
| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

DirectX 12 Optimization
Techniques
in Capcom’s RE ENGINE
Ojiro Tanaka
Rendering Engineer
Capcom

Ashley Smith
Developer Technology Engineer
AMD

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Agenda

• Tools
• RGP
• RGA
• Tips

• Optimizations
• Optimization methods
• Optimizations for DirectX 12

• Tips
• Pre-bake PSO
• QA

2

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP

• Overview pages
• Pipeline state
• Context rolls
• Barriers

3

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP

Captured frame

GPU limited

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP
GPU occupancy

Pixel

Compute

Vertex

Let’s investigate this draw

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Pipeline State

2 out of 10 wavefronts

Reduce VGPR by 1:
3 out of 10 wavefronts

Be careful of scratch
memory!

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Pipeline State

• Reducing register usage
• min16float
• min16int
• min16uint

• No need to check for support
• Will default to lowest precision
• How do we investigate?

• RGA

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGA
struct PSInput {

float4 color : COLOR;
};
float4 PSMain(PSInput input) : SV_TARGET {

return float4(pow(abs(input.color.rgb), 2.2), input.color.a);
}

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGA
Line | Ra | Reg State | Instruction
--

1 | 2 | :: | label_basic_block_1: s_mov_b32 m0, s2
2 | 2 | :: | s_nop 0x0000
3 | 2 | v:^ | v_interp_p1_f32 v2, v0, attr0.x
4 | 3 | :v^ | v_interp_p2_f32 v2, v1, attr0.x
5 | 3 | v::^ | v_interp_p1_f32 v3, v0, attr0.y
6 | 4 | :v:^ | v_interp_p2_f32 v3, v1, attr0.y
7 | 4 | v:::^ | v_interp_p1_f32 v4, v0, attr0.z
8 | 5 | :v::^ | v_interp_p2_f32 v4, v1, attr0.z
9 | 5 | ::x:: | v_log_f32 v2, abs(v2)
10 | 5 | :::x: | v_log_f32 v3, abs(v3)
11 | 5 | ::::x | v_log_f32 v4, abs(v4)
12 | 5 | ::x:: | v_mul_f32 v2, 0x400ccccd, v2
13 | 5 | :::x: | v_mul_f32 v3, 0x400ccccd, v3
14 | 5 | ::::x | v_mul_f32 v4, 0x400ccccd, v4
15 | 5 | ::x:: | v_exp_f32 v2, v2
16 | 5 | :::x: | v_exp_f32 v3, v3
17 | 5 | ::::x | v_exp_f32 v4, v4
18 | 5 | x:::: | v_interp_p1_f32 v0, v0, attr0.w
19 | 5 | ^v::: | v_interp_p2_f32 v0, v1, attr0.w
20 | 5 | :^vv: | v_cvt_pkrtz_f16_f32 v1, v2, v3
21 | 3 | x: v | v_cvt_pkrtz_f16_f32 v0, v4, v0
22 | 2 | vv | exp mrt0, v1, v1, v0, v0
23 | 0 | | s_endpgm

Maximum # VGPR used 5, # VGPR allocated: 5

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGA
struct PSInput {

float4 color : COLOR;
};
float4 PSMain(PSInput input) : SV_TARGET {

return float4(pow(abs(input.color.rgb), 2.2), input.color.a);
}

Line | Ra | Reg State | Instruction
--

1 | 2 | :: | label_basic_block_1: s_mov_b32 m0, s2
// ...

23 | 0 | | s_endpgm

Maximum # VGPR used 5, # VGPR allocated: 5

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGA
struct PSInput {

min16float4 color : COLOR;
};
float4 PSMain(PSInput input) : SV_TARGET {

return float4(pow(abs(input.color.rgb), 2.2), input.color.a);
}

Line | Ra | Reg State | Instruction
--

1 | 2 | :: | label_basic_block_1: s_mov_b32 m0, s2
// ...

24 | 4 | :^v: | v_cvt_f32_f16 v1, v2
25 | 4 | ::^v | v_cvt_f32_f16 v2, v3
26 | 4 | :::x | v_cvt_f32_f16 v3, v3
27 | 4 | x::: | v_cvt_f32_f16 v0, v0

// ...
33 | 0 | | s_endpgm

Maximum # VGPR used 4, # VGPR allocated: 4 5

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGA
struct PSInput {

min16float4 color : COLOR;
};
float4 PSMain(PSInput input) : SV_TARGET {

return float4(pow(abs(input.color.rgb), 2.2), input.color.a);
}

Line | Ra | Reg State | Instruction
--

1 | 2 | :: | label_basic_block_1: s_mov_b32 m0, s2
// ...

