clo/@

High Zombie Throughput
in Modern Graphics

Anton Krupkin
CTO and Founder, Saber Interactive
Denis Sladkov
Lead Graphics Programmer, Saber Interactive

MARCH 18-22, 2019 | #GDC19

World War Z

4-player cooperative 3rd-person shooter
Massive zombie crowds

Powered by Saber Engine ' i Lo
XBox One / Playstation 4 | =SS - (it

o Up to 4k dynamic resolution)2 50

e PC s
o DirectX 11 and Vulkan ‘

GDC MARCH 18-22, 2019 | #GDC19

Agenda

e Saber Engine render pipeline

o High-level GPU workflow
o Shading overview
o Vulkan optimizations

GDC MARCH 18-22, 2019 | #GDC19

Agenda

e Saber Engine render pipeline

o High-level GPU workflow
o Shading overview
o Vulkan optimizations

e Zombies rendering

o Close-up and mid-range characters
o Far-plane swarm
o Decals and gibbing

GDC MARCH 18-22, 2019 | #GDC19

Saber Engine

THE MASTER CHIEF COLLECTION

\WORLD WAR Z QUAKE CHAMPIONS HALO: THE MASTER CHIEF HALO CE ANNIVERSARY GOD MODE
COLLECTION

o b eem W o

.

S
T N ¢
TR

R.I.P.D. INVERSION BATTLE LA TIMESHIFT WILL ROCK

LOANS

Saber Engine render pipeline

o GPU-driven visibility system

o Full depth prepass

o Forward+ PBR shading

o Baked Gl: RNM + dominant direction

o 2 frames of latency

o Multithreaded command buffer recording

GDC MARCH 18-22, 2019 | #GDC19

GPU Workflow

raster

compute Shadowmaps

SSAO
Capsule AO

Forward+
Shading

Volumetrics

Motion Blur

Transparent TAA

Upscale

Particles/FX GUI
Tonemap

Light/Cubemap
Froxel Bitmask

clo/e

Visibility Test [

CPU readback

MARCH 18-22, 2019 | #GDC19

GPU: ZPass

raster
compute

/Pass
FRAME 0

GDC MARCH 18-22, 2019 | #GDC19

GPU: Pre-Shading

raster

compute

Shadowmaps
SSAO
Capsule AO

Light/Cubemap
Froxel Bitmask

GDC MARCH 18-22, 2019 | #GDC19

B

tnpmmy § -
- Shadov

g NI

‘ ;..I'.ll In- :up-:»
! «E

Illllu.d.ﬁ*&ﬁ!%!ﬂl&

e e

- .

>

LT
I Elllm

ct + direct
nghtlng |nd|re\¢ij YO/

i
5

\

Occlusi

)
@

N\

capsu

N\

AO + shadows [Iwanlck|13]

Volumetrics: off

Volumetrics: shadow light tracing [clatzel14]

GPU: Forward+ Shading
—

SSAO
Capsule AO

Forward+
Shading

Volumetrics

Light/Cubemap
Froxel Bitmask

GDC MARCH 18-22, 2019 | #GDC19

GPU: Visibility Test

raster

compute Shadowmaps

SSAO
Capsule AO

Forward+
Shading

Volumetrics

Light/Cubemap
Froxel Bitmask

clo/e

CPU readback

Visibility Test S 5

MARCH 18-22, 2019 | #GDC19

GPU Visibility system

e Based on “Practical, Dynamic Visibility for Games” [Hill11]

e Simple and efficient, no need for PVS/portals etc.

e Main camera: HZB occlusion culling with handmade
occluders

e PSSM splits: frustum culling only

e 0.7ms (XBox One) GPU budget for scene with 100k+ objects

e Requires 1 frame of latency for CPU readback

GDC MARCH 18-22, 2019 | #GDC19

Statistics FoniUim s e RN
| 140.704086 (0)

