AMD

A BLEND OF GCN OPTIMIZATION
AND COLOR PROCESSING

GGGGGGG

JORDAN LOGAN

STORE CACHING
IN SEPARABLE FILTERS

2 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

STORE CACHING

Follow-up to GDC 2011

“Direct Cormpute Accelerated Separable Filtering”

Shows using group shared memory to cache loads for Separable Filters

AMDA 275E s

2) GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

February 28 - March 4, 2011 | www.GDConf.com

Game Developers Conference’ 2011

Separable Filters

Much faster than executing a box filter
Classically performed by the Pixel Shader
Consists of a horizontal and vertical pass

Source image over-sampling increases with
kernel size
— Shader is usually TEX instruction limited

4 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

Game Developers Conference’ 2011 February 28 - March 4, 2011 | www.GDConf.com

Typical Pipeline Steps

Source Intermediate Destination
RT m—) RT RT

Horizontal Pass Vertical Pass

AMDA 2 oeaw

5 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

STORE CACHING

Writing out the intermediate values to a Render Target
uses a lot of memory bandwidth

The datais already on chip so why not keep it there

Cache the write in Group Shared Memory
Use Group Shared Memory as the source for the second pass

AMDA 275E s

& GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

PIPELINE STEPS WITH STORE CACHING

7 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

—

Horizontal Pass

Single Shader

—)

Vertical Pass

DDDDDD

WORKGROUP SIZE

AMD GPUs run in waves of 64 threads

Work in 2D to maximize data locality

GPUs expect texture accesses to be local in 2D

Running the waves in 8x8 tiles maximizes locality

AMDA 275E s

8 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

MEMORY

A full column of values won't fit into group shared memory

For example a 1080p image would require ~101 KBs

1080 pixels . 3 floats . 4 bytes - 8 columns _ 103680 bytes

column pixel float wave column

The full column should not be needed for every pixel

Allows interleaving the 2 passes

Old data can be discarded once used

AMDA 275E s

9 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

RING BUFFER

A ring buffer can be used for this
Min Tiles needed = Ceil(Half Kernel / Tile size) * 2 + 1

Use a power of 2 to minimize complexity of indexing
Allows use of fast bitwise operators
Optimal tiles needed = Ceil(Half Kernel / Tile size) * 4

Tile #1 Tile #2 Tile #3 Tile #4

Tile #5

AMDA 275E s

10 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

SCHEDULING FOR STORE CACHING

A ring buffer requires work to be scheduled in the shader

Semi-persistent waves can be used to schedule the work manually

See the “Engine Optimization Hot Lap” 2018 GDC talk for more about semi-persistent waves

n GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

OCCUPANCY

Need a lot of waves to fill a GPU

1920 / 8 = 240 waves
64CUs * 4 SIMD/CU = 256 waves in flight

<Twave occupancy = ®

AMDA 275E s

12 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

OCCUPANCY

Need a lot of waves to fill a GPU

1920 / 8 = 240 waves
64CUs * 4 SIMD/CU = 256 waves in flight

<Twave occupancy = ®

Naive Solution
Change workgroup size to 4x16, 2x32, or 1x64
Reduces cache hit rate

AMDA 275E s

13 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

OCCUPANCY

Need a lot of waves to fill a GPU

1920 / 8 = 240 waves
64CUs * 4 SIMD/CU = 256 waves in flight

<Twave occupancy = ®
Naive Solution

Change workgroup size to 4x16, 2x32, or 1x64
Reduces cache hit rate

Better Solution

Change workgroup size to 8x16, 8x32, 8x64
8x32 is a local maximum for performance
Be careful of running out of Group Shared Memory

AMDA 275E s

14 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

EDGE CASES

Image edges require some extra consideration

An if statement used when reading from store cache can generate unwanted
branches

A fast approach is to just fill the cache with the border color at image edges

AMDA 275E s

15 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

IMPLEMENTATION DETAILS

Step 1.
Pre fill the Store cache
Fill the rest of the cache with border value
Sync all waves in group

16 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

IMPLEMENTATION DETAILS

Step 2.