24 | 4 | :^v: | v_cvt_f32_f16 v1, v2
25 | 4 | ::^v | v_cvt_f32_f16 v2, v3
26 | 4 | :::x | v_cvt_f32_f16 v3, v3
27 | 4 | x::: | v_cvt_f32_f16 v0, v0

// ...
33 | 0 | | s_endpgm

Maximum # VGPR used 4, # VGPR allocated: 4 5

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Context Rolls

cmdBuf->RSSetViewports(a);
cmdBuf->Draw(1);
cmdBuf->RSSetViewports(b);
cmdBuf->Draw(2);
cmdBuf->RSSetViewports(a);
cmdBuf->Draw(3);

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP Profiler – Context Rolls

Color by hardware context

Could be running
more draws here

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Context Rolls

How do we check context rolls?

Every draw caused a
context roll L

Can see what state
change caused context

roll

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Context Rolls
cmdBuf->RSSetViewports(a);
cmdBuf->Draw(1);
cmdBuf->RSSetViewports(b);
cmdBuf->Draw(2);
cmdBuf->RSSetViewports(a);
cmdBuf->Draw(3);

cmdBuf->RSSetViewports(a);
cmdBuf->Draw(1);
cmdBuf->Draw(3);
cmdBuf->RSSetViewports(b);
cmdBuf->Draw(2);

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Barriers
6% of time spent in barriers

List of barriers

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Barriers

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Barriers

• Depth/stencil decompress

Depth/stencil buffer

G buffer

UAV Read
depth/stencil

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Barriers

• HiZ range resummarize

Depth/stencil buffer

G buffer

UAV Write
depth/stencil

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Barriers

• DCC decompress
Compression is enabled or
disabled by many factorsFormat, flags, usage

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RGP – Barriers

ResourceBarrier(D3D12_RESOURCE_STATE_RENDER_TARGET,
D3D12_RESOURCE_STATE_COPY_DEST);

ResourceBarrier(D3D12_RESOURCE_STATE_COPY_DEST,
D3D12_RESOURCE_STATE_RENDER_TARGET);

• DCC decompress
• Example:

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips

• Fast clears
• Debugging

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Fast clears

ClearRenderTargetView()
ClearDepthStencilView()

pOptimizedClearValue

Stick to 1.0f or 0.0f for depth
Black or white for color

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Debugging

Breadcrumbs / WriteBufferImmediate()
WriteMarker(TopOfPipe, 1)
Draw(x)
WriteMarker(BottomOfPipe, 2)
WriteMarker(TopOfPipe, 3)
Draw(y)
WriteMarker(BottomOfPipe, 4)

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Debugging

Breadcrumbs / WriteBufferImmediate()
WriteMarker(TopOfPipe, 1)
Draw(x) < TDR happens here
WriteMarker(BottomOfPipe, 2)
WriteMarker(TopOfPipe, 3)
Draw(y)
WriteMarker(BottomOfPipe, 4)

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Debugging

Breadcrumbs / WriteBufferImmediate()
WriteMarker(TopOfPipe, 1)
Draw(x) < TDR happens here
WriteMarker(BottomOfPipe, 2)
WriteMarker(TopOfPipe, 3)
Draw(y)
WriteMarker(BottomOfPipe, 4)
// ...
< Crash reported afterwards

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Debugging

Breadcrumbs / WriteBufferImmediate()
WriteMarker(TopOfPipe, 1)
Draw(x) < TDR happens here
WriteMarker(BottomOfPipe, 2)
WriteMarker(TopOfPipe, 3)
Draw(y)
WriteMarker(BottomOfPipe, 4)
// ...
< Crash reported afterwards

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Debugging

Breadcrumbs / WriteBufferImmediate()
WriteMarker(TopOfPipe, 1) // 1
Draw(x) < TDR happens here
WriteMarker(BottomOfPipe, 2) // 0
WriteMarker(TopOfPipe, 3) // 0
Draw(y)
WriteMarker(BottomOfPipe, 4) // 0
// ...
< Crash reported afterwards

We know what caused
the TDR now

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Tips – Debugging

Breadcrumbs / WriteBufferImmediate()
DX11: AGS on github

DX12: WriteBufferImmediate()

Only for debugging (May cause stalls!)

