
High Zombie Throughput
in Modern Graphics

Anton Krupkin
CTO and Founder, Saber Interactive

Denis Sladkov
Lead Graphics Programmer, Saber Interactive

World War Z
● 4-player cooperative 3rd-person shooter
● Massive zombie crowds
● Powered by Saber Engine
● XBox One / Playstation 4

○ 30 fps
○ Up to 4k dynamic resolution

● PC
○ DirectX 11 and Vulkan

World War Z

Agenda
● Saber Engine render pipeline

○ High-level GPU workflow
○ Shading overview
○ Vulkan optimizations

Agenda
● Saber Engine render pipeline

○ High-level GPU workflow
○ Shading overview
○ Vulkan optimizations

● Zombies rendering
○ Close-up and mid-range characters
○ Far-plane swarm
○ Decals and gibbing

Saber Engine

Saber Engine render pipeline

● GPU-driven visibility system
● Full depth prepass
● Forward+ PBR shading
● Baked GI: RNM + dominant direction
● 2 frames of latency
● Multithreaded command buffer recording

GPU Workflow

GPU: ZPass

ZPass : depth + vertex normals

GPU: Pre-Shading

Shadowmaps: PCF only

Shadowmaps: filtered

Lighting: indirect

Lighting: indirect + direct

Occlusion: pre-baked with GI (stat scene)

Occlusion: SSAO

Occlusion: capsule AO + shadows [Iwanicki13]

Reflections: off

Reflections: Cubemaps + SSR

Volumetrics: off

Volumetrics: shadow light tracing [Glatzel14]

GPU: Forward+ Shading

GPU: Visibility Test

GPU Visibility system
● Based on “Practical, Dynamic Visibility for Games” [Hill11]
● Simple and efficient, no need for PVS/portals etc.
● Main camera: HZB occlusion culling with handmade

occluders
● PSSM splits: frustum culling only
● 0.7ms (XBox One) GPU budget for scene with 100k+ objects
● Requires 1 frame of latency for CPU readback

GPU Visibility

GPU Visibility: occluders

GPU Visibility: culling efficiency

GPU Visibility: culling efficiency

GPU: Direct3D11

GPU: Vulkan Async Compute

Vulkan vs D3D11
● Up to 10% less GPU time
○ Wave intrinsics (GL_KHR_shader_subgroup)

● Forward+ lighting / reflection loops scalarization in shading pass
○ Async compute
○ Half-precision math

● No helper driver thread: 40% less total rendering CPU load
● 20% reduction of CPU critical path due to MT command buffers
● Render target memory aliasing
○ 30% less memory
○ Dynamic resolution

Zombies rendering

Zombies rendering
● Over 5k visible zombies per-frame
● Most are non-interactive background swarm
● 300+ foreground “real” ingame entities/characters
● Only 50 have fully developed zombie brains
● Instancing was used to reduce draw call pressure
● Flexible per-instance visual customization system
○ Inspired by “Shading a bigger, better sequel” [Grimes10]

300+ foreground characters

Customization: meshes
● 3 base archetypes / skeletons
○ Male / Female / ‘Big’ male
○ ~50 bones per skeleton

● 4 mesh regions per archetype
○ Legs / Torso / Head / Hair
○ 2-5k tris per region

● 4-8 mesh variations for each region
● 70+ unique mesh combinations total
○ Plus ~10 additional unique zombie models (chemical, screamer, etc...)

Customization: male archetype meshes

Customization: color and stain masks
● For each mesh region (shirts / jeans / shoes / hair)

○ Color masking texture (ARGB8 texture, low-res)
○ Stain masking texture (ARGB8 texture, low-res)

● Shared stain texture set (bloodstains / snow / dust)
○ Albedo / normals / roughness textures
○ All textures are tiled
○ Stored as texture array

● Per-instance constants
○ Color : Channel mask + solid color
○ Stain : Channel mask + texture array index

Customization: color and stain masks

Customization: hundreds distinct looks

Zombie rendering: instancing
● Get individual zombies from visibility system
● Gather identical meshes into instancing buckets

○ Same mesh variation for one region going into one bucket
○ Different LOD models going to separate buckets

● Process accumulated buckets into render queue
○ Sort bucket by visibility mask (each active camera has it’s own bit)
○ Gather meshes with the same visibility mask into batches (30 meshes max)
○ For each batch fill continuous constant buffer with per-instance data
○ Generate 1 draw call per batch for every pass/camera (Z, SM, shading)

Zombie rendering: sample workload
● LOD 0 (8 meters): 10 zombies, ~130k tris, 500 bones, 26 dp, 140k cb

○ 6 unique heads, 8 torsos, 6 legs, 6 hairs = 26 draw prims calls (vs 40)
○ 50 bones x 2 frames + customization = 100kb of per-instance consts
○ Per-draw call material constants: 40kb

● LOD 1 (14 m): 30 zombies, ~180k tris, 1500 bones, 38 dp, 520k cb
● LOD 2 (25 m): 70 zombies, ~175k tris, 2800 bones, 46 dp, 1120k cb
● LOD 3 (35 m): 100 zombies, ~115k tris, 2600 bones, 61 dp, 1250k cb
● LOD 4 (>35m): 100 zombies, ~25k tris, 2600 bones, 52 dp, 1130k cb
● Total: 223 draw calls (vs 1240), 625k tris, ~4mb of const buffer data
● 2.5ms x 6 threads CPU to generate ~1000 draw calls (Z, SM, Shading)