Loop over column
Load new tile of data into the cache for tilen +1
Horizontal pass
Sync all waves
Vertical pass using values in cache for tile n

Save output to texture

Sync all waves in group

AMDA 2 oeaw

17 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

IMPLEMENTATION DETAILS

Step 3
No moare pixels to read but still have some tiles to write out
Loop for remaining number of tiles

Load border color into cache
Sync all waves in group
Vertical Pass using values in cache

Save output to texture

AMDA 2 oeaw

18 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

Texture

Store Cache

Start with

the store cache
filled with
border color

Texture

Store Cache

O
O bl
HEEE o 1
PEEEEEYEEEE
HapErEEEEEn
HEEEEEEEEEEN
HEEEEEEEEEEN
HEEEEEEEEEEN
HEEEEEEEEEEN
HEEEEEEEEEEN
LTt trrrrrrrrrr
Lttt trrrrtrrrp
Tttt trrrrrrrrr
HEEEEEEEEN
v
1
4+
V)]
- iy
P
e (D
TS e
5 (0
0
) e
2, (@)

Texture

Store Cache

HEEEEEEEEEN HE HEEEEEEENEEN
HEEEEEEEEEN HE HEEEEEEEENEN
HEEEEEEEEEN HEEEEEEEEEEEN
HEEEEEEEEEEN HEEEEEEEEEEEEEE
Lt trtrrrrrrrrtrrrrrrrrrrrtl
Lt rtrtrrrrrrrtrtrrtrrrrrrrrrtl
Lt rtrrrrrrrrtrtrrrrrrrrrrrtl

Ll rtrrrrrrerrtrrrrrrrrrrrtl
HEEEENEEEEEEN HEEEEEEEEEEEES
HEEEEEEEEEEN HEEEEEEEEEEEN
HEEEEEEEEEN HE HEEEEEEEEREEN
HEEEEEEERER | EEEEEEEEEEN
HEEETEEN EEEEETEEEN
HEEEEEEN

HEEN HEEEEEN

HERN HEEEEE

Hn HE

Hn N |

Hn HEEEEN T YHE

HN HEEEEEE EERNEEEN
HEEEEEEEEEEEE JrEEEEEN
HEEEEEEE e HEEEEEEEN

HER EEEEETT EEEEEEEE

HEN EEEEEET EEEEEEEE

HEN EEEEEEETAEEEEEEnE

HN EEEEEEEYEEEEEEEnE

HE EEEEEEENEEEEEEEE

HEN HEEEEEEENEEEEEEEE

HEB L rrrtrrrrg

HEE EEEEEEEEEEEEEEEn

Cy

@)

@

)

SIE)

B

@

=

—

o

W A

D (©

Bf, o)

Store Cache Texture

Read values ENEEEEEN SEEEs AN EEEEEEEEEEEEEEEEE
======== e e T T] L1111 B

B
R

from cache and EEEEEEEE = - =

write out to texture ======== =
EEEEEEEE
EEEEEEEE
HEEEEEEEE
BEEEEEEEE
HEEEREREEN
EEEEEEEE
HEEEREEEN
HEEEREEEN
HEEEEEN
EEEEEE
HEEEEEEEE

Texture

Store Cache

Read in another tile

i el

HEEEN
HEEE
HEN S

]
HEEEEE
HEEEEE
ENEEEEEEEE
HENEEEEEEEEE

Texture

Store Cache

-
HEEN
HEES
HEE-

from cache and
write out to texture

Read values

Texture

Store Cache

Read in tile of data

Texture

Store Cache

HEEREEREREEREEEEREEEN
HEEEENEEEEEEEEN
HERR NEEEEEEREEN
HERT NEEEEEERER
HERENTEEEEEEEEEEE
HEREREEEEEEEEEEEE
HEEEEEEEEEEEEEEEE @
HEEEEEEEEEEEEEEEE
~ HEEEEEEEEEN=
e]
S L]
S L]
S L]
S L]
S L]
S []]

