
Local Positional Encoding for Multi-Layer Perceptrons:
Supplemental Document

Shin Fujieda
Advanced Micro Devices, Inc.

Atsushi Yoshimura
Advanced Micro Devices, Inc.

Takahiro Harada
Advanced Micro Devices, Inc.

1 Various Conditions for Local Positional Encoding

Local positional encoding has two hyperparameters, the grid resolution N and the number of frequencies n. We analyze how they
impact the performance of our proposed method in the image reconstruction task and the task of representing signed distance functions
(SDFs). In both tasks, we use a small MLP with three hidden layers with 64 neurons, each followed by a leaky ReLU activation function
with α = 0.01. Also, we apply a sigmoid activation function to the output layer for the image reconstruction task.

1.1 Image Reconstruction

We evaluate the performance of the 2D image reconstruction under various conditions of N and n for local positional encoding in Fig. 1.
The memory footprint is linear to N and n, and the dimension of the input layer of the MLP is also linear to n. In this analysis, we
found (N = 64, n = 4) often shows better quality results. As illustrated in Fig. 2, we can see the rendered image of Fish Market with
n = 4 captures high-frequency details well, especially compared with those with n = 3 and n = 5. The image with n = 6 also shows
a better result, but it consumes 1.5× the amount of memory than that with n = 4. As a result, (N = 64, n = 4) achieves well-balanced
results between the quality and the memory consumption, so we use these values as the default configuration in the experiments in the
main document.
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Figure 1: Performance comparisons with 4 images for varying the grid resolution N and the number of frequencies n for local positional
encoding, which determine the number of trainable parameters in the grid. The MLP has three hidden layers with 64 neurons each,
which is trained for 1k iterations.
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Figure 2: Qualitative comparison of various n-values with N = 64 for the FishMarket image.
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Figure 3: Comparison of closed-up FishMarket images reconstructed using grid encoding with different feature vector sizes.

Local positional encoding with n = 4 results in a 16-dimenstional input vector to the MLP. However, some other approaches [KMX∗21,
MESK22, WZK∗23] use smaller dimensions of latent vectors stored in the grid (e.g. 2, 4, 8-dimensional vectors). Thus, we also analyze
the impact of dimensions of latent vectors in grid encoding. As shown in Fig. 3, smaller dimensions of latent vectors fail to represent
the results of a sufficiently expressive quality. In our paper, we evaluate our proposed method against a superior configuration of grid
encoding (i.e. 16-dimensional vectors) for a fair comparison.

1.2 Signed Distance Functions

We evaluate the performance of local positional encoding for the 3D SDFs under various conditions of N and n in Fig. 4. In this
analysis, we found (N = 32, n = 3) often shows better quality results. As illustrated in Fig. 5, we can see the rendered image of the
Thai Statue model with n = 3 captures enough high-frequency details with the smaller size of memory, even compared with those with
n = 4 and n = 5. The result with n = 5 achieves a higher IoU, but it also uses about 1.7× larger size of memory than that with n = 3.
Therefore, (N = 32, n = 3) is a well-balanced parameter, so we use it as the default configuration for our encoding in the experiments
in the main document.

2 Additional Results for Signed Distance Functions

In the main document, we illustrate the reconstructed SDFs geometries only for the Thai Statue model. We show the additional results
for Armadillo, Lucy models in this section.

We first show the additional results for the comparison of local positional encoding with positional and grid encodings. As described
in Sec. 1.2, we use the parameters of (N = 32, n = 3) for local positional encoding, n = 3 for positional encoding, and N = 32 with
an 18-dimensional latent vector for grid encoding for a fair comparison concerning the number of trainable parameters in the grid.
Every encoding results in an 18-dimensional vector as an input for the MLP. Fig. 6 shows rendered images with different encodings
for three models along with the intersection-over-union (IoU) metric. Similar to the Thai Statue model which we mention in the main
document, close-up views of our method for Armadillo and Lucy models (Fig. 6c) visually show higher-frequency details than those
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Figure 4: Performance comparisons for varying the grid resolution N and the number of frequencies n for local positional encoding,
which determine the number of trainable parameters in the grid. The MLP has three hidden layers with 64 neurons each, which is
trained for 16k iterations.
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Figure 5: Qualitative comparison of various n-values with N = 32 for the Thai Statue model.

of grid encoding (Fig. 6b). However, though our encoding produced a slightly higher value for the Armadillo model, grid encoding
achieved better results for the other models using the IoU metric.

We also show the additional rendered images for the comparison of our encoding with multi-resolution grids in Fig. 7. For local
positional encoding, we use the same configuration as the default configuration as described in Sec. 1.2 (N = 32, n = 3). And to
make memory consumption equivalent, we choose 3-level grids (N = 16, 32, 64) with 2-dimensional latent vectors as multi-resolution
grid encoding, and 4-level grids (N = 16, 32, 64, 128) with 2-dimensional latent vectors using 217 hash table size for multi-resolution
hash encoding [MESK22]. These settings result in roughly 590k parameters for all the encodings in the grids. As shown in Fig. 7,
though local positional encoding uses only a single-level grid, it achieved higher IoUs and reconstructed higher-frequency details than
multi-resolution grid encoding for all three models. On the other hand, multi-resolution hash encoding showed the highest IoUs for
all the models while our encoding achieved visually comparable results even with a small single-level grid. Also, taking a closer look
at close-up views in Fig. 7b, it produces micro-structured artifacts on the smooth surface due to hash collisions, which cannot be seen
with our encoding. Therefore, higher-resolution grids accepting hash collisions can capture high-frequency details well with artifacts
due to hash collisions, which is the limitation of multi-resolution hash encoding. Adopting multi-resolution grids in local positional
encoding which we expect improves the performance further is our interesting future work. In summary, local positional encoding can
achieve better results than multi-resolution grid encoding and comparable results to multi-resolution hash encoding only using a small
single-level grid with equivalent memory consumption.
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Figure 6: Qualitative and quantitative comparison with positional encoding, grid encoding, and local positional encoding with SDFs
geometry rendering. They all use a 32×32×32 grid with 18-dimensional latent vectors and 3 frequencies in positional encoding. Each
close-up view enclosed by red and blue squares represents how the fine details are captured by the encodings. IoU metrics are shown
for each geometry and encoding as well. The bold numbers represent the best in the encodings for each geometry.
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Figure 7: Qualitative and quantitative comparison with multi-resolution grid encoding, multi-resolution hash encoding [MESK22],
and local positional encoding with SDFs geometry rendering. All the encodings are configured for approximately the same number of
latent vectors in grids for a fair comparison. The bold number represents the best in the encoding for the geometry.
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