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

RE ENGINE
Optimization

31

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Agenda

• Optimization
• Adaptation of console optimizations to PC
• Optimization for DirectX 12

• Tips

32

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Background of in-house engine

• RE ENGINE
• Capcom’s in-house engine
• Targets consoles and PC

• Shipped
• Resident Evil 7:Biohazard (RE7)
• Resident Evil 2 (RE2)
• Devil May Cry 5 (DMC5)

33

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Background of in-house engine

• RE ENGINE uses “Intermediate drawing command”
• Platform independent commands
• Allows programmers to write drawing commands without platform

knowledge
• Useful for multi-platform development
• Able to create drawing commands on multiple threads
• These “Intermediate drawing commands” are sorted after creation then

translated to API commands
• Drawing order is controlled using priority variable (uint 64 bit value)
• Allows batch process at the discretion of the user
• Useful for controlling sync timing of UAVOverlap and AsyncDispatch

34

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Implementation of DirectX 12 in RE ENGINE

• Trials started during RE7 production, but was not implemented

• RE2 and DMC5 implements DirectX 12

35

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Optimization

• Adaptation of console optimizations to PC
• OcclusionCulling using MultiDraw
• UAVOverlap
• Wave Intrinsics
• Depth Bounds Test

• Optimization for DirectX 12
• Reduction of resource barrier
• Buffer update
• RootSignature
• Memory management

36

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison of before and after

• 24% frame time saving!

37

15.84ms 12.09ms

| AMD CORPORATE TEMPLATE | 2018

Adaptation of console
optimizations to PC

38

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Testing environment

39

• RE2 (2/15 patch)
• 1080p
• Mainly Radeon RX480, partially Radeon R9 Fury X
• Radeon GPU Profiler 1.3.1.70, OCAT, PIX for Windows

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• In DirectX 12 we use ExecuteIndirect
• Allows execution of multiple drawing commands at once
• Aim to reduce the overhead of drawing meshes

• In DirectX 11 MultiDraw is supported by AGS or NVAPI

MultiDraw

40

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Overhead-wise there was not as much improvement as we had
hoped

• ExecuteIndirect was useful for implementation of GPU-based
occlusion culling

Any improvements?

41

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

GPU-based occlusion culling OFF

42

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

GPU-based occlusion culling ON

43

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• 2 possible solution; ExecuteIndirect and Predication command

• ExecuteIndirect
• 4 byte Alignment
• Controls the number of IndirectArgument executions with CountBuffer

• Predication command
• 8 byte Alignment - Incompatible with consoles

FYI

44

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Visibility managed using “VisibleBuffer”
• Practically, it is a CountBuffer in RE ENGINE
• ByteAddressBuffer
• Number of elements is equal to maximum number of meshes in scene
• Each element contains per mesh visibility

• 0xffff for visible, 0x0000 for invisible

Data structures - VisibleBuffer

45

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Data structures – Mesh data

• StructuredBuffer
• AABB - CPU made or GPU made
• VisibleBuffer’s byte offset
• IndirectArgument’s byte offset

46

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Draw with EarlyZ
• [earlydepthstencil] attribute!
• Store 0xffff into VisibleBuffer

• Minimize writing to same address in units of Wave[dorobot16]

Visibility test

[earlydepthstencil]
void PS_Culltest(OccludeeOutput I){

uint hash = WaveCompactValue(I.outputAddress);
[branch]
if (hash == 0){

RWCountBuffer.Store(I.outputAddress, 0xffff);
}

}
47

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Apply drawing per mesh
• Specify number of draws using MaxCommandCount

• VisibleBuffer as CountBuffer
• CountBuffer 0xffff : Enable draw (count is MaxCommandCount)
• CountBuffer 0: Disable draw

Apply visibility test result

void ExecuteIndirect(
ID3D12CommandSignature *pCommandSignature,
UINT MaxCommandCount,
ID3D12Resource *pArgumentBuffer,
UINT64 ArgumentBufferOffset,
ID3D12Resource *pCountBuffer,
UINT64 CountBufferOffset);

48

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Result on PIX

Visible mesh

Invisible mesh

49

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Per mesh occlusion culling OFF

50

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Per mesh occlusion culling ON

51

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Per mesh occlusion culling ON

52

Occluder plane in green

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Per mesh occlusion culling OFF

53

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Per mesh occlusion culling ON

54

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Per mesh occlusion culling ON

55

Not as much geometry
culled as hoped

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Effective against props and character mesh
• Culling methods are effective against smaller AABB units

• Ineffective against large mesh
• Large meshes are always visible
• Need to split the mesh finely for better results

Room for improvement?