camera count

dynamc/Fu:ic ucc]uders 96/120

total gp memory 29097984 (27 MB)
d typel visible all |
VIS_STATIC_OB] 860 14205
VIS_STATIC_SUB_OBJ 0 88184
VIS_ANIM_INST 1004 9122
VIS_FOG_VOLUME 18 25
VIS_CUBEMAP 18 23
VIS_SCORCHMARK =
VIS_SCORCHMARK_GPU 2 2 ZZZ =
VIS_GRASS 598 2145 -
VIS_LIGHT_SPHERE [1] 8
VIS_LIGHT_OBB 10 11
VIS_FLARE 24 151
VIS_| DYNAMIC OBJ 195 592
0 1402
VIS_EMITTER 35 775
VIS_WATER_BLOCK
VIS_LOD_STATIC 526 1391
VIS_LOD_ANIM 72 237
VIS_UNKNOWN i

all { 3359 | 118275 |
occluder vis mode(ctr +0): none
object vis mode(ctrl+g): none
freeze visibility(ctri+F): off

render frame/_render' frame [time] : current: 11.841 peak: 13.817 avera
fps/fps [time] 57.010 peak: 63.718 average 56.
GPU/IDLE (€3) [time] rrent: 38.910 peak: 58.480 average 41.874

GPU/Visibility Test [1:1me] 2 current: 0.267 peak: 0.767 average:

D onndR BN S

render_frame/__render_frame [time] : curr
Fps/fps [time] _: current: 53.411 peak:
) [timel : _ current: 51.919
1'I1ty HZE [time] current;
£ to[time]l : current:
ty Test Ccamera [timel : cunre;

GPU/visibility Test cnp¥ Result [timel]
GPu/visibility pownsample [time] Ccurrents: 0.020

L

‘!

A
ERORRTTOR 0N R A AN A A

S VY M\ RU/RN . 8 5 ' . s
. \)

}) | l
\J)
O0A
)', :

OO

t v

\ s

R

Statistics for 0%
| 140.727585 (30)
Grys 20

B 0
vis id type

VIS_STATIC_OBJ
VIS_STATIC_SUB_OBJ
NIM_INST

F E |
VIS_CUBEMAP
5.5 CHM

GPU: Direct3D11

raster

compute Shadowmaps

SSAO
Capsule AO

Motion Blur
TAA

Forward+ Transparent

Shading Particles/FX Tonemap GUI

Upscale

Volumetrics

Light/Cubemap

Froxel Bitmask §

Visibility Test GELLIeAdbACK :
GDC MARCH 18-22, 2019 | #GDC19

GPU: Vulkan Async Compute

raster

compute Shadowmaps
async
N SSAO
Capsule AO

Motion Blur Upscale

Tonemap MERGE

GUI

PRERENDER

Forward+ Transparent
Shading Particles/FX

Volumetrics

Light/Cubemap :

Froxel Bitmask :

Visibility Test R GEHLreadbadk 5
GDC MARCH 18-22, 2019 | #GDC19

Vulkan vs D3D11

e Upto 10% less GPU time
o Wave intrinsics (GL_KHR_shader_subgroup)

e Forward+ lighting / reflection loops scalarization in shading pass
o Async compute

o Half-precision math
e No helper driver thread: 40% less total rendering CPU load
e 20% reduction of CPU critical path due to MT command buffers
e Render target memory aliasing

o 30% less memory
o Dynamic resolution

GDC MARCH 18-22, 2019 | #GDC19

reél ,

)
S
¥l

[

Zombie

-

"1..

Zombies rendering

e Over 5k visible zombies per-frame
e Most are non-interactive background swarm
e 300+ foreground “real” ingame entities/characters
e Only 50 have fully developed zombie brains
e Instancing was used to reduce draw call pressure
e Flexible per-instance visual customization system
o Inspired by “Shading a bigger, better sequel” [Grimes10]

GDC MARCH 18-22, 2019 | #GDC19

N

Customization: meshes

e 3 base archetypes / skeletons

o Male / Female / ‘Big' male
o ~50 bones per skeleton

e 4 mesh regions per archetype

o Legs/ Torso / Head / Hair
o 2-5k tris per region

e 4-8 mesh variations for each region
e /0+ unique mesh combinations total

o Plus ~10 additional unique zombie models (chemical, screamer, etc...)

clo/e

MARCH 18-22, 2019 | #GDC19

rchetype me

male a

-
e

tion

Ld

stomi

U
? A

Customization: color and stain masks

e For each mesh region (shirts / jeans / shoes / hair)
o Color masking texture (ARGB8 texture, low-res)
o Stain masking texture (ARGB8 texture, low-res)

e Shared stain texture set (bloodstains / snow / dust)

o Albedo / normals / roughness textures
o All textures are tiled
o Stored as texture array

e Per-instance constants

o Color : Channel mask + solid color
o Stain : Channel mask + texture array index