Q

>

i |

1>

1=
a._L

4 @)
e.n,_n._t
)
2 -+
w2
= iR =
L) @D
ol
W) ©) =
@ = =

Fill next tile
with border color

Store Cache

Texture

EEEEEEEEENEEEEE
SEEEEEEEEEEEEEE

[] |
] |
HN
|
H
HE
HE
HE
HE

Texture

Store Cache

EETEEEEEEN
"HNEEEEEEEN
ittt rer
HEEEEEEEEEEEN
HEEREN e
[[1 1 | PO
[[] | | [
EEEEEEEEEEEEE .
EEEEEEEEEEEEE “
EEEEEEEEEEEEN [
HEEEEEEEEEREEEN -
HEEEEEEEEEEEEN H
EEEEEEEEEEEEN H
EEEEEEEEEEEEE n
Q
>
=
1>
o
ne
a._L
4 @)
ai) (@} e
—=f =
X somed -+
w2
= e
o QL
= e
Al (@) e
[re o= <

Texture

Store Cache

OPTIMIZING

AMDA 275E s

30 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

BOTTLENECK

This implementation was bandwidth bound
High number of texture loads per pixel

Load caching can be used to reduce number of texture loads

-

100000 200000 300000 400000 500000 600000

800000

SH#0 / CU #0 SIMDO
SIMD1
SIMD2
SIMD3
Scalar | | [| |l 1 I B N A I 1

Internal | [l [l | | | [1

31 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

Branch | I I U I [T l l
LDS I FIIEE AECEANE O (s e enen T 0 OO (0 (e O I E0 0 W0y et e AR e e Wi e
Export

tmmed I ({1 DCETMEIMNRTE COCE TCEE I DO ONREE CORTEE DECHECE CO0 DI OO (e e cee e eemeon e w

38%
38%
38%
38%

NI I
Vec mem || B 00N 1 000 AT 00000 0 0 O 000N OOt OEREN0EEE TN

RN 111 | S

AMD¢

RYZEN
RADEON

Game Developers Conference’ 2011 February 28 - March 4, 2011 | www.GDConf.com

Kernel #4

64 threads load 256 texels

1

l]

Kernel R d us

Kernel Radius * 4 threads
load 1 extra texel each

64 threads compute 256 results

AMDA 275E s

32 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

BOTTLENECK

Load caching moved the bottleneck to LDS
It is also running slower than before

I . LA
SH #0 / CU #0 SIMDO 25%
SIMD1 25%
SIMD2 25%
SIMD3 25%
Scalar |l II] |l [I [1] S I 1 1 I T 1 1 O I [l | 1ARIN
Vecmem | [| . | I I | | [l | || [l
Branch | | [|| | | [|
(RS0 R 0 (A 0N VECRT S (T WSO A A S A AT AR LA A X
Export
tmmed || ITICICOCN N T T OHOWT CEW COCHE NOREE 0 E0E I e e weime awe COreew e 0 nnm v 0 CEnem e memeen e 10 (e e e eemoemieene
Internal | | |1 (A I | [l | [I | |

AMDA 275E s

85 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

LDS

Thread group shared memory maps to LDS (Local Data Share)
LDS memory is banked on GCN

It's spread across 32 banks
Each bank is 32bits (1 dword)

Bank conflicts increases latency of instruction

Can take up to 64 clocks

AMDA 275E s

34 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

LDS

Use Structure of Arrays (SoA) over Array of Structure (AoS)
to reduce potential conflicts

Can reduces stride of reads and writes
Mileage depends on how data is accessed

GCN design supports multi dword accesses to LDS

Keep the array data type 128bits or less
Keep it 64bits or less for older generation support

Note: Float3 will be padded to 128 bits

Deinterleaving float3s can be used to save memory

AMDA 275E s

35 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

LDS

Example:

groupshared float4 LDS Cache[64]; // Array of structs
void Store(int index, float4 value)

LDS_Cache[index].xyzw = value; // will unroll to 4 reads
RYZEN
36 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING AMDH Fanssnity

