
GPU Work Graphs:

Welcome to the Future

of GPU Programming
Matthäus G. Chajdas, AMD

Shawn Hargreaves, Microsoft

GPU WORK GRAPHS

A NEW DAWN!

GPU programmability

over time

Register

combiners

Programmable

Shaders

Ray

tracing

Work

graphs

ExecuteIndirect

Y
O

L
O

TIME

GPU WORK GRAPHS

WORK GRAPH MOTIVATION

“If only I could launch

work on the GPU”
— Most game developers over the last few years ☺

GPU WORK GRAPHS

WORK GRAPH MOTIVATION

“I can launch GPU work

using ExecuteIndirect!”

“Wow, this is an awful

programming model…”

— Experienced game developers

GPU WORK GRAPHS

WORK GRAPH MOTIVATION

“ExecuteIndirect is an awful

programming model.”
— Hardware designers

— Driver developers

— Authors of every GPU debugging tool

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Classify work into one of the several buckets,

for example, based on shader complexity.

Producer

Worst-case

sized buffer

Worst-case

sized buffer

Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Producer writes data into consumer buffers

Atomic allocation, fairly straightforward

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Data for

Consumer 1

Data for

Consumer 3

Producer

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

WHAT’S THE PROBLEM?

Worst-case

sized buffer

Worst-case

sized buffer
Worst-case

sized buffer

Worst-case

sized buffer

Consumer 1 Consumer 2 Consumer 3 Consumer 4Producer
Command

buffer

B
a
rrie

r

Data for

Consumer 1

Data for

Consumer 3

Barrier between producer and consumers,

empty launch overhead, wasted memory, lost locality…

GPU WORK GRAPHS

PROBLEMS? OPPORTUNITIES!

Recursive algorithms: Scene traversal, …

Traverse scene Process meshlet

Adaptive algorithms (launch more/less work): Physics, …

of things in tile? Optimal launch size

Long execution chains: Lighting algorithms, …

Screen Space RT “Normal” RT Local Cube Map Global fallback

GPU WORK GRAPHS

EVEN MORE OPPORTUNITIES

Pre-process Second pass Third pass

Pre-process Second pass Third pass

Pre-process Second pass Third pass

Pre-process Second pass Third pass

“Parallel chains”: For each new meshlet, unpack data, apply displacement, animate/pose

GPU WORK GRAPHS

EVEN MORE OPPORTUNITIES

“Function calls”: Ray-tracing and materials, anyone?

Select material Material #1

Material #2

Material #3

Material #4

Material #5

Material #6

Work Graphs
The next generation of GPU programmability

GPU WORK GRAPHS

WHAT IF …

The GPU could decide

when/what

to launch?

The GPU would

allocate/free

memory for you?

The GPU could do

all sorts of black-box things

you can’t influence but which

help performance ☺?

What if you could use this today?
(You actually can. No, seriously, get the driver and try it!)

1 2 3

GPU WORK GRAPHS

SAY WHAAAT?

GPU work graph is…

• a data flow model

• Work moves from node to node

in form of small “work items” (think: a struct)

• Work items get “queued up”

• Once enough work is pending,

the GPU launches a dispatch

Broadcast

Thread

Aggregation

GPU WORK GRAPHS

WORK GRAPHS IN A NUTSHELL

Node

Node

Node

Node

Scheduler launches dispatch to consume the data

Nodes connected with edges

Each node has a virtual queue

Nodes launch as soon as “enough” work

waits for them

• Enough depends on the GPU, driver, …

• Runtime can merge/fuse nodes,

reorder outputs, sort, etc.

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

Work item

ThreadCoalescing

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

Work item

ThreadCoalescingLaunch one or more

fixed-sized threadgroups

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

ThreadCoalescingLaunch one or more

fixed-sized threadgroups

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

ThreadCoalescing

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

ThreadCoalescingLaunch one fixed-sized

threadgroup for (up to) N items

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

ThreadCoalescing

Threadgroup

Launch one fixed-sized

threadgroup for (up to) N items

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

ThreadCoalescing

Threadgroup

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

ThreadCoalescing

Threadgroup

Launch thread per item

GPU WORK GRAPHS

LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

Thread

Unspecified!