56

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Cut out 256 triangles as one batch
• Each batch consists of consecutive Indirect Argument

• Create AABB per batch

Automatic division of large mesh

57

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Almost all draws fall below 768 indices
• Large amounts of batches cause bad performance

• Depend on the hardware
• Merge commands if adjacent IndirectArguments are continuous

Issues with many micro drawing command

58

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Mesh division OFF

59

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Mesh division ON

60

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Divide mesh OFF

61

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Divide mesh ON

62

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• To run as few fragment shaders as possible

• Z-prepass with every mesh is expensive
• Cost can surpass the benefit

• Limiting Z-prepass to meshes close to the camera
• Reuse auto-division models

Partial Z-prepass

63

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison of each method

API DirectX 12, GPU AMD Radeon RX480 , Radeon Profiler

115.541
618.3 829.4 823.1

2295.4

1976.9 1764.4
1560.6

Frustum cul l ing Frustum cul l ing
+Occlusion cul l ing

Frustum cul l ing
+Occlusion cul l ing

+Auto spi l i t

Frustum cul l ing
+Occlusion cul l ing

+Auto spi l i t
+Pat ial Z-prepass

Occlusion culling and
GBuffer’s duration(micro sec)

Culling GBuffer

2410.9
2595.2 2593.8

2383.7

64

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison of GPU-based occlusion culling

• At this point not gain performance

65

15.84ms 15.61ms

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

UAVOverlap

• In DirectX 12 shaders without dependency can execute in
parallel

• UAV barrier has ambiguous dependency
• Unclear whether read or write
• If each batch writes to a separate location, it can be executed in

parallel
• If WAW(write-after-write) hazard is avoidable

66

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

UAVOverlap

• Controllable UAV Synchronization for each compute shader
dispatch
• Parallel execution made possible by disabling synchronization of UAV
• In DirectX 11, it is possible to introduce equivalent functions using AGS

and NVAPI.

67

• void dispatch(u32 threadGroupX,u32 threadGroupY,u32 threadGroupZ, bool
uavResourceSyncDisable = false);

• void dispatchIndirect(Buffer& buffer,u32 alignedOffsetForArgs, bool
uavResourceSyncDisable = false);

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison : UAV Overlap

• Overall performance improvement

68

15.84ms 15.28ms

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Wave Intrinsics

• Shader scalarization can improve the rate the threads work in
parallel.

• Used for Lighting, GPU-based occlusion culling , SSR…
• For scalarization, refer to [Sousa16]

• Wave Intrinsics improves efficiency of scalarization by removing
unnecessary synchronizations.

• Supported in DirectX 11 and DirectX 12
• Using AGS Intrinsic with Shader Model 5.1
• Can also be used with Shader Model 6.0

69

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison : Wave Intrinsics

• Overall performance improvement

70

15.84ms 15.16ms

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Clamp depth to a specific depth range
• Mainly used to eliminate extraneous pixel shaders
• Available with DirectX 12 (Creators Update) and DirectX 11.3

• DirectX 11 With AGS and NVAPI

• In RE ENGINE, it is used for decals and light shafts

Depth Bounds Test

71

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Runs on pixels that failed the depth test

• Preferably omit processing when completely occluded
• Resolved using Depth Bounds Test

Decals

Depth Bounds Test OFF Depth Bounds Test ON
72

Decal behind the wall

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison of Depth Bounds Test for decals

API DirectX 12, GPU AMD Radeon R9 Fury X, RadeonProfiler

0

0.5

1

1.5

2

2.5

3

3.5

DepthBoundsTest OFF DepthBoundsTest ON

GBuffer duration(milli sec）

73

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Console optimization comparison

74

15.84ms 15.35ms

| AMD CORPORATE TEMPLATE | 2018

Optimization for DirectX 12

75

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Optimization

• Feedback console optimizations method to PC
• MultiDraw
• UAVOverlap
• Wave Intrinsics
• Depth Bounds Test

• Optimization for DirectX 12
• Reduction of resource barriers
• Buffer update
• RootSignature
• Memory management

76

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Reduction of resource barriers

77

12.13ms15.35ms

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• In our original build without optimization, we inserted resource
barrier in batches

• Immediately before executing drawing command, transition the
resource barrier required for the current batch