LDS BANKING

Array of Structs
X Yy Z W X Yy Z W X Yy Z W X Y Z WX Y Z WX VY Z WXVY Z WX Y zZ W
X Yy Z W X Yy Z W X Yy Z W X Y Z WX Y Z WX VY Z WXVY Z WX Y Z W
X Yy Z W X Yy Z W X Yy Z W X Y Z WX Y Z WX VY ZWXVY Z WX Y zZ W
X Y Z W X Yy Z W X Yy Z W X Y Z WX Yy Z WX VY ZWXVY Z WX Yy zZ W
X Yy Z W X Yy Z W X Yy Z W X Y Z WX Y Z WX VY Z WXVY Z WX Y zZ W
X Yy Z W X Yy Z W X Yy Z W X Y Z WX Y Z WX VY ZWXVY Z WX Y zZ W
X Yy Z W X Yy Z W X Yy Z W X Y Z WX Y Z WX VY ZWXVY Z WX Y zZ W
X Y Z W X Yy Z W X Yy Z W X Y Z WX Yy Z WX VY ZWXVY Z WX Yy zZ W

AMDA 275E s

37 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

38

LDS BANKING

< < < = =l
E & == ; S =as
< < < = =
€ & S ; 2 = s

GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

< K S T e

€ £ & & = =

K T e e

Array of Structs

z

z

€ £ & & = =

pEER G 9 Lt S S SK

yA

yA

€ £ £ & = =

8 bank conflicts ‘

—

LGS o b g e Bg e

€ £ & & = = = =

sl e P e T

€ £ = & = & ==

A s T N S e

€ 2 =& & .= = &=

AMDZ

RYZEN
RADEON

39

LDS

Example:

groupshared float LDS_Cache[64 * 4]; // Struct of Arrays

void Store(int index, float4 value)

{
LDS Cache[index

LDS _Cache[index
LDS _Cache[index
LDS Cache[index

+
;
+
+

X_OFFSET]
Y OFFSET]
Z OFFSET]
W_OFFSET]

GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

value.Xx;
value.y;
value.z;
value.w;

AMDZ

RYZEN
RADEON

LDS BANKING

Struct of Array

< <
< <
< <
< <
< <
< <
< <
< <

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

AMDA 275E s

40 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

41

LDS BANKING

Struct of Array

z

Z

W W W W W W W WWWWWWWWWWWWWWWWWWWWWWW W W

W W W W W W W WWWWWWWWWWWWWWWWWWWWWWW W W

2 bank conflicts é

Z

Z

Z

Z

yA

yA

z

z

z

z

Z

Z

yA

yA

z

yA

GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

Z

Z

Z

z

Z

Z

yA

yA

z

z

z

z

Z

z

yA

VA

yA

yA

z

z

z

z

y4

Z

yA

yA

yA

yA

Z

z

z

Z

VA

VA

yA

yA

Z

z

z

Z

Z: L

2552

yA

yA

AMDZ

RYZEN
RADEON

BOTTLENECK

Back to expected speeds from using load caching

Less time spent in LDS
It can be reduced farther by packing data

100000 200000 300000 400000 500000 600000 700000
SH #0 / CU #0 SIMDO 37%
SIMD1 37%
SIMD2 37%
SIMD3 37%
7o T I | I | e rremewr o r 11
Vecmem ||| | | 0 T T T B[I |1 | I
Branch || 1 I T I | 0 | || I
(IO VO AN OV (VOO RN ACTTmOTE {100 \ER TR0 O AWt YOO A AT OO A A)
Export
(13110 T B (0 1N 11
Internal [| [Il | || | L1 | | |

AMDA 275E s

42 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

Game Developers Conference’ 2011 February 28 - March 4, 2011 | www.GDConf.com

Use Packing in TGSM

Use packing to reduce storage space required
In TGSM

— Only have 32k per SIMD
Reduces reads/writes from TGSM

Often a uint is sufficient for color filtering
Use SM5.0 instructions f32tof16(), f16tof32()

PACKING

Float3 packing
Store x and y into a uint using fp16
Keep zin a float

If using luminance based color spaces,
the luminance can be stored into the 32 bit float for the extra precision

Float4 packing

Store x and y into a uint using tp16
Store z and w into a uint using tp16

AMDA 275E s

44 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

BOTTLENECK

Time spent in LDS is down

Bottleneck moved towards

SH#0/CU #0

100000 200000 300000 400000 500000 600000
SIMDO 54%
SIMD1 54%
SIMD2 54%
SIMD3 54%

Scalar [[| [| [II [l 1l O I | (| 1t A Y A A N O I

Vecmem | 1 U A I Y I I 0t 1 I || |
Branch [| | | | | [| || l |l || (I I O | |
(00RO OV N A O o (A
Export
10T I O O A A R A AR
Internal | | | | | || || | | | (—

