

Motivations
● Serious Sam

○ “Bigger is better”
○ Unused space instead of invisible barriers
○ “Huge open levels” (in fact ~5 km so far)

● Real world vistas ~50-100 km distances
● Small scale detail (1 mm textures)
● “Scanned” vs generated

○ Is this in conflict?
● “Photorealistic” look

○ Photo-like environments contrast crazy enemy
designs.

Carcassonne, France to Pyrenees (~80 km)

The Deceptive Scale

Saalfelden, also Austria… just biggerHirschegg, Austria

Goals

● 128×128 kim terrain
○ “Background” is not a special case.

● Texture detail: 1024 tex/m
○ Pixel size: 1 mim
○ About optimal for floors on 4k resolutions in first

person
● Elevation detail: 64 vtx/m

○ Triangle size: ~1.5 cm
○ Actually model cobblestones/pavements

Disclaimer
● The following images and videos are all from the game, but...
● Material is not representative of the final game.

○ The game is still in development.
○ Many content elements are still WIP or placeholders.
○ Some features (usually far-distance colormap) are disabled in some screenshots to better show

other features.
○ Bird’s-eye views are used here to visualize some concepts - they may show artefacts.

■ (Actual game only takes place at ground level)

Video #1

How Much Data is That Again?
● Pre-made data is too big.

○ Elevation for 128×128 kim with 64 vtx/m => 8M x 8M vertices
■ That is 64 billions vertices.
■ About 100 TB data for elevation alone!

○ At 1 m per sample => still ~16-32 GB...
○ ...and still needs textures/materials info.

● Procedural generation on the fly
○ Slow
○ Looks artificial
○ …but only if you generate everything!

● So...

Solution:

Hybrid Procedural Generation

+

Multiresolution Editing

Large-Scale Features
● Pre-created data

○ Roughest: 32 per kim (every 32 m)
■ => 4k×4k for whole terrain

○ Elevation
○ “Far texture” albedo
○ Vegetation density

● Total data for a 128×128 kim terrain:
○ ~128-200 MB
○ (On the order of size of lightmaps for our older

levels)
○ We don’t even stream it (for now).

Fine Detail Features

● Photo-scanned ground textures:
○ Full material data:

■ Albedo
■ Normal
■ Gloss
■ Height

● Mixed with elevation to
generate actual geometry!

○ 1-4 m per texture
● What to do between 32 m and 1 m?

Mid-Level Terrain Features
● Elevation:

○ Cubic spline

Mid-Level Terrain Features
● Elevation:

○ Cubic spline+
○ Multi-band fractal noise

■ More noise at higher elevations
■ More if >”angle of repose” for

soft ground

image: Wikipedia

Mid-Level Terrain Features
● Elevation:

○ Cubic spline+
○ Multi-band fractal noise

■ More noise at higher elevations
■ More if >”angle of repose” for

soft ground

○ Also - horizontal displacement...
image: Wikipedia

Horizontal Displacement
● Add x-z offset noise when caching elevation
● More natural look of steeper slopes
● Ref: Brano Kemen, Outerra blog, 2009

Multi-Resolution Editing
● All terrain data is stored in quad-trees

○ Elevation, vegetation, custom materials, clip
masks

○ 32 m is roughest resolution always available
■ (1km nodes - purple)

○ Edit to finer precision in areas of interest
○ “Freeze” fractal data on edit

● High-precision limit: 25 cm
○ Just to prevent “multi-gigabyte-level” accidents

● Some data has defaults
○ Clip mask => visible
○ Vegetation => defaults to e.g. 0.28 (☺!?)

Terrain Mesh Size
● Tile:

○ 33×33 grid of vertices
○ 512×512 texture
○ Min size: 0.5 m

● 2x bigger terrain -> add 9 new tiles
● 1 level ≅ 9 tiles -> 0.5m
● 8 levels ≅ 70 tiles -> 128 m
● 18 levels ≅ 160 tiles -> 128 kim
● ~350k tris total for a typical scene

Per-Pixel Elevation
● Adds detail in the distance

○ Normal maps, materials and
other details are based on
elevation!

● Generation
○ Temporarily generate elevation to per-texel level

○ Generate per-pixel normals, materials, etc.

○ Throw the fine elevation away

Material Rules - Elevation Regions
● Regions (usually):

○ Seaside/sandy (optional)
○ Grasslands
○ Grass & ground
○ Bare rocks
○ Snow

● Uses “simple noisy ramp”
○ Prevents sharp cuts

if elevation < lerp(transition_start, transition_end, noise)

 region = lower

else

 region = upper

Material Rules - Inside One Region

● Multiple materials per region (2-8 usually)
○ Random pick based on:

■ Slope ramp
■ Vegetation ramp (arid, grass, forest)

chance[i] =

 noise(material[i].noise_params)*

 ramp(slope, material[i].slope_params)*

 ramp(vegetation_density, material[i].vegetation_params)

// ...pick material with highest chance in each pixel

○ Roughly match elevation angle of repose to rocky
material slope rule

○ Also generates, grass, flowers...

