
Viewport-Resolution Independent Anti-Aliased Ray Marching
on Interior Faces in Cube-Map Space

Tianchen Xu
1State Key Lab of CS, Institute of
Software, Chinese Academy of

Sciences (CAS) & Univ. of CAS, China
2Advanced Micro Devices, Inc. (AMD)

xutc@ios.ac.cn

Wei Zeng
School of Computer Science,
Sichuan University, China

veerzeng@163.com

Enhua Wu∗
1State Key Lab of CS, Institute of
Software, Chinese Academy of

Sciences & University of CAS, China
3FST, University of Macau, China

weh@ios.ac.cn

Figure 1: Fast real-time (left) mesh-volume rendering using our ray marching on interior faces in cube-map space (mesh
Dragon © Stanford University Computer Graphics Laboratory & environmentmap Tropical Beach © Blochi), and (right) multi-
volumes rendering using our ray-traced hybrid method with inter-occlusions (meshes Bunny etc. © Stanford CG Lab & envi-
ronment map Helipad Afternoon © Blochi)

ABSTRACT
This paper presents a novel approach to anti-aliased ray marching
by indirect shading in cube-map space. Our volume renderer firstly
performs ray marching on each visible interior pixel of a maximum-
resolution-limited cube map, and then resamples (usually up-scales)
the cube imposter in viewport space. By this viewport-resolution-
independent strategy, developers can improve both ray-marching
performance and its quality of anti-aliasing when allowing larger
marching strides.Moreover, our solution also covers depth-occlusion
anti-aliasing for mixed mesh-volume rendering, cube-map level-of-
details (LOD) optimization for a further performance boost, and
multiple-volume rendering by leveraging the GPU inline ray trac-
ing. Besides, our implementation is developer-friendly and the
performance-quality tradeoff determined by the parameter config-
uration is easily controllable.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9073-6/21/12. . . $15.00
https://doi.org/10.1145/3478512.3488598

CCS CONCEPTS
• Computing methodologies→ Rendering; Visibility.

KEYWORDS
Anti-aliasing, cube map, ray marching, ray tracing, real-time ren-
dering, volume rendering

ACM Reference Format:
Tianchen Xu, Wei Zeng, and Enhua Wu. 2021. Viewport-Resolution Inde-
pendent Anti-Aliased Ray Marching on Interior Faces in Cube-Map Space.
In SIGGRAPH Asia 2021 Technical Communications (SA ’21 Technical Com-
munications), December 14–17, 2021, Tokyo, Japan. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3478512.3488598

1 INTRODUCTION
Ray marching is a typical method for volume-data visualizations,
which can convey the rendering effects of clouds, smoke fluid, and
other thick translucent objects. In many use cases of real-time
volume rendering, especially for fluid, the physics-based simula-
tion is already a costly phase, and developers expect to avoid the
rendering phase being another performance bottleneck. However,
compared to trivial mesh-surface shading, ray-marched volume
rendering is more compute-intensive, due to the multiple sampling
accesses to a 3D volume texture for each pixel. In traditional screen-
space ray marching, the sampling count has sensitive impacts on
the rendering performance and quality. Too sparse sampling for a

SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan Xu, TC. et al

high-resolution viewport would cause obvious aliasing artifacts, be-
cause the depth sampling frequency is much less than the breadth
frequency. Hence, developers have to force coupling the lower
bound of the sampling count to the viewport resolution, while it
results in serious performance drops. Therefore, it is troublesome
for developers to balance the performance-quality tradeoffs, and a
viewport-resolution decoupled ray-marching method is urgently
needed.

It is not easy to control the ray marching performance by the
directly screen-space scheme, we bethought of ray marching onto a
fixed-resolution imposter indirectly. However, it is a little unreliable
to use a 2D billboard as the imposter, since the bounding rectangle of
a projected volume is varying. Besides, simply upscaling a billboard
in screen space may cause texel aliasing. Then, we come up with the
idea of ray marching on cube-map faces, a special form of texture-
space shading. These years, texture-space shading is popularly used
in virtual reality for spatial-temporal coherence, and it can decouple
the performance impact of viewport resolution [Hillesland and Yang
2016], but it will introduce duplicated workloads of processing the
invisible texels. Therefore, visibility culling is often the necessary
accompanying process for texture-space shading.

The major technical contribution of this paper is the proposal
of our indirect cube-map ray marching scheme, as well as the re-
lated techniques on visibility culling, mesh-occlusion anti-aliasing,
adaptive level of details (LOD) optimization, and multi-volumes
rendering using hardware ray tracing.

