

Four Million Acres, Seriously

GPU-based Procedural Terrains in Serious Sam 4: Planet Badass

Alen Ladavac, CTO, Croteam

🔀 alen.ladavac@croteam.com

Motivations

- Serious Sam
 - "Bigger is better"
 - Unused space instead of invisible barriers
 - "Huge open levels" (in fact ~5 km so far)
- Real world vistas ~50-100 km distances
- Small scale detail (1 mm textures)
- "Scanned" vs generated
 - Is this in conflict?
- "Photorealistic" look
 - Photo-like environments contrast crazy enemy designs.

Carcassonne, France to Pyrenees (~80 km)

The Deceptive Scale

Hirschegg, Austria

Saalfelden, also Austria... just bigger

Goals

- 128×128 kim terrain
 - "Background" is not a special case.
- Texture detail: 1024 tex/m
 - Pixel size: 1 mim
 - About optimal for floors on 4k resolutions in first person
- Elevation detail: 64 vtx/m
 - Triangle size: ~1.5 cm
 - Actually model cobblestones/pavements

Disclaimer

- The following images and videos are all from the game, but...
- Material is not representative of the final game.
 - The game is still in development.
 - Many content elements are still WIP or placeholders.
 - Some features (usually far-distance colormap) are disabled in some screenshots to better show other features.
 - Bird's-eye views are used here to visualize some concepts they may show artefacts.
 - (Actual game only takes place at ground level)

Video #1

How Much Data is That Again?

- Pre-made data is too big.
 - Elevation for 128×128 kim with 64 vtx/m => 8M x 8M vertices
 - That is 64 billions vertices.
 - About 100 TB data for elevation alone!
 - At 1 m per sample => still ~16-32 GB...
 - ...and still needs textures/materials info.
- Procedural generation on the fly
 - Slow
 - Looks artificial
 - ...but only if you generate <u>everything</u>!
- So...

Solution:

Hybrid Procedural Generation

+

Multiresolution Editing

Large-Scale Features

- Pre-created data
 - Roughest: 32 per kim (every 32 m)
 - => 4k×4k for whole terrain
 - Elevation
 - "Far texture" albedo
 - Vegetation density
- Total data for a 128×128 kim terrain:
 - **~128-200 MB**
 - On the order of size of lightmaps for our older levels)
 - We don't even stream it (for now).

Fine Detail Features

- Photo-scanned ground textures:
 - Full material data:
 - Albedo
 - Normal
 - Gloss
 - Height
 - Mixed with elevation to generate actual geometry!
 - 1-4 m per texture
- What to do between 32 m and 1 m?

Mid-Level Terrain Features

- Elevation:
 - Cubic spline

Mid-Level Terrain Features

• Elevation:

GDC

- Cubic spline+
- Multi-band fractal noise
 - More noise at higher elevations
 - More if >"angle of repose" for soft ground

image: Wikipedia

Mid-Level Terrain Features

• Elevation:

Ο

GDC

- Cubic spline +
- Multi-band fractal noise
 - More noise at higher elevations
 - More if >"angle of repose" for soft ground

image: Wikipedia Also - horizontal displacement...

Horizontal Displacement

- Add x-z offset noise when caching elevation

Multi-Resolution Editing

- All terrain data is stored in quad-trees
 - Elevation, vegetation, custom materials, clip masks
 - 32 m is roughest resolution always available
 - (1km nodes purple)
 - Edit to finer precision in areas of interest
 - "Freeze" fractal data on edit
- High-precision limit: 25 cm
 - Just to prevent "multi-gigabyte-level" accidents
- Some data has defaults
 - Clip mask => visible
 - Vegetation => defaults to e.g. 0.28 (🙂!?)

Terrain Mesh Size

- Tile:
 - 33×33 grid of vertices
 - **512×512 texture**
 - Min size: 0.5 m
- 2x bigger terrain -> add 9 new tiles
- 1 level ≅ 9 tiles -> 0.5m
- 8 levels ≅ 70 tiles -> 128 m
- 18 levels ≅ 160 tiles -> 128 kim
- ~350k tris total for a typical scene

Per-Pixel Elevation

- Adds detail in the distance
 - Normal maps, materials and other details are based on elevation!

- Generation
 - Temporarily generate elevation to per-texel level
 - Generate per-pixel normals, materials, etc.
 - \circ Throw the fine elevation away

Material Rules - Elevation Regions

- Regions (usually):
 - Seaside/sandy (optional)
 - Grasslands
 - Grass & ground
 - Bare rocks
 - Snow
- Uses "simple noisy ramp"
 - Prevents sharp cuts

```
if elevation < lerp(transition_start, transition_end, noise)
  region = lower
else
  region = upper</pre>
```


Material Rules - Inside One Region

- Multiple materials per region (2-8 usually)
 - Random pick based on:
 - Slope ramp
 - Vegetation ramp (arid, grass, forest)

```
chance[i] =
```

GDC

```
noise(material[i].noise_params)*
    ramp(slope, material[i].slope_params)*
    ramp(vegetation_density, material[i].vegetation_params)
// ...pick material with highest chance in each pixel
```

- Roughly <u>match elevation angle of repose</u> to rocky material slope rule
- Also generates, grass, flowers...