GDC MARCH 18-22, 2019 | #GDC19

Customization: color and stain masks

/ . o e, o
g e
i aN: i o~ ”
' ;t‘} % Za =
. v IR ety
L e Y
i N

TORSO MASK :

LEGS MASK :

Customization: hundreds distinct looks

8 ils

\

Zombie rendering: instancing

e Get individual zombies from visibility system
e Gather identical meshes into instancing buckets
o Same mesh variation for one region going into one bucket
o Different LOD models going to separate buckets
e Process accumulated buckets into render queue
o Sort bucket by visibility mask (each active camera has it's own bit)
o Gather meshes with the same visibility mask into batches (30 meshes max)
o For each batch fill continuous constant buffer with per-instance data
o Generate 1 draw call per batch for every pass/camera (Z, SM, shading)

GDC MARCH 18-22, 2019 | #GDC19

Zombie rendering: sample workload

e LOD 0 (8 meters): 10 zombies, ~130k tris, 500 bones, 26 dp, 140k cb

o 6 unique heads, 8 torsos, 6 legs, 6 hairs = 26 draw prims calls (vs 40)
o 50 bones x 2 frames + customization = 100kb of per-instance consts

o Per-draw call material constants: 40kb

LOD 1 (14 m): 30 zombies, ~180k tris, 1500 bones, 38 dp, 520k cb
LOD 2 (25 m): 70 zombies, ~175k tris, 2800 bones, 46 dp, 1120k cb
LOD 3 (35 m): 100 zombies, ~115k tris, 2600 bones, 61 dp, 1250k cb
LOD 4 (>35m): 100 zombies, ~25k tris, 2600 bones, 52 dp, 1130k cb
Total: 223 draw calls (vs 1240), 625k tris, ~4mb of const buffer data
2.5ms x 6 threads CPU to generate ~1000 draw calls (Z, SM, Shading)

GDC MARCH 18-22, 2019 | #GDC19

d swarm

4

roun

Zombie rendering: background swarm

e QOver 5k zombies

o Non-interactive: essentially just a GPU-driven animation
o 8 pre-baked variations total: 2 mesh types x 4 unique appearances
o ~400 triangles per mesh

Inspired by “The Technical Art of Uncharted 4” [Maximov16]
Utilize existing grass rendering solution

Add texture-baked vertex animation

Move alongside pre-modeled tracks

GDC MARCH 18-22, 2019 | #GDC19

Swarm: grass rendering solution

Zombies are authored as grass blades
Blades are distributed with ‘seed brush’ over level geometry
Same blades spatially merged into ‘containers’
Each container has
o Per-blade instancing data
m Position + orientation
m Indirect lighting (sampled from underlying LM)
m Seed for procedural animation and track selection
o OBB for visibility culling / LOD calculations
o Single draw call to render all blades

GDC MARCH 18-22, 2019 | #GDC19

Swarm: baked vertex animation

e Just a single ‘running’ animation for each of 2 zombie types
e Stored as per-frame per-vertex offset + normal

e Baked in two 32-bit textures:

o Offsets from default model - quantized to 8 bit using model’'s AABB
o Object-space normals stored as is

e VS: Sampled with UV = (vertex_id, frame_number)

GDC MARCH 18-22, 2019 | #GDC19

Swarm: movement tracks

Designers lay tracks for a running swarm
Each track is authored as a spline

e Each track converted to an array of 16 bit =
fixed point positions "

e Whole set of tracks stored as single 2D
INT16 texture

e VS: Sampled with UV = (elapsed_time,
track_index)

GDC MARCH 18-22, 2019 | #GDC19

2

)

e

S

%

0
f
|

. ¢

=

D\

V™™

AN
¥

Gibbing & decals

e Hide triangles in wounded regions using vertex masks

e Unhide parts of pre-modeled gore meshes

e Add decals for better mesh - gore mesh stitching

e Based on “Rendering wounds in Left 4 Dead 2" [VlIachos10]