Resource barrier without optimzation

Batch4 Batch5Batch1 Batch2 Batch3Commnad list

Batch1 Batch3

Batch2 Batch5

Dependency

Dependency
Dependency Batch4

78

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Resource barriers

• Large number of resource barriers
• One of the reasons GPU-based occlusion culling did not improve

performance as much

79

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Resource barriers

• Sections with many resource barriers are not operating
efficiently

80

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Reducing resource barriers

• Optimize by considering the sub resource for each resource

• It is difficult to manually create the best resource barrier from
all intermediate drawing commands

• difficulty
• Getting maximum GPU performance
• Keeping it Bug free J

81

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Add pre-pass for command analysis

• Calculate the position of resource barrier automaticaly
• Analyze intermediate drawing command

• Intermediate drawing commands are sorted by priority
• Able to track the usage of drawing command chronologically for each

resource

• Analysing batches with dependency can easily improve
efficiency of GPU by shifting the priority order

82

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Resource barrier compaction

• Search for precursor resource barrier

83

Batch4 Batch5Batch1 Batch2 Batch3Command list

Batch1 Batch3

Batch2 Batch5

Dependency

Dependency
Dependency Batch4

Search
Search

Search

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Resource barrier compaction

• Search for precursor resource barrier

84

Batch4 Batch5Batch1 Batch2 Batch3Command list

Batch1 Batch3

Batch2 Batch5

Dependency

Dependency
Dependency Batch4

Search
Search

Search

Not found

Found
Found

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Resource barrier compaction

• Search for precursor resource barrier
• Bundle if possible

85

Batch4 Batch5Batch1 Batch2 Batch3Command list

Batch1 Batch3

Batch2 Batch5

Dependency

Dependency
Dependency Batch4

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Advantage / Disadvantage

• Advantage
• Need not be as conscious of internal implementation and caching
• Reduce unnecessary resource barriers

• Disadvantage
• Requires command parsing time

• PC is super fast!

86

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison : Resource barrier reduction

15.35ms

12.34ms

87

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Still not enough?

• There are still inefficient sections in updating the buffer

88

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Still not enough?

89

• A large amount of resource barriers caused by the driver in
DMA transfer

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

What was going on?

• Buffer updates on graphics queue

• CopyBufferRegion
• GPU particle buffer update
• Updating skinning matrix

• CopyBufferRegion is executed as DMA transfer

90

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

What was going on?

• Strong cache flush was operating when DMA transfer was
performed

• L1-Cache,L2-Cache,K-Cache
• Batching resource barrier has no effect

• Possible solutions
• Update with CopyQueue if only one update per frame
• Update using compute shader

• We used compute shader
91

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Compute shader based update

92

StructuredBuffer<uint> fastCopySource;
RWStructuredBuffer<uint> fastCopyTarget;

[numthreads(256,1,1)]
void CS_FastCopy(uint groupID : SV_GroupID, uint threadID : SV_GroupThreadID)
{

fastCopyTarget[(groupID.x * 2 + 0)*256 + threadID.x] = fastCopySource[(groupID.x * 2 + 0)*256 + threadID.x];
fastCopyTarget[(groupID.x * 2 + 1)*256 + threadID.x] = fastCopySource[(groupID.x * 2 + 1)*256 + threadID.x];

}

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Optimization of constant buffer update

• Update all constant buffer via upload heap
• Updates to the same Constant Buffer needs resource-barrier and

CopyBufferRegion(DMA transfer)

• Store new value into upload heap and get upload heap offset address

• Shaders that use ConstantBuffer only needs reference offset
address
• Resource barrier and CopyBufferRegion are no longer needed

93

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

• Successfully removed inefficiency!

CopyBufferRegion reduction comparison

94

12.34ms 12.13ms

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison of each method

API DirectX 12, GPU AMD Radeon RX480 , Radeon Profiler

115.541
618.3 829.4 823.1

285.4

2295.4

1976.9 1764.4 1560.6

1592.5

Frustum cul l ing Frustum cul l ing
+Occlusion cul l ing

Frustum cul l ing
+Occlusion cul l ing

+Auto spi l i t

Frustum cul l ing
+Occlusion cul l ing

+Auto spi l i t
+Pat ial Z-prepass

Frustum cul l ing
+Occlusion cul l ing

+Auto spi l i t
+Pat ial Z-prepass

+Reduct ion
resource barr ier

Occlusion culling and
Gbuffer’s duration(micro sec)