Texture Cascades

- Near textures
 - Per material: 1-4 meters tiles
- Mid textures
 - Per material: 100+ meters tile
- Far texture
 - One for entire terrain

Forest Materials

• Special cases:

- Forest floor (red circle):
 - Each region has separate material sets for inside the forest.
- Far forest (blue circle):
 - Splatted into terrain at distance beyond forest imposters.

Vegetation Density and Materials

- Density, with elevation/slope/convexity*, controls:
 - Materials (and indirectly grass/flower placement)
 - Distributions for misc plants
 - Distributions for forest (tree probability)
 - E.g trees not spawned on steep slopes, or in drylands.
- Workflow accelerator:
 - Define huge swaths of diverse forests by "spray-painting" vegetation density very roughly.

*Convexity - second derivative of elevation

- i.e. whether to spawn on hilltops (>0) and/or in valleys (<0).

Bare terrain

- Bare terrain
- Forest imposters

- Bare terrain
- Forest imposters
- Near trees

- Bare terrain
- Forest imposters
- Near trees
- Misc plants and crops

- Bare terrain
- Forest imposters
- Near trees
- Misc plants and crops
- Grass blades (geometry!)

- Bare terrain
- Forest imposters
- Near trees
- Misc plants and crops
- Grass blades (geometry!)
- Flowers (alpha-keyed)

Forest

- Jittered grid: ~8 m between trees
- 1 kim blocks ~ 16 000 trees per block
 - One tile is ~128×128 tex
 - Each sample stores one tree
 - Offset, rotation, tree type, hue

Forest Imposters Blocks

- Pregenerated geometry
 - Grid of 128×128 standalone quads
 - Each tree = 2 tris

Forest Imposters

- 8-direction crossed geometry or viewer facing?
 - Crossed geometry is slower.
 - Viewer facing lacks parallax.
- So...
 - \circ Use 8-direction textures.
 - Face quad to viewer.
 - Compensate for perspective in pixel shader.
 - See: "Interior Mapping" by Joost van Dongen
 - Blend 2 nearest directions.

Imposter Textures

- Store in texture array for different trees
- Albedo, subsurface, normal, AO,depth

Depth texture for proper shadows:

without

with

Video #2

Grass Blades

- True geometry (not alpha-keyed), ~7 tris per blade
- Pre-batched geometry in grids
 - Different density grids overlapped
- Sample from a splatted mask/color texture in vtx shader
- Perfectly match grass material position on the floor
- Albedo colored from the floor
- Per-blade ambient shadow on the floor

Flowers

- Similar to grass, much lower density, alpha-keyed
- Pre-batched <u>placeholder</u> geometry
 - E.g. 32 tris/model max (tri soup for now)
 - Real geometry stored in separate buffers
- Flower distribution from materials
 - Splatted to a cached texture
- Vertex shader reshapes placeholder geometry into a real flower
 - Flower index from splatted distribution
 - Read geometry data for that index

Misc Plants

- Procedurally instanced meshes
 - Bigger flowers
 - Bushes in the plains and forests
 - Forest overgrowth (and logs, roots, ...)
 - Crops
 - **Etc.**

Roads...

- Splines (roads, rivers, trails, streets...)
- Transition borders fade-out vegetation map
- Force own material in those parts
 - Gravel/dirt/asphalt
 - Add lines, skid marks, etc. custom decals
- Level out elevation, with transition
 - Add custom height texture on decals (wheel ruts...)
- "Doodads" plants and rocks by riverside..., roadside bollards, lamp posts...

... and Patches

- Fields, lakes, yards...
- Transition borders fade-out vegetation map
- Elevation
 - Unlike roads, smooth it out
 - Add custom height texture for crop rows
- "Doodads" plants and trees at the edges of crop fields

Retaining Walls

- Once you have horizontal displacement...
- ... you can handle retaining walls.
- Custom lines that force vertical cuts
- Move neighbor vertices to be aligned vertically
- Keeps good shape at lower LODs
- Memory-efficient (Doesn't need high-resolution elevation.)

Materials - Custom

- Painted manually over rule-based materials.
- Max resolution: 4 samples/meter (but can be lower to save memory using multires).
- Actual resolution same as albedo 1024 samples/meter
 - Don't "blend" grass with rocks!
- How to upsample integer data?

How to Mix Coarsely Defined Materials?

Height-Based Transition (Best)

- $\alpha \times noise \times height$
- For multiple materials, pick the one with the highest value.

Oh, and one more thing...

Video #3

Thanks!

Alen Ladavac, CTO, Croteam

🔀 alen.ladavac@croteam.com