GDC MARCH 18-22, 2019 | #GDC19

Gibbing: region vertex masking

Define mesh regions to be hidden
during gibbing
o Use original mesh tessellation

Store per-vertex 32-bit mask

o 1 bit per region, 32 regions max
Split the edges on region’s border
Define per-instance 32-bit mask

o Zero bits for gibbed regions
VS: hide masked triangles

0 Mt & Mt == 0 -> zero-area tri

GDC MARCH 18-22, 2019 | #GDC19

Decal system

e Transform damage origin to model bind pose (inverse
skinning) and store it

e Pass bind pose vertices from VS to PS

e PS:loop and apply decals before lighting

Planar projection with angle fade-factor
Simple blend mode

Albedo + normal + roughness / metalness
16 decals max

O O O O

GDC MARCH 18-22, 2019 | #GDC19

(RO Bl A e | "V‘ﬂ‘:.“
| \

Y sy - - —
m‘x—[’wv’ T 1 .‘“vﬂ -y e !

References

[Grimes10] “Shading a bigger, better sequel”, Bronwen Grimes, GDC 2010
[Vlachos10] “Rendering wounds in Left 4 Dead 2", Alex Vlachos, GDC 2010
[Hill11] “Dynamic Visibility for Games”, Stephen Hill and Daniel Collin, GPU Pro 2

[lwanicki13] “Lighting Technology of The Last of Us”, Michal Iwanicki, Siggraph 2013
[Glatzel14] “Volumetric Lighting for Many Lights in Lords of the Fallen”, Benjamin
Glatzel, Digital Dragons, 2014

[Maximov16] “The Technical Art of Uncharted 4", Andrew Maximov and Waylon

Brinck, Siggraph 2016

GDC MARCH 18-22, 2019 | #GDC19

clo/e

O O O O O O

Adam Sawicki

Sergey Demidov
Kirill Arefyev
Mikhail Korovkin
Nick Petrov

Max Gridnev
Alexander Smetkin

L ERLE

AMD

Saber

O O O O O O

Jordan Logan

Alexander Skolunov
Dmitry Zaborovsky
lvan Shostak

lvan Popov

Timur Popov

Anton Vasilev

MARCH 18-22, 2019 | #GDC19

Questions?

krupkin@saber3d.com
sladkoff@saber3d.com

GDC MARCH 18-22, 2019 | #GDC19

Bonus slides

GDC MARCH 18-22, 2019 | #GDC19

GPU Visibility system : input

e |Immutable UAV buffer for stat scene
o 2-level world space OBB hierarchy

e Semi-dynamic UAV buffer for moveable objects

o Allocated on-demand via free list

o Occasional per-element OBB update

o Used for any type of objects: characters/lights/volumetrics etc.
e List of cameras

o Frustum + set of control / filter flags
o Includes main camera and any number of dependent cameras (SM)

GDC MARCH 18-22, 2019 | #GDC19

GPU Visibility system : HZB

e Render occluders to fixed resolution depth (512x256)
o About 10k triangles total - really low res occluders
o Several dozen draw calls - occluders merged and frustum-culled on CPU

e Build HZB - conservative depth mip hierarchy down to 2x2

e OBB occlusion test

Calculate bbox screen-space extents
Choose appropriate HZB level (2x2 pixels bbox coverage)
Cull by OBB min depth

Subpixel culling

GDC MARCH 18-22, 2019 | #GDC19

O O O O

GPU Visibility system : tests

Camera specific set of tests

Frustum vs OBB (all cameras)

Occlusion (main camera only)

Distance / screen-space area (SM cameras)

Object state vs camera state (LoDs, reflection camera)

GDC MARCH 18-22, 2019 | #GDC19

GPU Visibility system : output

Per-object cam mask & distance list

Hierarchical merge stage (2-level hierarchy for stat scene)
Per-camera, per-object type append buffer with object IDs
CPU readback

Object ID list used as direct input for CPU render jobs

o ZPass / Shadowmap
o Volumetrics / Dynamic lights / Reflection probes

GDC MARCH 18-22, 2019 | #GDC19

GPU Visibility: drawbacks

e 1 frame of latency for CPU readback
e Manual occluder authoring
e 2 frames of latency for SM tests in case of light culling test

GDC MARCH 18-22, 2019 | #GDC19