Culling GBuffer

2410.9
2595.2 2593.8

2383.7

1877.9

95

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Root Signature

• DirectX12 uses similar RootSignature to DX11 & Consoles
• Determined at runtime, not at shader build

• To provide customized optimization for each IHV
• For AMD, use RootParamater as table
• For NVIDIA, use RootParamater to optimize ConstantBuffer access

Root(NVIDIA)
RootCBV(0)
RootCBV(1)
RootCBV(2)
RootCBV(3)
DescriptorTable(CBV 4-14)
DescriptorTable(SRV 0-32)
DescriptorTable(UAV 0-8)
DescriptorTable(Sampler)

Root(AMD and Intel)
DescriptorTable(CBV 0-14)
DescriptorTable(SRV 0-32)
DescriptorTable(UAV 0-8)
DescriptorTable(Sampler)

96

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Memory management

• In the first implementation, memory Evict started at around
50% memory usage
• Pretty conservative

• Many spikes occurred during gameplay
• In Resident Evil 2, controls loading and disposal for each room caused

spikes every time the character moved

• Even occurred when loading UI for pause menus

97

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Memory management

• Do not Evict until memory is exhausted
• To prevent micro Evicts

• When the memory usage rate exceeds 90%, unreferenced
memory is Evicted

98

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison after all optimizations

• 24% frame time saving!

99

15.84ms 12.09ms

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Comparison of DirectX 11 / DirectX 12

100 GPU AMD Radeon RX480 , OCAT

• Profile Resident Evil 2 in game

13.58

11.49 11.43

DirectX 11 DirectX 11 wi th AGS DirectX 12

Frame time (milli sec)

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Future works

• AsyncCompute
• Used for Consoles
• Implementaion was incompatible for PC

• Shader model 6.0
• Some tests and trials were done
• Not enough time to ensure stability

101

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Optimization recap

• Although optimizations from console are useful, it may be
inadequate by itself

• Reducing resource barrier is important
• Big impact on performance!
• Effectiveness of other optimization methods can be affected by the

resource barrier
• Paging spikes decreased when memory management was

done all at once rather than doing it in small increments
• May be due to game design
• Worked well even at around 90% utilization

102

| AMD CORPORATE TEMPLATE | 2018

Tips

103

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Pre-bake PipelineStateObject

• Creating PipelineStateObject at runtime is slow
• It would be better if we can Pre-bake PipelineStateObject

beforehand.

104

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Pre-bake PipelineStateObject

• We pre-bake PSO before the final package
• Included in assets created on the engine

• RTV, DSV and index bit stride are not included at first

• We use the collected information to pre-bake the PSO for the final
package
• Much smoother for the end-user.

105

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Load PipelineStateObject at runtime

• Compile in the background during asset loading
• Compute shader : Create immediately on another thread
• Other shaders : Create if it is on the collected information.

• However, if the build of PipelineStateObject is not completed
beforehand, the CPU is blocked

106

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Quality Assurance (QA)

• Quality Assurance for PC version frequently suffer from GPU crashes
• Various factors such as CPU, GPU, display, etc

• However, crash dumps were not useful for debugging GPU crashes
• No way to trace
• RE ENGINE does not offer functions to replay command lists… yet

• In DirectX 12, use WriteBufferImmediate
• Read back executing shader name to the buffer for each drawing command
• Able to know the shader name that was running at the time of crash
• In DirectX 11, AGS supports BreadcrumbBuffer as same function.

107

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Acknowledgments

• Big thanks to RE ENGINE dev team’s contribution and to the
support of IHVs

• Many bugs were fixed by the driver team!

108

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

Questions?

109

| DirectX 12 Optimization Techniques in Capcom’s RE ENGINE | Ojiro Tanaka | March 2019 | GDC 2019

References

• GPU-Driven Rendering Pipelines, Ulrich Haar (Ubisoft Entertainment), Sebastian Aaltonen (Ubisoft Entertainment)

• Optimizing the Graphics Pipeline with Compute, Graham Wihlidal

• Improved Culling for Tiled and Clustered Rendering, Michal Drobot

• The Devils in the details, Tiago Sousa (idTech), Jean Geffroy (idTech) Siggraph 2016

• AMD GeometryFX

• Rendering with Conviction, Stephen Hill

• Moving to DirectX 12: Lessons Learned, Tiago Rodrigues

• Graphics optimization of the latest title in Capcom, Hitoshi Mishima CEDEC 2018

110