Coalescing

Threadgroup

Launch thread per item

GPU WORK GRAPHS

WORK GRAPHS IN A NUTSHELL

Nodes can be “node arrays”

Uniform input type

Allows you to select “one of many” easily

(can vary per lane, for example)

Shade

Material 2

Material 1

Material 4

Material 3

Material 6

Material 5

Material 8

Material 7

Material 10

Material 9

Material 12

Material 11

Trace ray

GPU WORK GRAPHS

WORK GRAPHS IN A NUTSHELL

Self-recursion is allowed,

but no loops across nodes

Traverse scene Draw thing

Total depth and expansion

is limited

[max depth=32, expansion:

1:32768 unless thread launch

(i.e. 32 KiBx32 = 1MiB)]

GPU WORK GRAPHS

[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(65535, 1, 1)]

[NodeIsProgramEntry] // optional

[NumThreads(TRANSF_NUM_THREADS, 1, 1)]

void TriangleFetchAndTransform(

uint WorkloadIndex : SV_GroupID,

uint SIMDLaneIndex : SV_GroupIndex,

// Input record that contains the dispatch grid size.

// Set up by the application.

DispatchNodeInputRecord<DrawRecord> launchRecord,

SYNTAX

Plain old HLSL

Extra annotations for a function – that’s it!

Turns a function into a node

GPU WORK GRAPHS

SYNTAX

Calling other nodes looks like message passing

Allocate a record, fill it out, done

ThreadNodeOutputRecords<RasterizeRecord> rasterRecord =

triangleOutput[triangleBin].GetThreadNodeOutputRecords(allocateRecordForThisThread);

if (allocateRecordForThisThread)

{

rasterRecord.Get().tri = StoreTriangleState(ts);

}

rasterRecord.OutputComplete();

Wrote payload and “send” it

GPU WORK GRAPHS

CAN I BEAT THE BLACK BOX?

Yes, sometimes. Heroic programming!

Persistent

threads

Custom memory

management

Low-level

synchronization tricks

Work graphs make all of this accessible, easier to compose,

give the runtime “optimization freedom” and enable new features down the line

GPU WORK GRAPHS

CAN I BEAT THE BLACK BOX?

Yes, sometimes. Heroic programming!

Persistent

threats

Custom memory

management

Low-level

synchronization tricks

Work graphs make all of this accessible, easier to compose,

give the runtime “optimization freedom” and enable new features down the line

Practical applications
Work graphs in the wild!

GPU WORK GRAPHS

COMPUTE RASTERIZATION

Download today

on GPUOpen

https://gpuopen.com/learn/work_graphs_learning_sample/
https://gpuopen.com/learn/work_graphs_learning_sample/

GPU WORK GRAPHS

USE CASE: COMPUTE RASTERIZATION

Computer rasterizer: Needs to deal

with varying triangle sizes

Best performance: Sort by size

One bucket per size, holding

potentially all triangles?

Extra barrier between

producer/consumer

Vertex Shading and Bounding Box

Coarse Rasterization

Fine

Rasterization

1 Pixel

Fine

Rasterization

2 Pixels

Fine

Rasterization

2N Pixels

Fine

Rasterization

… Pixels

Fine

Rasterization

4 Pixels

Output Buffer

Input Buffer

GPU WORK GRAPHS

USE CASE: COMPUTE RASTERIZATION

Work graphs vs. ExecuteIndirect

Reduced memory usage: 3500 MiB → 55 MiB ()

Slightly improved performance

0 500 1000 1500 2000 2500 3000 3500 4000

Work graphs

Execute Indirect

AMD Radeon RX 7900 XTX Memory usage in MiB: Lower is better

Measured on AMD Radeon RX 7900 XTX, 2024-02-26, internal driver

GPU WORK GRAPHS

USE CASE: PROCEDURAL CONTENT

Procedural content creation can be

implemented through “node graphs”

(see Blender®, Houdini , etc.)

Complex decision trees make it hard

to run on execute indirect (branch/merge –

what’s the worst-case ivy count?)

Build town Build house Place ivy

Build castle Place wall

Build bridge

GPU WORK GRAPHS

USE CASE: PROCEDURAL CONTENT

Don’t do it this way!
ExecuteIndirect requires topological graph sort, allocating multiple output buffers,

dependency tracking, etc.

Place ivyBuild town Build castle Build house Build bridge Place wall

GPU WORK GRAPHS

PROCEDURAL ENRICHMENT

Live demo
All generation and all rendering in every frame

LIVE

A video game graphics summit

Description automatically generated

https://gpuopen.com/video/GDC24_Workgraphs_Blogpost_Demo.mp4

GPU WORK GRAPHS

“THE BRIDGE”

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

while (continue_grow) {

 GrowForward();

}

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

while (continue_grow) {

 GrowForward();

 if (forked) {

 // TODO: figure this out properly;

 // maybe use a stack or something

 }

}

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

void Ivy() {

 GrowForward();

 EmitNextRecord();

 if (forked) {

 EmitNextRecord();

