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WORK GRAPH MOTIVATION

“If only I could launch 

work on the GPU”
— Most game developers over the last few years ☺



GPU WORK GRAPHS

WORK GRAPH MOTIVATION

“I can launch GPU work 

using ExecuteIndirect!”

“Wow, this is an awful 

programming model…”

— Experienced game developers
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WORK GRAPH MOTIVATION

“ExecuteIndirect is an awful 

programming model.”
— Hardware designers

— Driver developers

— Authors of every GPU debugging tool
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WHAT’S THE PROBLEM?

Classify work into one of the several buckets, 

for example, based on shader complexity.

Producer

Worst-case 

sized buffer
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sized buffer
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Worst-case 
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Consumer 1 Consumer 2 Consumer 3 Consumer 4
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WHAT’S THE PROBLEM?

Producer writes data into consumer buffers

Atomic allocation, fairly straightforward
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Data for 
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Data for 

Consumer 3

Producer
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PROBLEMS? OPPORTUNITIES!

Recursive algorithms: Scene traversal, …

Traverse scene Process meshlet

Adaptive algorithms (launch more/less work): Physics, …

# of things in tile? Optimal launch size

Long execution chains: Lighting algorithms, …

Screen Space RT “Normal” RT Local Cube Map Global fallback
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EVEN MORE OPPORTUNITIES

Pre-process Second pass Third pass

Pre-process Second pass Third pass

Pre-process Second pass Third pass

Pre-process Second pass Third pass

“Parallel chains”: For each new meshlet, unpack data, apply displacement, animate/pose
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EVEN MORE OPPORTUNITIES

“Function calls”: Ray-tracing and materials, anyone?

Select material Material #1

Material #2

Material #3

Material #4

Material #5

Material #6



Work Graphs
The next generation of GPU programmability
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WHAT IF …

The GPU could decide 

when/what 

to launch?

The GPU would 

allocate/free 

memory for you?

The GPU could do 

all sorts of black-box things 

you can’t influence but which 

help performance ☺?

What if you could use this today? 
(You actually can. No, seriously, get the driver and try it!)

1 2 3
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SAY WHAAAT?

GPU work graph is…

• a data flow model

• Work moves from node to node 

in form of small “work items” (think: a struct)

• Work items get “queued up”

• Once enough work is pending,

the GPU launches a dispatch

Broadcast

Thread

Aggregation
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WORK GRAPHS IN A NUTSHELL

Node

Node

Node

Node

Scheduler launches dispatch to consume the data

Nodes connected with edges

Each node has a virtual queue

Nodes launch as soon as “enough” work 

waits for them

• Enough depends on the GPU, driver, …

• Runtime can merge/fuse nodes, 

reorder outputs, sort, etc.
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LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as 

independent launches

(“thread”)

1 2 3

Work item

Broadcast

Work item

ThreadCoalescing
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Work item
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Be aggregated
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Be treated as 
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LAUNCH WHAT?

You can select how things launch. Work items can …

Trigger dispatch

(“broadcasting”)

Be aggregated

(“coalescing”)
Be treated as 

independent launches

(“thread”)

1 2 3

Work item

Broadcast

ThreadgroupThreadgroupThreadgroup

Work item

Thread

Unspecified!

Coalescing

Threadgroup

Launch thread per item
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WORK GRAPHS IN A NUTSHELL

Nodes can be “node arrays”

Uniform input type

Allows you to select “one of many” easily

(can vary per lane, for example)

Shade

Material 2

Material 1

Material 4

Material 3

Material 6

Material 5

Material 8

Material 7

Material 10

Material 9

Material 12

Material 11

Trace ray
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WORK GRAPHS IN A NUTSHELL

Self-recursion is allowed, 

but no loops across nodes

Traverse scene Draw thing

Total depth and expansion 

is limited

[max depth=32, expansion: 

1:32768 unless thread launch 

(i.e. 32 KiBx32 = 1MiB)]
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[Shader("node")]

[NodeLaunch("broadcasting")]

[NodeMaxDispatchGrid(65535, 1, 1)]

[NodeIsProgramEntry] // optional

[NumThreads(TRANSF_NUM_THREADS, 1, 1)]

void TriangleFetchAndTransform(

uint WorkloadIndex : SV_GroupID,

uint SIMDLaneIndex : SV_GroupIndex,

// Input record that contains the dispatch grid size.

// Set up by the application.

DispatchNodeInputRecord<DrawRecord> launchRecord,

SYNTAX

Plain old HLSL

Extra annotations for a function – that’s it!

Turns a function into a node
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SYNTAX

Calling other nodes looks like message passing

Allocate a record, fill it out, done

ThreadNodeOutputRecords<RasterizeRecord> rasterRecord =

triangleOutput[triangleBin].GetThreadNodeOutputRecords(allocateRecordForThisThread);

if (allocateRecordForThisThread)

{

rasterRecord.Get().tri = StoreTriangleState(ts);

}

rasterRecord.OutputComplete();

Wrote payload and “send” it
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CAN I BEAT THE BLACK BOX?

Yes, sometimes. Heroic programming!

Persistent 

threads

Custom memory 

management

Low-level

synchronization tricks

Work graphs make all of this accessible, easier to compose, 

give the runtime “optimization freedom” and enable new features down the line
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CAN I BEAT THE BLACK BOX?

Yes, sometimes. Heroic programming!