AMD¢

45 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

RYZEN
RADEON

NUMBERS

Store caching
Load caching
SOA
Packed

Store caching
Load caching
SOA

Store caching

Kernel Size Separated passes Store caching IR e

Testing done by Jordan Logan using a sample framework running on a 4K image on January 14, 2019 with
the following system. PC manufacturers may vary configurations yielding different results. Results may
vary based on driver versions used. Test configuration: AMD Ryzen™ 7 1800x Processor, 2x16GB DDR4-2666,
Vegab4 Frontier Edition (driver 19.3.1), ASUS Prime X370-PR0O Socket AM4 motherboard, WD Blue 250GB
M.2 SSD, Windows 10 x64 Pro (RS4).

AMDA 2 oeaw

46 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

PROS / CONS

Pros Cons
Requires one barrier per blur Large kernels can put heavy pressure on LDS
Reduced bandwidth

Reduced memory requirements
FASTER!

AMDA 275E s

47 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

REFERENCES

AMDA 275E s

48 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

https://developer.amd.com/wordpress/media/2012/10/DirectCompute%20Accelerated%20Separable%20Filters.pps
https://developer.amd.com/wordpress/media/2012/10/DirectCompute%20Accelerated%20Separable%20Filters.pps

Linear RGB
in Working Color Space

TIMOTHY LOTTES

GENERALIZED
TONE-MAPPING

(Non-)Linear RGB
in Output Color Space

49 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

A NEW “GENERALIZED TONE-MAPPER (GTM)”

This is temporary naming just for these slides
Look for a related GPUOpen release

Portable Shader Header
Hdefines to select options and configure between HLSL/GLSL/C

Follow-up to GDC 2016

"Advanced Technigues and Optirnization of VDR Color Pjpelines”

AMDA 2 oeaw

50 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

https://gpuopen.com/games-cgi/
https://gpuopen.com/gdc16-wrapup-presentations/

THE PRIOR VERSION

Incorporated into a sample here

GTM expands on prior version

Adds gamut-mapping
Simplifies over-exposure color shaping
Targets luma preservation

tonemap(luma(RGB)) is similar to luma(tonemap(RGB))

Cleaner Over-Exposure

AMDA 275E s

51 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

https://www.shadertoy.com/view/XljBRK

COLOR GOALS - ONE SIMPLE COLOR PIPELINE

Master content once and target any display

Same color pipeline

Any positive linear RGB color-space input
sRGB, DCI-P3, Rec.2020, or custom primaries

To any RGB color-space output
CRT, Rec.709, sRGB, HDR10, HLG, FreeSync2, etc

52 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

THEORY FOR KEEPING COLOR SIMPLE

Have both tone-mapping and gamut-mapping
not re-grade the image when exposure changes

sRGB and HDR10 outputs require vastly different exposure

A shader does the full tone-mapping for sRGB
A shader does only tone-mapping to 10000 nits for HDR10 (display does the rest)

Exception
when over-exposed color must be brought in-gamut

Use output-specific shaping of color

AMDA 275E s

53 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

ALGORITHM - USED TO GENERATE THE LUT

Maintains RGB ratio, RGB/max3(R,G,B), when in gamut

To avoid re-grading the image when possible

Maintains luma when gamut-mapping color

Designed for smooth fall-off on over-exposure and over-gamut mapping

RGB Ratio
Walks

* Saturated

Curve

\ /

Towards {1,1,1}

* * Until Color
at Set Luma is

in Gamut

54 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

Gamut-mapping (Linear Output Space)

RGB Ratio
Soft Fall-off Reconstruct Walks
Mapping Color Saturated
{-inf,0,1} from RGB Curve
to Ratio at Towards {1,1,1}

Convert
RGB Color
To
RGB Ratio

G t- i
£ Luma {0,k,1} amu Until Color

For RGB Ratio mapped Luma at Set Luma is
in Gamut

AMDA 275E s

GAMUT MAPPING COMPONENTS

Adjusting RGB ratio on over-exposure

Done twice in algorithm
“Walking Back in Garmut”slides

Map RGB working space to smaller RGB output space

Done once to make all RGB values positive
“Soft Fall-off Mapping ”slides

55 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

RGB Ratio
Walks
Saturated
Curve
Towards {1,1,1}
Until Color
at Set Luma is
in Gamut