2 RELATED WORK
Since ray marching [Tuy and Tuy 1984] was proposed to a 3D object
to 2D display, many research works have drawn attention to the
volume rendering [Drebin et al. 1988], which is performed by simu-
lating the absorption of light along the ray path to the viewer. To
gain performance, several optimizations have been used, including
a volume bricking scheme and a shallow data hierarchy [Parker
et al. 2005]. Later, the solution by [Crassin et al. 2009] is based on
an adaptive data representation depending on the current view
and occlusion information coupled to an efficient ray-marching
rendering algorithm. Furthermore, [Morrical et al. 2019] introduced
a method for rendering unstructured meshes using a combination
of a coarse spatial acceleration structure and hardware-accelerated
ray marching.

In addition to the performance problems, ray marching can also
cause aliasing. [Muñoz 2014] applied higher order adaptive solvers
into faster convergence, which can be used to reduce the bias in
some cases, but the errors may still not be acceptable for certain ap-
plications. In recent years, new statistically unbiased Monte Carlo
methods were proposed [Novák et al. 2018][Kettunen et al. 2021],
which randomly query the volume densities along a ray and com-
pute a visibility estimated from these values.

Above all, we can find that most prior achievements have fo-
cused on global illumination and transmittance estimation models,
while their sampling scheme of ray marching is still vanilla, which
initiates rays in screen space. Therefore, we still have potential
for improvement to generate anti-aliased volumes in an efficient
way for real-time rendering, but it would be challenging.

3 TECHNIQUES
The basic idea of our method is to de-
ploy ray marching for each pixel on the
interior faces of a cube-map imposter,
and then upscale the marching result
on the viewport by drawing the cube
interior faces with cube mapping (tex-
ture sampling by direction vectors). We
propose a 3-pass rendering pipeline:
Light map generation pass From each voxel of a 3D light map,

we cast a ray to the light source, and perform ray marching in
the light-map space for the transmittance.

Cube ray marching pass As the core pass, to each pixel on the
cube-map faces, we cast a ray from the viewer position, and
perform ray marching in the local volume space (domain [−1, 1])
with the inverse world transformation.

Cube resampling pass We draw the interior faces of a cube on
the viewport and resample the ray-marched texels with simple
cube mapping.
Then, we will discuss some detailed techniques that can tackle

the new problems introduced by the pipeline above.

3.1 Interior versus Exterior Faces
Shading on the surfaces (exterior faces) is a straightforward thought
when we mention cube-map space ray marching. In this scheme,
there are at most 3 visible faces only. However, it would cause an
obvious texel-aliasing artifact when the viewer is close to a cube
corner (Figure 2 (a)), due to the under sampling in the near-viewer
zone with a perspective projection. Using the interior faces instead,
the artifact can be eliminated (Figure. 2 (b)), since the texel shading
rate on the far faces can be over the pixel sampling rate on the
screen, while there are maximally 5 visible faces to hold more texel
data. Moreover, the interior-face scheme naturally includes the case
of the viewer inside the volume, and thus no extra computations
need to be introduced to handle this case in particular.

Figure 2: (a) Exterior-face scheme causes texel-aliasing, and
(b) interior-face scheme can hold more rays of data to elim-
inate the artifact.

For the interior-face scheme, the invisible faces can be culled per
face in advance. We generate an 8-bit visible-face mask, and each
visible bit bvisibility(i) for cube face i = 0, ..., 5 can be fast calculated
by the following conditional equation:

bvisibility(i) =

1, (E(⌊i/2⌋) > −1) ∧ (i&1)
1, (E(⌊i/2⌋) < 1) ∧ ¬(i&1)
0, otherwise

(1)

where E is the viewer position transformed into the local cube
map space, and its index (function argument) refers to components

Viewport-Resolution Independent Anti-Aliased Ray Marching on Interior Faces in Cube-Map Space SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan

x = 0, y = 1, and z = 2 respectively; the bitwise-AND operator is
denoted by ’&’.

3.2 Mesh Occlusions
When rendering a scene with mixed meshes and volumes, the draw-
process of opaque meshes will generate a depth buffer (z-buffer)
for occlusion culling called z-test. During ray marching, we obtain
the mesh-occlusion position derived by the depth-unprojection to
clamp the max ray lengthTmax for culling the occluded ray steps. If
using direct screen-space ray marching, the z-buffer and the view-
port are in the same space whose pixels are one-to-one coupled.
Meanwhile, using our cube-map space ray marching, the ray-casted
space is totally different from the z-buffer with the unmatched shad-
ing and sampling rates, thus causing the mesh-occlusion artifact,
as shown in Figure 3 (a).