 }

}

Ivy

GPU WORK GRAPHS

“THE MARKET”

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market

GPU WORK GRAPHS

THE MEADOW

GPU WORK GRAPHS

MESH NODES

Traverse scene Draw meshlet

Procedural

enrichment

All in one graph

Preview feature

announcement:

Mesh nodes

Draw “inside”

the work graph

using “mesh nodes”

Enables fully compute-driven

scene traversal

(with PSO switching)

GPU WORK GRAPHS

[AMD Official Use Only – General]

GPU WORK GRAPHS68

MESH NODES

Mesh Nodes: Feed into a mesh shader pipeline

Work graph acts like an amplification shader on steroids

Runtime ensures PSO switching isn’t too expensive

• Will buffer up draw calls per state

• Will optimize state changes

• The more similar the states are, the better –

cheapest state change is swapping out shaders only

GPU WORK GRAPHS

Grass Patch Mushroom Flower Bees Butterflies

GRASS GENERATION

Grass

+ + + + + + +

GPU WORK GRAPHS

Grass Patch Mushroom Flower Bees Butterflies

GRASS GENERATION

Grass

+ + + + + + +

“No ExecuteIndirect”

zone

GPU WORK GRAPHS

STATS FOR THE DEMO

Everything ran all the time in every frame

37
nodes

+9
mesh nodes

6.6K
draws/frame

13M
triangles/frame

196 MiB
of memory

200,000
work items

GPU WORK GRAPHS

MESH NODES: PERFORMANCE

1x

1.64x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

AMD Radeon RX 7900 XTX Graph execution + rendering, relative, lower is better

Work graphs

ExecuteIndirect

Work graphs vs. ExecuteIndirect: Super early numbers!

Measured on AMD Radeon RX 7900 XTX, 2024-02-26, internal driver

GPU WORK GRAPHS

PERFORMANCE PITFALLS

The smaller the launch, the worse the performance:

Don’t try to go too fine-grained on 1.0 (i.e., make sure that a node

accumulates enough work to launch a few thousand threads)

Don’t try to synchronize just yet – easy to shoot yourself in the foot,

better ideas in the making

Always check how full your input is in coalescing nodes

Keep payloads small – ideally, a couple of bytes

GPU WORK GRAPHS

AMD RADEON GPU PROFILER SUPPORT

Learn more in our

AMD Radeon Tools session (YouTube link)

https://gpuopen.com/videos/gdc-2024-rdts-game-optimization/

GPU WORK GRAPHS

WHAT ABOUT VULKAN?

Work graphs are also coming to Vulkan®

Currently, AMDX
(AMD only, experimental)

As usual…

• Want to match D3D with a EXT/KHR extension

• We plan to release updates to the AMDX

in tandem with new features in D3D

(like draw calls)

[AMD Official Use Only – General]

GPU WORK GRAPHS75

GPU WORK GRAPHS

WORK GRAPHS SUMMARY

GPU managed

producer/consumer networks
GPU managed memory –

can never run out of memory
Guaranteed forward progress:

No deadlocks,

no hangs, by construction

1 2 3

✓ with expansion/reduction

✓ with recursion

Available now!
https://gpuopen.com/microsoft-work-graphs-1-0-now-available/

https://gpuopen.com/microsoft-work-graphs-1-0-now-available/

THANKS! NOW, GO TRY IT OUT!
Head over to https://gpuopen.com/microsoft-work-graphs-1-0-now-available/

Big thanks also go out to:

• Amar Patel & Shawn from Microsoft

• the fine folks at the university of Coburg (Bastian Kuth, Quirin Meyer,

Carsten Faber),

• the whole team at AMD, specifically Rob Martin, Max Oberberger,

Niels Fröhling, Pirmin Pfeiffer, Dominik Baumeister, Timothy McQuaig,

Jason Stewart, and many more

and everyone else who made this a reality!

https://gpuopen.com/microsoft-work-graphs-1-0-now-available/

GPU WORK GRAPHS

DISCLAIMER
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not

limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences

between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security

vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this

information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without

obligation of AMD to notify any person of such revisions or changes.

“Mesh nodes: Performance” - Testing by AMD as of March 15, 2024, on the AMD Radeon RX 7900 XTX using AMD Software: Adrenalin Edition

31.0.24014.1002 pre-release driver, using the ExecuteIndirect command and Work Graphs with the mesh nodes extension to dispatch scene

information to Microsoft® DirectX® 12, on a test system configured with an AMD Ryzen 7 5800X CPU, 32GB DDR4 RAM, Gigabyte X570

AORUS ELITE WIFI motherboard, and Windows 11 Pro 2023 Update, using the AMD procedural content Work Graphs demo with the overview,

meadow, bridge, wall, and market scene views. System manufacturers may vary configurations, yielding different results. RS-640.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT,

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, RDNA, Ryzen, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be

trademarks of their respective owners. DirectX is either a registered trademark or trademark of Microsoft Corporation in the US and/or other

countries. Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc. Xbox is a registered trademark of Microsoft Corporation

in the US and/or Other countries.