Soft Fall-off
Mapping
{-inf,0,1}

to

{0,k,1}
For RGB Ratio

AMDA 275E s

WALKING BACK IN GAMUT - RGB RATIO AND LUMA

White {1,1,1} has peak luma (luma=1.0) RGB Ratio
Walks
Other ratios of RGB primaries have luma<1.0 Saturated

Curve
Towards {1,1,1}
Until Color
at Set Luma is
in Gamut

RGB Ratio

Associated sRGB Luma

56 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

WALKING BACK IN GAMUT - PRESERVING LUMA

Tone-mapper output {0 to 1} luma regardless of color

For a target luma, some RGB ratios will be
Not possible to reproduce luma=1of pure blue RGB ratio={0,0,1}
Algorithm walks RGB ratio towards {1,1,1} until

B Walk Path Shaped To
2% Maintain Saturation

AMDA 2 oeaw

57 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

SOFT FALL-OFF MAPPING - 2-PIECE CURVE

Map 0,1} RGB ratio component values

To (0,split, 1} where “sp/it”sets amount of gamut for feather

Split Region

58 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

SOFT FALL-OFF MAPPING - VISUALIZED

CIE1976 visualization of mapping to sRGB

Clipping (No Soft Fall-off) Soft Fall-off “Split” = 1/32

59 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

SOFT FALL-OFF MAPPING - SATURATION COMPROMISE?
L. i

- - A~
o=~ - -
K 2 v > . »
’o . - -
— > .
— » =

e

« Tl

Supporting Wide Gamut
Content Results in
Desaturation For sRGB
Range of Content

Mastering in SRGB
On sRGB Display
Gets Slightly Better Peak
Saturation

When Mapped Back to
sRGB Display

AMDA 375
60 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING SEthsdshy

WORKING SPACE GAMUT OPTIONS

sRGB primaries (good)
Wide-gamut displays can cover the full sSRGB gamut

DCI-P3 primaries (good if have wide-gamut content)

Slight desaturation of LDR range data when mapping back to LDR

Rec.2020 primaries

Also slight desaturation of LDR range data when mapping back to LDR

AMDA 2 oeaw

61 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

GAMUT SIZE - VISUALIZED ON SRGB PROJECTOR

P3 Has Only a Little Increase in Red + Green

sRGB Gamut Input E A 3 DCI-P3 Gamut Input
Output In o ol Output In
Rec.2020 Working Space ' - , — : Rec.2020 Working Space
Then ' ' ' ‘ Then
Reinterpreted as sRGB Reinterpreted as sRGB

sRGB Gamut Input S 2020 Gamut Input
Output In . _ Output In
Rec.2020 Working Space : .- - , Rec.2020 Working Space
Then 4 . ; : ' b Then
Reinterpreted as sRGB ‘ & Reinterpreted as sRGB

e

B " ~~ L

[R .

AMDA 275E s

62 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

SWITCHING FROM ALGORITHM TO OPTIMIZATION

The majority of the algorithm gets factored out into a LUT

What remains is to provide options for
Precision - Higher Accuracy (aka “Ouality’)

Performance - Lower Runtime (aka “Fast”)

63 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

64

OPTIMIZED PIPELINE TWO PATHS

Linear RGB
in Working
Color Space

GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

“Ouality”

Path

VMEM (Non-)Linear
‘Fast” RGB
32%x32x32 in Output
Lookup Table Color Space

VMEM
“Quality”
32x32x32
Lookup Table

Linear RGB
in Output
Color Space

(Non-)Linear
RGB

in Output
Color Space

AMDA 275E s

LUT RECOMMENDATIONS

Maintain typical standard 32x32x32 3D texture

Easy to integrate into existing engines
Easy to apply existing color grading 30 textures

Formats

Use at minimum 10:10:10:2 unorm for non-linear “Fast”outputs
Use a float based format for linear “Fast”or “Ouality”outputs