Figure 3: (a) Mesh-occlusion artifact due to different spaces
of cube map and z-buffer, and (b) our bilateral filter applied
instead of simple bilinear sampling

In order to eliminate the artifact (Figure 3 (b)), we make a 2 × 2
tiny bilateral filter to the cube-map samples during the resampling
pass. Instead of hardware bilinear sampling, we gather the 2 × 2
raw samples that would be used for bilinear interpolation when
sampling a texture, and then filter each samples by the following
formula:

s(i) =
sraw(i)wz(zcube(i), zbuffer)wbilinear(i)∑4

j=1wz(zcube(j), zbuffer)wbilinear(j)

wz(zcube, zbuffer) = max (1 − kz |zbuffer − zcube |, 0)
where sraw and wbilinear denote the raw sample i and its bilinear
weight correspondingly. wz is the edge-stopping function of the
bilateral filter, in which zbuffer and zcube are linear depth values
derived from the z-buffer and cube map respectively, and kz is an
adjustment coefficient (0.5 by default in our experiments). Hence,
we need to introduce another cube depth map and blit (transfer
with a nearest-filter sampler) the z-buffer data into it during the
cube ray marching pass.

3.3 Adaptive Level of Details
When the volume goes away from the viewer, we can reduce the ray
marching resolution to a coarser level for the further performance
boost. Certainly, we can always calculate the ideal values of the
cube map resolution and ray-marching sampling count according
to the volume position. However, developers usually expect to limit
the upper bounds of the cubemap resolution (the size at MIP-level 0)
and the sampling count for performance-quality control. Therefore,
we design a process to compute the optimized cube-map MIP-level
that satisfies the aforementioned requirements:

1) We firstly project the 8 corner vertices of the cube into viewport
space and store them for vertex indexing later.

2) We couple the vertex pairs into edges by indexing the projected
vertices, and evaluate the edge lengths in pixels.

3) We conservatively choose the maximum edge length of the cube
and scale it as the ideal cube-map resolution Sideal, and derive
the ideal sampling amount Nideal (float number) as well:

Sideal =
maxi=1, ...,12{∥P(eend(i)) − P(ebegin(i))∥}

ku
Nideal =

kcSideal
√
3

where P denotes the projected vertex position and its edge begin
and end indices are denoted by ebegin and eend; ku and kc are
the extra user-specified screen-upscaling and sampling-count
scaling coefficients respectively.

4) We clamp the ideal sampling count Nideal with the user-specified
maximum sampling count Nmax to get the actual sampling count
N , and inversely derive the cube-map resolution S .

N = min(⌈Nideal⌉,Nmax)

S =

√
3min(Nideal,N)

kc

5) The cube-map MIP-level (LOD) can be finally evaluated by ℓ =
max(⌊log2 S/S0⌋) with the finest texture size S0 at MIP-level 0.

3.4 Ray-traced Multi-volumes Rendering
For real-time multiple volumes rendering, we make use of indi-
rect compute to archive volume-granularity visibility culling, and
hardware ray tracing to guarantee order-independent transparency.

Firstly, we add a preemptive volume-culling pass by dispatching
compute shaders. Like GPU amplification and mesh shader scheme,
8 threads per volume are invoked to process viewport-visibility
culling of the entire volumes, vertex projections (step 1 in section
3.3), edge length estimations with 2 edges per thread (3.3 step 2),
cube-map LOD estimations (3.3 steps 3–5), volume classifications,
and cube-face visibility mask generations (3.1 Eqn. (1)), in sequence.
Here, a new volume classification step is added after the LOD deter-
mined. It first estimates the total visible pixels of the cube map and
the pixel count of the directly projected volume, and then compare
them to determine the optimized scheme between the indirect cube-
map and direct screen-space ray marching. The final output of this
pass can be encoded into a 16-byte descriptor including volume
instance ID, volume source ID, ray sampling count, LOD, rendering
scheme, and cube-face visibility mask.

Subsequently, we finish the cube ray marching pass for all the
visible volumes marked with cube-map scheme. Finally, we draw
the cube interior faces for all visible volumes as opaque objects. For
each visible volume in the nearest layer, if it has the ray marched
result in cube-map space, we directly fetch the result, otherwise we
deploy the screen-space ray marching. Then, for each rasterized
pixel, we launch inline ray query to trace the transparency-object
occluded but visible volume pixels in the next layer, and shade them
in the similar way as the nearest layer. We repeat the ray tracing
processes using inline ray query for the remaining layers and finish
the shading of all visible volumes.

SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan Xu, TC. et al

4 RESULTS
In our experiments, we have designed several groups of comparative
test cases to verify the quality and performance of our method. All
test cases ran in a machine equipped with an AMD Radeon™ RX
6800 GPU of boost clock 2105MHZ.

For the quality verification, as shown in Figure 4, the render-
ing results of our method are overall same to the references, while
our method can provide more smoothly anti-aliased shading in
some detailed pixel regions. As the upper bound of the input
volume resolution is constrained by developers for performance
control, a high screen-space resolution would not provide a
sensitive quality improvement, which is just over-sampling.
Contrastively, our method executes the ray marching shading at
an appropriate resolution.