Zombie rendering: background swarm

Zombie rendering: background swarm
● Over 5k zombies

○ Non-interactive: essentially just a GPU-driven animation
○ 8 pre-baked variations total: 2 mesh types x 4 unique appearances
○ ~400 triangles per mesh

● Inspired by “The Technical Art of Uncharted 4” [Maximov16]
● Utilize existing grass rendering solution
● Add texture-baked vertex animation
● Move alongside pre-modeled tracks

Swarm: grass rendering solution
● Zombies are authored as grass blades
● Blades are distributed with ‘seed brush’ over level geometry
● Same blades spatially merged into ‘containers’
● Each container has

○ Per-blade instancing data
■ Position + orientation
■ Indirect lighting (sampled from underlying LM)
■ Seed for procedural animation and track selection

○ OBB for visibility culling / LOD calculations
○ Single draw call to render all blades

Swarm: baked vertex animation
● Just a single ‘running’ animation for each of 2 zombie types
● Stored as per-frame per-vertex offset + normal
● Baked in two 32-bit textures:

○ Offsets from default model - quantized to 8 bit using model’s AABB
○ Object-space normals stored as is

● VS: Sampled with UV = (vertex_id, frame_number)

Swarm: movement tracks
● Designers lay tracks for a running swarm
● Each track is authored as a spline
● Each track converted to an array of 16 bit

fixed point positions
● Whole set of tracks stored as single 2D

INT16 texture
● VS: Sampled with UV = (elapsed_time,

track_index)

Swarm: video

Gibbing & decals

Gibbing & decals
● Hide triangles in wounded regions using vertex masks
● Unhide parts of pre-modeled gore meshes
● Add decals for better mesh - gore mesh stitching
● Based on “Rendering wounds in Left 4 Dead 2” [Vlachos10]

Gibbing: region vertex masking
● Define mesh regions to be hidden

during gibbing
○ Use original mesh tessellation

● Store per-vertex 32-bit mask
○ 1 bit per region, 32 regions max

● Split the edges on region’s border
● Define per-instance 32-bit mask

○ Zero bits for gibbed regions
● VS: hide masked triangles

○ Mvert & Minst == 0 -> zero-area tri

Gib meshes

Decal system
● Transform damage origin to model bind pose (inverse

skinning) and store it
● Pass bind pose vertices from VS to PS
● PS: loop and apply decals before lighting

○ Planar projection with angle fade-factor
○ Simple blend mode
○ Albedo + normal + roughness / metalness
○ 16 decals max

Gibbing: video

References
[Grimes10] “Shading a bigger, better sequel”, Bronwen Grimes, GDC 2010
[Vlachos10] “Rendering wounds in Left 4 Dead 2”, Alex Vlachos, GDC 2010
[Hill11] “Dynamic Visibility for Games”, Stephen Hill and Daniel Collin, GPU Pro 2
[Iwanicki13] “Lighting Technology of The Last of Us”, Michal Iwanicki, Siggraph 2013
[Glatzel14] “Volumetric Lighting for Many Lights in Lords of the Fallen”, Benjamin
Glatzel, Digital Dragons, 2014
[Maximov16] “The Technical Art of Uncharted 4”, Andrew Maximov and Waylon
Brinck, Siggraph 2016

Thanks
AMD

○ Adam Sawicki

Saber
○ Sergey Demidov
○ Kirill Arefyev
○ Mikhail Korovkin
○ Nick Petrov
○ Max Gridnev
○ Alexander Smetkin

○ Alexander Skolunov
○ Dmitry Zaborovsky
○ Ivan Shostak
○ Ivan Popov
○ Timur Popov
○ Anton Vasilev

○ Jordan Logan

Questions?
krupkin@saber3d.com

sladkoff@saber3d.com

Bonus slides

GPU Visibility system : input
● Immutable UAV buffer for stat scene

○ 2-level world space OBB hierarchy

● Semi-dynamic UAV buffer for moveable objects
○ Allocated on-demand via free list
○ Occasional per-element OBB update
○ Used for any type of objects: characters/lights/volumetrics etc.

● List of cameras
○ Frustum + set of control / filter flags
○ Includes main camera and any number of dependent cameras (SM)

GPU Visibility system : HZB
● Render occluders to fixed resolution depth (512x256)

○ About 10k triangles total - really low res occluders
○ Several dozen draw calls - occluders merged and frustum-culled on CPU

● Build HZB - conservative depth mip hierarchy down to 2x2
● OBB occlusion test

○ Calculate bbox screen-space extents
○ Choose appropriate HZB level (2x2 pixels bbox coverage)
○ Cull by OBB min depth
○ Subpixel culling

GPU Visibility system : tests
● Camera specific set of tests
● Frustum vs OBB (all cameras)
● Occlusion (main camera only)
● Distance / screen-space area (SM cameras)
● Object state vs camera state (LoDs, reflection camera)

GPU Visibility system : output
● Per-object cam mask & distance list
● Hierarchical merge stage (2-level hierarchy for stat scene)
● Per-camera, per-object type append buffer with object IDs
● CPU readback
● Object ID list used as direct input for CPU render jobs

○ ZPass / Shadowmap
○ Volumetrics / Dynamic lights / Reflection probes

GPU Visibility: drawbacks
● 1 frame of latency for CPU readback
● Manual occluder authoring
● 2 frames of latency for SM tests in case of light culling test

