
WAKES, EXPLOSIONS AND LIGHTING:
INTERACTIVE WATER SIMULATION IN

'ATLAS'
Mark Mihelich (Grapeshot Games)

Tim Tcheblokov (NVIDIA)

Introduction to ATLAS

ATLAS

Massive multiplayer first- and third-person fantasy pirate adventure

.

Massive multiplayer first- and third-person fantasy pirate adventure

ATLAS

Agenda
Sailing in Atlas is important part of the gameplay
Many things must be done right:
● Simulation of sea states
● Physics of buoyancy
● Rendering the seas
● Interactive features: wakes and explosions

This is the agenda for today’s talk

Simulation of sea states

Basics
Spectrum based approach
Evolved from “Simulating Ocean Water” by J. Tessendorf:
● Generate spectrum
● Evolve spectrum in frequency domain
● Transform data to spatial domain using inverse FFTs
● Rinse and repeat

Basics
Good properties:
● Only depends on absolute time and spectrum parameters
● Can be simulated independently on server and clients
● Or all the servers in the grid
● Seamless transition

● Results are tiles with periodic displacement data
● Can cover infinite areas seamlessly

Nice and easy to use, but not good enough for us!

Problem: range of wavelengths

Lack of details Tiling

Solution: frequency bands
Large FFTs are expensive 𝑂 𝑁# log𝑁 , small FFTs produce visible tiles
Our solution:
● Use small FFTs
● Split spectrum to 4 frequency bands based on wave lengths
● Evolve all 4 bands at the same time
● Convert 4 bands to spatial domain with inverse FFTs
● Postprocess results to get BRDF for PBR
● Recombine results from 4 bands in the shaders

Solution: frequency bands

#0 #1 #2 #3 Combined

Solution: frequency bands

#0 #1 #2 #3

Solution: frequency bands

#0 #1 #2 #3

Problem: Phillips spectrum
Phillips spectrum is not the best and is not customizable enough

Seas are never fully evolved
● 100MPH wind over a puddle?

Dual JONSWAP
Solution:
● Dual fetch limited JONSWAP spectra
● Small/medium local wind waves + large smooth swell waves
● A lot of artistic control while staying physically correct

JOint North Sea WAve Project, 1973

Dual JONSWAP

Dual JONSWAP
A lot of artistic control:
● Wind speed
● Wind direction
● Wind fetch
● Spectrum peaking
● Directional distribution
● Override amplitude
● Low pass filter

Physics of buoyancy

Physics of buoyancy
Archimedes Principle

Ϝ = 𝜌* − 𝜌, ⋅ 𝑔 ⋅ 𝑉
Ϝ – Buoyancy force
𝜌* – Density of the fluid (water)
𝜌, – Density of the body (our ship)
g – Acceleration due to gravity
V – Displaced volume of fluid

Physics of buoyancy
● Take n discrete sea surface displacement samples

along the hull of the boat
● Each sample represents a top-down cross-section of the hull
● Each column volume assumed to have uniform density
● We can calculate a buoyancy force for each sample separately and apply

individual forces back into the boat’s rigid body physics simulation

Physics of buoyancy

Physics of buoyancy

Physics of buoyancy
void ApplyBuoyancy(RigidBody* Boat, Array<Vec3>& SamplePoints)
{

float UnitForce = (kWaterDensity – Boat->density) * kSampleArea;

for(Vec3& SamplePoint : SamplePoints)
{

float WaterHeight = GetWaterHeightAtPoint(SamplePoint);
float Displacement = max(0, WaterHeight – SamplePoint.Z);
Vec3 BuoyancyForce = -vGravity * Displacement * UnitForce;

Boat->ApplyForceAtLocation(SamplePoint, BuoyancyForce);
}

}

Physics of buoyancy
Issues with physically-based method:
● Discrete wave height samples noisy in time domain
● Server simulation often runs at < 10Hz
● Relying on forces and rigid body dynamics adds latency and instability
● We want epic wave size without making players sick

Physics of buoyancy
Our solution:
● We still use our n discrete wave height samples
● Samples used as input to plane fitting algorithm
● David Eberly’s Geometric Tools contain a useful plane fitting implementation:

https://www.geometrictools.com/Samples/Mathematics.html#SymmetricEigensolver3x3

● Use calculated plane for target ship transform
● Apply spring to filter noise and mimic physics of buoyancy

https://www.geometrictools.com/Samples/Mathematics.html

Physics of buoyancy
Note about calculating wave height:
● Wave simulation outputs 3D displacements relative to an imaginary plane
● We want to convert this displacement back into world space
● An iterative approximation is required