Figure 4: Rendering results of (a–c) fluid smoke and (d–f)
devil and bunny using (a)(d) our cube-map space ray march-
ing and (b)(e) direct screen-space ray marching respectively;
(c)(f) difference visualizations (mesh Bunny © Stanford CG
Lab & environment map Arches PineTree © Blochi)

For the performance, we list the comparative performance results
in Table 1. We can find that the performance of direct screen-space
ray marching (DSSRM) drops rapidly with increasing viewport
resolution, while our cube-map-space ray marching (CMSRM) can
keep nearly constant performance in high-resolution cases, and our
adaptively hybrid method for multi-volumes can even win in all
resolution cases.

5 CONCLUSIONS
In this paper, we propose a novel approach to anti-aliased ray
marching by indirect shading in cube-map space. Our method lever-
ages texture-space shading to prevent volume rendering from rapid
performance drops in high-resolution viewport cases without any
quality tradeoff. During the implementation, we also propose some
detailed techniques to overcome the new problems introduced by
the cube ray marching scheme, such as interior-face shading and
mesh occlusions, and to further boost the performance, such as
adaptive LODs and ray-traced hybrid multi-volumes.

As we have only considered the mesh-volume occlusion cases,
but lack handling the volume-volume overlap cases, which is the
main potential limitation of our current proposal. In terms of the
future work, we will explore the per-texel visibility culling and
LOD for our scheme by taking advantage of sampler feedback

Table 1: Time-cost statistics (in ms) of our tested applica-
tions (grid-size 2563 for single-volume cases and 1283 for
multi-volumes); CMSRM extra memory cost over DSSRM

Test case View res. CMSRM DSSRM Ex-mem.
1080p 7.63 7.87

Fluid smoke 2K 7.69 8.13 5.98MB
4K 7.69 8.93
1080p 1.61 1.99

Devil bunny 2K 1.68 2.32 5.98MB
4K 1.84 3.34
1080p 1.67 2.12

Cloud dragon 2K 1.81 2.51 5.98MB
4K 1.96 4.06
1080p 2.43 3.15

Multi-volumes 2K 3.46 5.05 95.625MB
4K 6.02 11.49

feature of the latest GPU architectures, and integratemore advanced
transmittance estimation algorithms into our ray marching.

ACKNOWLEDGMENTS
The authors would like to thank the associate editors and all anony-
mous reviewers for their valuable comments. This research is sup-
ported by NSFC (62072449, 61632003), Macao FDCT (0018/2019/
AKP), and AMD.

© 2021 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo, AMD Radeon, and combinations

thereof are trademarks of Advanced Micro Devices, Inc. Other prod-
uct names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES
Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. GigaVoxels:

Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. In Proceedings of
the 2009 Symposium on Interactive 3D Graphics and Games (Boston, Massachusetts)
(I3D ’09). Association for Computing Machinery, New York, NY, USA, 15–22. https:
//doi.org/10.1145/1507149.1507152

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. 1988. Volume Rendering.
SIGGRAPH Comput. Graph. 22, 4 (June 1988), 65–74. https://doi.org/10.1145/378456.
378484

K. E. Hillesland and J. C. Yang. 2016. Texel Shading. In Proceedings of the 37th Annual
Conference of the European Association for Computer Graphics: Short Papers (Lisbon,
Portugal) (EG ’16). Eurographics Association, Goslar, DEU, 73–76.

Markus Kettunen, Eugene D’Eon, Jacopo Pantaleoni, and Jan Novák. 2021. An Unbiased
Ray-Marching Transmittance Estimator. ACM Trans. Graph. 40, 4, Article 137 (July
2021), 20 pages. https://doi.org/10.1145/3450626.3459937

Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. 2019. Efficient Space
Skipping and Adaptive Sampling of Unstructured Volumes Using Hardware Accel-
erated Ray Tracing. In 2019 IEEE Visualization Conference (VIS). IEEE, Vancouver,
BC, Canada, 256–260. https://doi.org/10.1109/VISUAL.2019.8933539

Adolfo Muñoz. 2014. Higher Order Ray Marching. Computer Graphics Forum 33, 8
(2014), 167–176. https://doi.org/10.1111/cgf.12424

Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo
methods for volumetric light transport simulation. Computer Graphics Forum 37, 2
(2018), 551–576. https://doi.org/10.1111/cgf.13383

Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles Hansen, and
Peter Shirley. 2005. Interactive Ray Tracing for Volume Visualization. In ACM
SIGGRAPH 2005 Courses (Los Angeles, California) (SIGGRAPH ’05). Association
for Computing Machinery, New York, NY, USA, 15–es. https://doi.org/10.1145/
1198555.1198754

Heang K. Tuy and Lee Tan Tuy. 1984. Direct 2-D display of 3-D objects. IEEE Computer
Graphics and Applications 4, 10 (1984), 29–34. https://doi.org/10.1109/MCG.1984.
6429333