Texture Cascades
● Near textures

○ Per material: 1-4 meters tiles
● Mid textures

○ Per material: 100+ meters tile
● Far texture

○ One for entire terrain

Forest Materials

● Special cases:
○ Forest floor (red circle):

■ Each region has separate material sets
for inside the forest.

○ Far forest (blue circle):
■ Splatted into terrain at distance

beyond forest imposters.

Vegetation Density and Materials

● Density, with elevation/slope/convexity*, controls:
○ Materials (and indirectly grass/flower placement)
○ Distributions for misc plants
○ Distributions for forest (tree probability)

■ E.g trees not spawned on steep slopes, or in
drylands.

● Workflow accelerator:
○ Define huge swaths of diverse forests by

“spray-painting” vegetation density very roughly.

*Convexity - second derivative of elevation
 - i.e. whether to spawn on hilltops (>0) and/or in valleys (<0).

Vegetation Rendering Subsystems
● Bare terrain

Vegetation Rendering Subsystems
● Bare terrain
● Forest imposters

Vegetation Rendering Subsystems
● Bare terrain
● Forest imposters
● Near trees

Vegetation Rendering Subsystems
● Bare terrain
● Forest imposters
● Near trees
● Misc plants and crops

Vegetation Rendering Subsystems
● Bare terrain
● Forest imposters
● Near trees
● Misc plants and crops
● Grass blades (geometry!)

Vegetation Rendering Subsystems
● Bare terrain
● Forest imposters
● Near trees
● Misc plants and crops
● Grass blades (geometry!)
● Flowers (alpha-keyed)

● Jittered grid: ~8 m between trees
● 1 kim blocks - ~ 16 000 trees per block

○ One tile is ~128×128 tex
○ Each sample stores one tree

■ Offset, rotation, tree type, hue

Forest

type
params

type
params

type
params

type
params

type
params

...

...type
params

vertices[4]
uv[4]

vertices[4]
uv[4]type 1

type 2
...

placeholder
geometry

● Pregenerated geometry
○ Grid of 128×128 standalone quads
○ Each tree = 2 tris

Forest Imposters Blocks

Forest Imposters

● 8-direction crossed geometry or viewer facing?
○ Crossed geometry is slower.
○ Viewer facing lacks parallax.

● So…
○ Use 8-direction textures.
○ Face quad to viewer.
○ Compensate for perspective in pixel shader.

■ See: “Interior Mapping” by Joost van Dongen
○ Blend 2 nearest directions.

Imposter Textures
● Store in texture array for different trees
● Albedo, subsurface, normal, AO,depth

Depth texture for proper shadows:

withwithout

Video #2

Grass Blades

● True geometry (not alpha-keyed), ~7 tris per blade
● Pre-batched geometry in grids

○ Different density grids overlapped
● Sample from a splatted mask/color texture in vtx shader
● Perfectly match grass material position on the floor
● Albedo colored from the floor
● Per-blade ambient shadow on the floor

Flowers

● Similar to grass, much lower density,
alpha-keyed

● Pre-batched placeholder geometry
○ E.g. 32 tris/model max (tri soup for now)
○ Real geometry stored in separate buffers

● Flower distribution from materials
○ Splatted to a cached texture

● Vertex shader reshapes placeholder geometry
into a real flower

○ Flower index from splatted distribution
○ Read geometry data for that index

Misc Plants

● Procedurally instanced meshes
○ Bigger flowers
○ Bushes in the plains and forests
○ Forest overgrowth (and logs, roots, …)
○ Crops
○ Etc.

Roads...

● Splines (roads, rivers, trails, streets...)
● Transition borders - fade-out vegetation map
● Force own material in those parts

○ Gravel/dirt/asphalt
○ Add lines, skid marks, etc. - custom decals

● Level out elevation, with transition
○ Add custom height texture on decals (wheel

ruts…)
● “Doodads” - plants and rocks by riverside…, roadside

bollards, lamp posts...

… and Patches

● Fields, lakes, yards…
● Transition borders - fade-out vegetation map
● Elevation

○ Unlike roads, smooth it out
○ Add custom height texture for crop rows

● “Doodads” - plants and trees at the edges of crop fields

Retaining Walls

● Once you have horizontal
displacement…

● … you can handle retaining walls.
● Custom lines that force vertical cuts
● Move neighbor vertices to be aligned

vertically
● Keeps good shape at lower LODs
● Memory-efficient (Doesn’t need

high-resolution elevation.)

Materials - Custom

● Painted manually over rule-based materials.
● Max resolution: 4 samples/meter (but can be lower to save

memory - using multires).
● Actual resolution - same as albedo - 1024 samples/meter

○ Don’t “blend” grass with rocks!
● How to upsample integer data?

How to Mix Coarsely Defined Materials?

Erm… nope? Blurry - still
nope?

“Noisy Choose”
(better)

Height-Based Transition (Best)
● 𝛼 × noise × height

● For multiple materials, pick the one
with the highest value.

Oh, and one more thing…

Video #3

