Enabling Real-Time Light Baking Workflows in Saber Engine with AMD Radeon™ Rays Library

Dmitry Kozlov, Advanced Micro Devices, Inc.
Max Gridnev, Saber Interactive
AGENDA

Lightmapping basics
Previous solution
Radeon™ Rays
Distributed baking
Comparison of CPU/GPU solutions
REAL-TIME LIGHT BAKING WORKFLOWS WITH AMD RADEON™ RAYS | 2019

Saber engine

World War Z

Quake Champions

Halo: The master chief

R.I.P.D.
Lightmapping basics

Lightmap format

• Radiosity Normal Map, GI + Baked Lights
• Direction to the dominant light
• Radiance from the dominant light
• Reflection correction coefficient
Lightmap format

- Radiosity Normal Map, GI + Baked Lights
- Direction to the dominant light
- Radiance from the dominant light
- Reflection correction coefficient
Lightmap format

- Radiosity Normal Map, GI + Baked Lights
- Direction to the dominant light
- Radiance from the dominant light
- Reflection correction coefficient
Lightmap format

- Radiosity Normal Map, GI + Baked Lights
- Direction to the dominant light
- Radiance from the dominant light
- Reflection correction coefficient
Directional light map

• 1 light source per lightmap texel

• Nice and cheap specular highlights

• Better than radiosity normal map (RNM) for extreme angles

• Great for low quality
Diffuse lighting
Dominant light radiance
Dominant light direction
Full shading
Types of baking

- Texture lightmap
- Vertex lightmap
- Point cloud
Packing lightmap data

Packed into 4 BC6 textures

- RNM (3 textures)
- Dominant radiance (1 texture)

Single BC7 texture

- RGB: dominant light direction
- Alpha: reflection coefficient
Packing lightmap data

- Vertex points clustered by similarity and packed into a group of 4x4
- Works with BC compression
Point cloud

- Volumes placed by artist
- Consist of tetrahedrons
- Bake lighting at points
- Used for dynamic objects
- Data
 - SH2 for diffuse
 - Direction + Radiance for specular highlights
Lighting artist workflow

1. Tweak lights or objects
2. Send to farm
3. Wait 2-3 hours
4. Get result
Previous light baking solution in Saber engine

Based on Autodesk Beast

- CPU based => slow ~2h per level (1000 CPU cluster)
- Closed software
 - Engine specific features like attenuation function, projection texture, etc.
 - No real-time update for our format
- Support is non flexible and hard work
Path tracing basics

• Start from a lightmap texel

• Trace rays unidirectionally

• Accumulate direct and indirect light
Why Radeon™ Rays?

• Open source

• Hardware independent (OpenCL™)

• Has a path-tracing engine (Baikal)
Tweaking Radeon™ Rays

Inject into BVH traversal code

- Alpha kill texture masking

- LOD masking
 - For a texel’s object: skip all lods except starting lod
 - Skip all non high-level LOD for other objects
Radeon™ Rays 3.0 Design Features

- Vulkan 1.0 compatible
- Hardware independent
- Platform independent
Radeon™ Rays 3.0 Design Features

• Features and improvements
 • Low-level C API
 • GPU acceleration structure builds (both scenes and meshes)
 • Fast acceleration structure updates
 • New acceleration structure types
 • Regular and irregular grids
 • Hierarchical grids
 • Compressed BVHs
 • Rapid Packed Math support on Radeon™ Vega (FP16)
 • Many performance optimizations
Radeon™ Rays 3.x roadmap

• Support for new geometric primitives
 • Hair strands
 • NURBS surface patches

• Out of core geometry

• Optimized (on chip) traversal for alpha-tested geometry

• More complex BVH compression schemes
Noise reduction

- Bilateral filter (lightmap space/spatial)
 - Works fine because diffuse GI is low frequency
 - Average nearest texels within specified radius, taking normals, positions, and radiance into account

- ML filter (future direction)
Radeon™ Image Filters Design Features

- Cross platform image processing library
- Hardware independent
- Conventional post processing filters:
 - Antialiasing
 - Tone mapping
 - Color space conversions
- Denoisers:
 - EAW, LWR, SVGF
 - ML denoiser (OpenCL™ & DirectML)
 - ML upscaler (OpenCL™ & DirectML)
Real-time preview

• Update only visible parts
• Trace rays from camera
• Filter all visible texels
Distributed baking
Distributed preview challenges

- **8 GB** of typical GPU memory limit
- Data distribution (measure on a typical level in Saber engine)
 - **2.5 GB** BVH
 - **2 GB** auxiliary data
 - **~3 GB** lightmap data (4K)

Solution: update only visible texels and readback to system memory

(*) Information provided by Saber Interactive
Comparison

• Typical level
• 15m triangles
• 4Kx2K texture lightmap
• 3Kx3K vertex lightmap
• 200K point cloud
Comparison

CPU cluster: 64x Intel CPU Xeon E7-8870 (10 cores x 2 threads, 64GB RAM per CPU), Windows 10 x64
GPU cluster: 1x Intel CPU Xeon E7-8870 (64 GB RAM) + 2x Radeon™ Vega 64 GPU (8GB VRAM), Windows 10 x64
Comparison

CPU cluster: ~2 h
GPU cluster: ~20 min

(*) Testing done by Maxim Gridnev January 15, 2019. PC manufacturers may vary configurations yielding different results. Results may vary based on driver versions used.
Distributed baking

Pros
• Much faster end-to-end baking time compared to CPU cluster
• Much more better perf / $ compared to CPU cluster
• Designed to enable new baking workflows (place & edit)

Cons
• Latency ~0.5 sec (see future directions)
• CPU only filter (can be potentially ported to GPU)
Conclusion

Implemented distributed lightmap baking service using Radeon™ Rays

Benefits

• Cheaper and faster
• Enables new workflows
Future work

• Balancing schemes for render farms
• Faster mGPU and CPU-GPU transfer schemes
• ML noise filtering
• Data compression schemes
• Geometry updates
REAL-TIME LIGHT BAKING WORKFLOWS WITH AMD RADEON™ RAYS

Disclaimer and attributions

DISCLAIMER
The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale. GD-18

©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, Radeon and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.