Physics of buoyancy
float GetWaterHeightAtPoint(Vec3& SamplePoint)
{

Vec3 Disp = Vec3(0,0,0);
for(int k =0; k < NUM_ITERATIONS; k++)
{

Disp = GetDisplacement(SamplePoint – Disp);
}
return Disp.Z;

}

Rendering the seas

Waves, microfacets and micronormals:

Sea as microfacet surface

Sea as microfacet surface

Rendering equation:

𝑳𝒕𝒐_𝒆𝒚𝒆 = 𝑳𝒔𝒄𝒂𝒕𝒕𝒆𝒓 + ;
𝜴

𝑳𝒔𝒖𝒏 ⋅ 𝒇𝒓 ⋅ 𝒄𝒐𝒔𝜽𝐝𝝎 + ;
𝜴

𝑳𝒆𝒏𝒗 ⋅ 𝒇𝒓 ⋅ 𝒄𝒐𝒔𝜽𝐝𝝎

𝒇𝒓 – BRDF - surface reflectance depending on incoming and outgoing angles

Rendering equation

BRDF
Microfacet BRDF model:

𝒇𝒓 =
𝑭 ⋅ 𝑫 ⋅ 𝑮

𝟒 ⋅ 𝒄𝒐𝒔𝜽𝒊 ⋅ 𝒄𝒐𝒔𝜽𝒐

𝐹 – Fresnel reflectance
𝐷 – Normal distribution function
𝐺 – Masking function

Micronormals:

Micronormal distribution:

NDF

NDF
We use Beckmann distribution:

𝐷 𝜔M =
𝑃## O𝑛

𝜔M ⋅ 𝜔,
Q 𝑃## O𝑛 =

1
𝜋𝛼U𝛼V

exp −
𝑥OM#

𝛼U#
−
𝑦OM#

𝛼V#

𝑃## O𝑛 – 2D PDF, probability of finding the facet with normal O𝑛 or 𝑥OM, 𝑦OM slopes
αx , αy – surface roughness along X and Y axis

We set 𝜔M ⋅ 𝜔,
Q
= 1 : 𝜔M (mesonormal) equals 𝜔, (macronormal) for us.

Surface moments
We can write the PDF in terms of moments (LEADR mapping):

𝑃## O𝑛 =
1

2𝜋 𝛴
exp −

1
2
O𝑛 − 𝐸 O𝑛 `𝛴ab O𝑛 − 𝐸 O𝑛 , 𝛴 =

𝛿U# 𝑐UV
𝑐UV 𝛿V#

𝛴 is the covariance matrix based on slope moments:
𝛿U# = 𝐸 𝑥OM# − 𝐸# 𝑥OM , 𝛿V# = 𝐸 𝑦OM# − 𝐸# 𝑦OM , 𝑐UV = 𝐸 𝑥OM𝑦OM − 𝐸 𝑥OM 𝐸 𝑦OM
PDF is now written in terms of first and second moments
that allow linear operators and can be precalculated and stored in textures

Mipmapping and combination are the linear operators we will gladly use!

Calculating moments
Reverse FFT steps provide displacements
Using them, we calculate:

● First order moments 𝐸 𝑥OM , 𝐸 𝑦OM or slopes of the surface
● Second order moments 𝐸 𝑥OM# , 𝐸 𝑦OM# or squares of slopes
● Covariance 𝐸 𝑥OM𝑦OM , or 𝐸 𝑥OM ∗ 𝐸 𝑦OM

...and store to textures

Calculating moments
The data we update on every simulation step is the following:

Texture array 1
slice 1 (RGBA16F)

R:Displacement X

G:Displacement Y

B:Displacement Z

A: Not used

1
2

1
3

1
4

Texture array 2
slice 1 (RGBA16F)

R: 𝑬 𝒙h𝒏
G: 𝑬 𝒚h𝒏

B: Foam intensity

A: Displacement J

2
2

2
3

2
4

Texture array 3
slice 1 (RGBA16F)

R: 𝑬 𝒙h𝒏𝟐

G: 𝑬 𝒚h𝒏𝟐

B: 𝑬 𝒙h𝒏𝒚h𝒏
A: Not used

3
2

3
3

3
4

iFFT COMPUTE

Summing moments
Combining first order moments:

𝐸 𝑥OM = 𝐸1 𝑥OM + 𝐸2 𝑥OM
𝐸 𝑦OM = 𝐸1 𝑦OM + 𝐸2 𝑦OM

Second order moments and covariance:
𝐸 𝑥OM# = 𝐸1 𝑥OM# + 𝐸2 𝑥OM# + 2𝐸1 𝑥OM 𝐸2 𝑥 OM
𝐸 𝑦OM# = 𝐸1 𝑦OM# + 𝐸2 𝑦OM# + 2𝐸1 𝑦OM 𝐸2 𝑦OM

𝐸 𝑥OM𝑦OM = 𝐸1 𝑥OM𝑦OM + 𝐸2 𝑥OM𝑦OM + 𝐸1 𝑥OM 𝐸2 𝑦OM + 𝐸1 𝑦OM 𝐸2 𝑥 OM

Specular reflection
Integrating specular is analytic:

;
j

𝐿lmM ⋅ 𝑓o ⋅ 𝑐𝑜𝑠 𝜃 d𝜔 =
𝑳𝒔𝒖𝒏 ⋅ 𝑭 𝝎𝒉,𝝎𝒔𝒖𝒏 ⋅ 𝒑𝟐𝟐(𝝎𝒉)

𝟒 ⋅(𝝎𝒏 ⋅ 𝝎𝒆𝒚𝒆) ⋅ (𝟏 + 𝜦 𝝎𝒔𝒖𝒏 + 𝜦 𝝎𝒆𝒚𝒆)

𝜔lmM , 𝜔zVz , 𝜔{ – sun / eye / half vector direction
𝜔M – macronormal, (0,0,1) in our case

Specular reflection

SIMPLE PBR

Environment reflection
Can’t be integrated analytically:

;
𝜴

𝑳𝒆𝒏𝒗 ⋅ 𝒇𝒓 ⋅ 𝒄𝒐𝒔𝜽𝐝𝝎

Integrate numerically as sum of samples
The math is the same as in LEADR paper, but for sake of performance:
● Small set of samples, 3x3 samples
● No Fresnel for samples, Fresnel for the sum instead
● No masking / shadowing.

Environment reflection

SIMPLE PBR

Masking / shadowing
Waves obstruct each other!

Masking / shadowing
Waves obstruct each other!

Walter’s approximation for Smith’s masking and shadowing functions:

𝐺 = b
b|} ~� |} ~�

, 𝛬 𝜔 ≈
bab.#���|�.�����

�.����|#.b�b��
, 𝑎 < 1.6

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑎 = b

� ��� �

𝜔� , 𝜔� – incoming and outgoing light vectors
𝜃 , 𝜑 – pairs of angles for those vectors
𝛼 – “projected anisotropic roughness” = 𝛼𝑥2 cos2𝜑 + 𝛼𝑦2 sin2𝜑

Masking / shadowing

OFF ON

Masking / shadowing

OFF ON

Fresnel reflectance
Visible micronormals:

Visible micronormal distribution:

Fresnel reflectance
Schlick’s approximation for the BRDF :

𝐹 ≈ 𝑅 + 1 − 𝑅
1 − cos 𝜃£ � ¤¥¦ a#.���§

1 + 22.7𝛼£b.�

R – (η−1)2/(η+1)2

η – air to water refraction factor
𝛼£ – “projected anisotropic roughness” = 𝛼𝑥2 cos2𝜑𝑣 + 𝛼𝑦2 sin2𝜑𝑣
𝜑𝑣, 𝜃£ – angles of the view vector 𝑣

Fresnel reflectance

SIMPLE MICROFACET

Scattered light
Requires calculating light transport in the water body
Too expensive for real time!

Scattered light
Fake scattering by looking at the probabilities:

𝐿l¬�``zo = 𝑘b𝐻 𝜔� ⋅ −𝜔� Q(0.5 − 0.5 𝜔� ⋅ 𝜔M)�+𝑘# 𝜔� ⋅ 𝜔M # 𝐶ll𝐿lmM ⋅
1

1 + 𝛬 𝜔�
𝐿l¬�``zo += 𝑘� 𝜔� ⋅ 𝑤M 𝐶ll𝐿lmM + 𝑘Q𝑃*𝐶*𝐿lmM

𝐻 – max(0,wave height), 𝜔� , 𝜔� , 𝜔{ – sun / eye / half vector direction
𝑘b, 𝑘#, 𝑘�, 𝑘Q – tweaking multipliers controlled by artists
𝐶ll , 𝐶* – water scatter color and air bubbles color, controlled by artists
𝑃* – density of air bubbles spread in water
𝜔�, 𝜔± – max(0, 𝜔� ⋅ 𝜔±)

Scattered light

Scattered light

NO SCATTER SUN @ 5° SUN @ 15° SUN @ 45°

Putting it all together
Now combining it all together:

𝑳𝒕𝒐_𝒆𝒚𝒆 = 𝟏 − 𝑭 𝑳𝒔𝒄𝒂𝒕𝒕𝒆𝒓 + ;
𝜴

𝑳𝒔𝒖𝒏 + 𝑭 ;
𝜴

𝑳𝒆𝒏𝒗

Note 𝑭 is already taken in account in analytical ∫𝑳𝒔𝒖𝒏
Adding surface foam:
● Calculate foam color
● Lerp between foam color and 𝑳𝒕𝒐_𝒆𝒚𝒆 based on foam density
● Increase roughness in areas covered with foam for ∫𝑳𝒔𝒖𝒏

Foam
Calculate Jacobian of displacements per frequency band
● If above threshold
● We are on a wave top
● Inject some amount of “turbulent energy”

● Dissipate it over time (blur + fade)
● Sum up “turbulent energy” from all bands on rendering
● Modulate foam texture by “turbulent energy”

Foam

Final tweaks
Bilinear magnification is not a linear operator: 𝛿U# ≠ 𝐸 𝑥OM# − 𝐸# 𝑥OM

To fix this, we calculate mip using ddx and ddy, and:
● 𝐿𝑒𝑟𝑝 second order moments to squares of first order moments:

𝐸Mz¹ 𝑥OM# = 𝑙e𝑟𝑝 𝐸# 𝑥OM , 𝐸 𝑥OM# , 𝑐𝑙𝑎𝑚𝑝 0.25𝑚𝑖𝑝, 0, 1 , same for 𝑦OM,
effectively lerping variance to 0

● 𝐿e𝑟𝑝 from bilinear to bicubic filtering for most detailed frequency band

Final tweaks

DEFAULT VARIANCE FIX + BICUBIC

Final tweaks
Undersampling and crawling geometry:
● Fade displacements to zero at distance
● Bands start fading away at ~30 world space periods from camera

Interactive features: Wave top sprays

Wave top sprays
We want to spawn particles:
● Only in camera view
● Only where the waves crest and create whitecaps
● Should work within UE4’s cascade particle system
● No spawning from GPU
● Simulation is done in a pixel shader with textures for Position/Time/Velocity

Wave top sprays
Solution:
● Custom emitter in camera frustum
● Emit particles everywhere in view
● Don’t simulate or render these yet

● Use particle location to sample world space foam/whitecap textures
● Allow GPU particle simulation to kill particles which are not on whitecaps
● Start actual simulation and rendering for valid particles

Wave top sprays
// Get vertex and surface attributes (same as for rendering)

VERTEX_OUTPUT Vert = GetDisplacedVertex(Particle.Pos)

SURFACE_PARAMETERS Surf = GetSurfaceParameters(Vert.Attributes);

// test if this particle is in a whitecap
if((Surf.foam_wave_hats > Simulation.WaveHatThreshold)
{

Particle.Pos += Vert.Displacement; // apply displacement
Particle.LifeTime = 0.0f; // start simulation and allow rendering

} else {
Particle.LifeTime = -1.0f; // particle doesn’t render until lifetime > 0
return; // skip rest of simulation

}

Wakes, explosions

Wakes, explosions
Explosions currently done with spray particles & sprites
Wakes currently done with foam sprites
Do not affect sea surface displacements

We can do better!

Wakes, explosions: Prototype
Simulate on a grid using Tessendorf’s eWave solver:
Complex displacements and velocity potential per grid cell. On each simulation step:
● Inject displacements
● Convert to frequency domain
● Generate evolving operators V(dT) that respect dispersion relation
● Apply evolving operators
● Generate lateral displacements
● Convert back to spatial domain

Wakes, explosions: Prototype

Wakes, explosions: Prototype
Very cool looking results with natural waves and ideal Kalvin wakes etc, but:
● Solution is periodic
● We apply exponential dampening on the edges of simulation domain

● Does not simulate foam
● We inject and evolve foam: same math as wind waves
● We combine wind waves foam and interactive foam

Overall: 2 forward FFTs, multiplication in frequency space, and 4 inverse FFTs

Wakes, explosions: Prototype

Wakes, explosions: Prototype

Wakes, explosions: Prototype

Wrapping up: timings

Wind waves simulation time on GPU (max quality):

Interactive waves simulation time on GPU (normal quality):

AMD RADEON VII NVIDIA GeForce RTX2080
0.5 msec 0.5 msec

AMD RADEON VII NVIDIA GeForce RTX2080
0.8 msec 0.6 msec

Questions and Answers

Thank you!