AMDA 275E s

65 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

COLOR LOG2 PRE-SHAPING BEFORE LUT

RGB color input {0 to 1} which maps to {0 to max-HDR}

Pre-shaping
shapedColor = color * scale + 1.0
, 3 MADs,

Adapt pre-shaping dynamically
Given tone-mapping parameters and output color space =
Adapt scale value to allocate precision to desired areas

AMDA 2 oeaw

66 GDC2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

32”3 10:10:10:2-BIT LUT CAN LIMIT OUTPUT PRECISION

11-bits of Precision I “ ' |
10-bits of Precision ‘. Example “ract”Tuned
9-bits of Precision LUT

To sRGB Output Color
Space

Unable to Sustain

Target of 10-bits of
Precision
Across The Full Curve

However

“Good Enough”
For 8-bit/Channel Outputs

Log Space Visualization : {0-1} LDR Range {1-64} 6-Stops HDR Range

AMDA 2 oeaw

67 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

THE “QUALITY” PATH FOR INCREASED PRECISION

One constraint it mixing LUT with color-grading LUT

Color grading must preserve luma if using the “Ouality”path

Duplicate luma tone-map in VALU

luma = dot(color, colorToLumaWorkingSpace);
luma = pow(luma, contrast);
luma = luma / (luma * kO + k1); // faster version (no shoulder)

Re-luma-ize after LUT for increased precision

color *= (luma / dot(color, colorToLumaOutputSpace));

AMDA 275E s

68 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

“QUALITY” LINEAR TO NON-LINEAR TRANSFORM

When hardware CS stores lack sRGB support

Recommend a “branchi-free”linear to sRGB conversion

Can be better for the compiler
max(min(c*12.92, 0.0031308),1.055*pow(c,0.41666)-0.055);

69 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

COSTS ARE LOW & WILL VARY BY INTEGRATION

GTM typically added to last CS post-processing pass
So for timing below, added GTM to an example up-sampler
Running on Radeon™ RX Vega 64 at 2560x1440
Timing: {timestamp A, , timestamp B}
Timing is average run-time: (B-A)

Expect some amount of run-time to be hidden by the up-sampler

Timing
0.16 ms/frame - Up-sampler alone
0.19 ms/frame - Up-sampler
0.20 ms/frame - Up-sampler

AMDA 275E s

70 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

POST AND SEMI-PERSISTENT WAVES (AKA UNROLLING)

GTM represents the last part of the post-processing chain
Recommend trying Semi-Persistent Waves for post

Launch a {64,1,1} wave-sized workegroup, then Remap8x8()
uint2 Remap8x8(x){return uint2(BFE(x,1,3),BFI(BFE(x,3,3),x,1));

0

uint2 gxy = Remap8x8(gl_LocallnvocationID.x);
gxy += uint2(gl_WorkGrouplD.x<<4u, gl_WorkGrouplD.y<<4u);

»
2

AMDA 2 oeaw

71 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

GTM AND AMD FREESYNC™ 2

Look for related Vulkan® and DirectX® posts on GPUQOpen

AMD FreeSync 2 enables full control of color mapping

Provides ability to query display characteristics
Provides a local diming toggle
Provides a raw 10-bit output

GTM is a great option for mapping to AMD FreeSync 2 displays

AMDA 275E s

72 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

https://gpuopen.com/games-cgi/

OUT 3C8H,AL

Special thanks to

Jordan Logan for co-authoring this talk

Meith Jhaveri & lhor Szlachtycz for FreeSync 2 integration guide
AMD driver teams for HDR support

AMD display team for making FreeSync 2 happen

And all the many people providing the inspiration which drives us!

Post-talk follow-up

AMDA 375
RADEON
72 GDC 2019 | A BLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

mailto:Jordan.Logan@amd.com
mailto:Timothy.Lottes@amd.com

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with
respect to the operation or use of AMD hardware, software or other products described herein. No license,
including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms
and limitations applicable to the purchase or use of AMD's products are as set forth in a signed agreement
between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, FreeSync, and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective companies.

AMDA 375
RADEON
74 GDC2019 | ABLEND OF GCN OPTIMIZATION AND COLOR PROCESSING