	Slide 1: GPU Work Graphs: Welcome to the Future of GPU Programming
	Slide 2: A NEW DAWN!
	Slide 3: WORK GRAPH MOTIVATION
	Slide 4: WORK GRAPH MOTIVATION
	Slide 5: WORK GRAPH MOTIVATION
	Slide 6: WHAT’S THE PROBLEM?
	Slide 7: WHAT’S THE PROBLEM?
	Slide 8: WHAT’S THE PROBLEM?
	Slide 9: WHAT’S THE PROBLEM?
	Slide 10: WHAT’S THE PROBLEM?
	Slide 11: WHAT’S THE PROBLEM?
	Slide 12: WHAT’S THE PROBLEM?
	Slide 13: WHAT’S THE PROBLEM?
	Slide 14: WHAT’S THE PROBLEM?
	Slide 15: WHAT’S THE PROBLEM?
	Slide 16: WHAT’S THE PROBLEM?
	Slide 17: WHAT’S THE PROBLEM?
	Slide 18: WHAT’S THE PROBLEM?
	Slide 19: WHAT’S THE PROBLEM?
	Slide 20: PROBLEMS? OPPORTUNITIES!
	Slide 21: EVEN MORE OPPORTUNITIES
	Slide 22: EVEN MORE OPPORTUNITIES
	Slide 23: Work Graphs
	Slide 24: WHAT IF …
	Slide 25: SAY WHAAAT?
	Slide 26: WORK GRAPHS IN A NUTSHELL
	Slide 27: LAUNCH WHAT?
	Slide 28: LAUNCH WHAT?
	Slide 29: LAUNCH WHAT?
	Slide 30: LAUNCH WHAT?
	Slide 31: LAUNCH WHAT?
	Slide 32: LAUNCH WHAT?
	Slide 33: LAUNCH WHAT?
	Slide 34: LAUNCH WHAT?
	Slide 35: LAUNCH WHAT?
	Slide 36: WORK GRAPHS IN A NUTSHELL
	Slide 37: WORK GRAPHS IN A NUTSHELL
	Slide 38: SYNTAX
	Slide 39: SYNTAX
	Slide 40: CAN I BEAT THE BLACK BOX?
	Slide 41: CAN I BEAT THE BLACK BOX?
	Slide 42: Practical applications
	Slide 43: COMPUTE RASTERIZATION
	Slide 44: USE CASE: COMPUTE RASTERIZATION
	Slide 45: USE CASE: COMPUTE RASTERIZATION
	Slide 46: USE CASE: PROCEDURAL CONTENT
	Slide 47: USE CASE: PROCEDURAL CONTENT
	Slide 48: PROCEDURAL ENRICHMENT
	Slide 49: Live demo
	Slide 54: “THE BRIDGE”
	Slide 55: PROCEDURAL CONTENT DEMO
	Slide 56: PROCEDURAL CONTENT DEMO
	Slide 57: PROCEDURAL CONTENT DEMO
	Slide 58: “THE MARKET”
	Slide 59: PROCEDURAL CONTENT DEMO
	Slide 60: PROCEDURAL CONTENT DEMO
	Slide 61: PROCEDURAL CONTENT DEMO
	Slide 62: PROCEDURAL CONTENT DEMO
	Slide 63: PROCEDURAL CONTENT DEMO
	Slide 64: PROCEDURAL CONTENT DEMO
	Slide 65: PROCEDURAL CONTENT DEMO
	Slide 66: THE MEADOW
	Slide 67: MESH NODES
	Slide 68: MESH NODES
	Slide 69: GRASS GENERATION
	Slide 70: GRASS GENERATION
	Slide 71: STATS FOR THE DEMO
	Slide 72: MESH NODES: PERFORMANCE
	Slide 73: PERFORMANCE PITFALLS
	Slide 74: AMD RADEON™ GPU PROFILER SUPPORT
	Slide 75: WHAT ABOUT VULKAN? 🌋
	Slide 76: WORK GRAPHS SUMMARY
	Slide 77: THANKS! NOW, GO TRY IT OUT!
	Slide 78: DISCLAIMER
	Slide 79

