sec. 3.2. However, multi-
resolution grids containing higher-resolution grids usually achieve
better quality than a single-level grid. Thus, in this section, we eval-
uate our encoding against multi-resolution grid encoding and multi-
resolution hash encoding [MESK22], especially for SDFs.

We use almost the same number of trainable parameters in
grids for each encoding for a fair comparison. We choose 3-level
grids (N = 16,32,64) with 2-dimensional latent vectors as multi-
resolution grid encoding, and 4-level grids (N = 16,32,64,128)
with 2-dimensional latent vectors using 217 hash table size for
multi-resolution hash encoding. Note that multi-resolution hash
encoding has hash collisions on the higher-level grids due to the

© 2023 The Authors.
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Figure 7: Qualitative and quantitative comparison with positional encoding, grid encoding, and local positional encoding with SDFs ge-
ometry rendering. The shading is applied to show surface details by the Lit Sphere [SMGG01] based on its geometric normal. They all use
a 32× 32× 32 grid with 18-dimensional latent vectors and 3 frequencies in positional encoding. The MLP has three hidden layers with 64
neurons each. Each close-up view enclosed by red and blue squares represents how the fine details are captured by the encoding. IoU metrics
are shown for each encoding. The bold number represents the best in the encodings for the geometry.
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(a) 64 training iterations (b) 1,024 training iterations (c) 16,384 training iterations

Figure 8: Convergence comparisons with different training iterations between grid encoding and local positional encoding with the THAI

STATUE model. Our method shows finer geometric details in the earlier training stage.
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Table 2: Comparisons of IoU with multi-resolution grids for SDFs geometry rendering. "Multi" stands for multi-resolution grid encoding,
"Hash" for multi-resolution hash encoding, and "LPE" for local positional encoding. The bold numbers show the best results for each model.

ARMADILLO LUCY THAI STATUE

Multi Hash LPE Multi Hash LPE Multi Hash LPE

IoU 0.9904 0.9941 0.9920 0.9702 0.9856 0.9723 0.9712 0.9848 0.9736

T
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S
TA

T
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E

IoU = 0.9712 IoU = 0.9848 IoU = 0.9736

(a) Multi-resolution Grid Encoding (b) Multi-resolution Hash Encoding (c) Local Positional Encoding (d) Reference

Figure 9: Qualitative and quantitative comparison with multi-resolution grid encoding, multi-resolution hash encoding [MESK22], and
local positional encoding with SDFs geometry rendering. The parameters of all the encodings are configured for approximately the same
amount of latent vectors for a fair comparison. The bold number represents the best in the encodings for the geometry.

fixed-size hash table while multi-resolution grid encoding does
not. The configuration of local positional encoding in this com-
parison is the same as used in Sec. 3.2. These settings result in
roughly 590k parameters for all the encodings in the grids. Fig. 9
shows the rendered images with these three encodings for the THAI

STATUE model. The rendered images for more geometries can be
found in the supplemental document. We can see that our encoding
achieved visually better results than multi-resolution grid encoding
and comparable results to multi-resolution hash encoding only us-
ing a single-level grid. Also, taking a closer look, multi-resolution
hash encoding produces micro-structured artifacts on the smooth
surface due to hash collisions, which cannot be seen with our en-
coding, though higher-resolution grids accepting hash collisions
can capture high-frequency details well. On the other hand, in Ta-
ble 2 showing the quantitative comparisons, multi-resolution hash
encoding gave the highest score in the IoU metric while despite
using only a single-level grid, local positional encoding achieved
a higher IoU value than multi-resolution grid encoding. Note that
though our encoding uses only a single-level grid, it can be ex-
tended to multi-resolution grids, with which we expect to improve
our encoding further. It is conceivable to adopt multi-resolution
grids in local positional encoding in future work.

4. Conclusions

In this paper, we introduced a novel input encoding method for
an MLP, local positional encoding, to allow a small MLP to learn
high-frequency signals with a less memory footprint. Our proposed
method uses a grid to store the weights (i.e. the latent coefficients)
for each sinusoidal function of positional encoding and optimizes

them along with the network weights through stochastic gradient
descent. Learning the latent coefficients in each grid cell locally
controls the amplitudes of the encodings, so it well adopts the spa-
tially varying signals. We demonstrated the effectiveness of local
positional encoding against positional and grid encodings for the
2D image reconstruction and 3D signed distance functions. In both
tasks, our method can represent better-quality results using a small
MLP. Additionally, our encoding also shows comparable results
even in comparisons with multi-resolution grid encodings in the
SDFs reconstruction problem.

Although local positional encoding captures high-frequency in-
formation well only with a small single-level grid, it produces axis-
aligned artifacts. We believe they are the inheritance of positional
encoding which also suffers from such artifacts. We leave it to fu-
ture work to investigate an efficient way of alleviating the artifacts.
In addition, applying multi-resolution grids to local positional en-
coding is a straightforward extension to improve it further. Also,
our method requires storing the latent coefficients for each dimen-
sional input. Therefore, our encoding in higher dimensional tasks
results in more memory intensive. Reducing the total number of
latent coefficients in each grid cell is our interesting future work.
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