Persistent 

threats

Custom memory 

management

Low-level

synchronization tricks

Work graphs make all of this accessible, easier to compose, 

give the runtime “optimization freedom” and enable new features down the line



Practical applications
Work graphs in the wild!
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COMPUTE RASTERIZATION

Download today 

on GPUOpen

https://gpuopen.com/learn/work_graphs_learning_sample/
https://gpuopen.com/learn/work_graphs_learning_sample/
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USE CASE: COMPUTE RASTERIZATION

Computer rasterizer: Needs to deal 

with varying triangle sizes

Best performance: Sort by size

One bucket per size, holding 

potentially all triangles? 

Extra barrier between 

producer/consumer

Vertex Shading and Bounding Box

Coarse Rasterization

Fine

Rasterization

1 Pixel

Fine

Rasterization

2 Pixels

Fine

Rasterization

2N Pixels

Fine

Rasterization

… Pixels

Fine

Rasterization

4 Pixels

Output Buffer

Input Buffer
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USE CASE: COMPUTE RASTERIZATION

Work graphs vs. ExecuteIndirect

Reduced memory usage:  3500 MiB → 55 MiB ( )

Slightly improved performance

0 500 1000 1500 2000 2500 3000 3500 4000

Work graphs

Execute Indirect

AMD Radeon  RX 7900 XTX Memory usage in MiB: Lower is better

Measured on AMD Radeon RX 7900 XTX, 2024-02-26, internal driver
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USE CASE: PROCEDURAL CONTENT

Procedural content creation can be 

implemented through “node graphs” 

(see Blender®, Houdini , etc.)

Complex decision trees make it hard 

to run on execute indirect (branch/merge – 

what’s the worst-case ivy count?)

Build town Build house Place ivy

Build castle Place wall

Build bridge
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USE CASE: PROCEDURAL CONTENT

Don’t do it this way!
ExecuteIndirect requires topological graph sort, allocating multiple output buffers, 

dependency tracking, etc.

Place ivyBuild town Build castle Build house Build bridge Place wall
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PROCEDURAL ENRICHMENT



Live demo
All generation and all rendering in every frame

LIVE
                        
                     

                        
                     

A video game graphics summit

Description automatically generated

https://gpuopen.com/video/GDC24_Workgraphs_Blogpost_Demo.mp4
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“THE BRIDGE”
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PROCEDURAL CONTENT DEMO

while (continue_grow) {

  GrowForward();

}
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PROCEDURAL CONTENT DEMO

while (continue_grow) {

  GrowForward();

  if (forked) {

    // TODO: figure this out properly; 

        // maybe use a stack or something

  }

}
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PROCEDURAL CONTENT DEMO

void Ivy() {

  GrowForward();

    EmitNextRecord();

  if (forked) {

        EmitNextRecord();

  }

}

Ivy



GPU WORK GRAPHS

“THE MARKET”
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PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market
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PROCEDURAL CONTENT DEMO

Paths

Garlands Props

Market Stalls

Market
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THE MEADOW
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MESH NODES

Traverse scene Draw meshlet

Procedural 

enrichment

All in one graph

Preview feature 

announcement: 

Mesh nodes

Draw “inside” 

the work graph 

using “mesh nodes”

Enables fully compute-driven 

scene traversal 

(with PSO switching)
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[AMD Official Use Only – General]

GPU WORK GRAPHS68

MESH NODES

Mesh Nodes: Feed into a mesh shader pipeline

Work graph acts like an amplification shader on steroids

Runtime ensures PSO switching isn’t too expensive

• Will buffer up draw calls per state

• Will optimize state changes

• The more similar the states are, the better – 

cheapest state change is swapping out shaders only
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Grass Patch Mushroom Flower Bees Butterflies

GRASS GENERATION

Grass

+ + + + + + +
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Grass Patch Mushroom Flower Bees Butterflies

GRASS GENERATION

Grass

+ + + + + + +

“No ExecuteIndirect” 

zone
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STATS FOR THE DEMO

Everything ran all the time in every frame

37
nodes

+9
mesh nodes

6.6K
draws/frame

13M 
triangles/frame

196 MiB
of memory

200,000
work items
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MESH NODES: PERFORMANCE

1x

1.64x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

AMD Radeon  RX 7900 XTX Graph execution + rendering, relative, lower is better

Work graphs

ExecuteIndirect

Work graphs vs. ExecuteIndirect: Super early numbers!

Measured on AMD Radeon RX 7900 XTX, 2024-02-26, internal driver
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PERFORMANCE PITFALLS

The smaller the launch, the worse the performance: 

Don’t try to go too fine-grained on 1.0 (i.e., make sure that a node 

accumulates enough work to launch a few thousand threads)

Don’t try to synchronize just yet – easy to shoot yourself in the foot, 

better ideas in the making

Always check how full your input is in coalescing nodes

Keep payloads small – ideally, a couple of bytes

                        
                     

                     
                     

                          
                     

                       
                 



GPU WORK GRAPHS

AMD RADEON  GPU PROFILER SUPPORT

Learn more in our 

AMD Radeon  Tools session (YouTube link)

https://gpuopen.com/videos/gdc-2024-rdts-game-optimization/
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WHAT ABOUT VULKAN? 

Work graphs are also coming to Vulkan®

Currently, AMDX 
(AMD only, experimental)

As usual…

• Want to match D3D with a EXT/KHR extension

• We plan to release updates to the AMDX 

in tandem with new features in D3D 

(like draw calls)

[AMD Official Use Only – General]

GPU WORK GRAPHS75
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WORK GRAPHS SUMMARY

GPU managed 

producer/consumer networks
GPU managed memory – 

can never run out of memory
Guaranteed forward progress: 

No deadlocks, 

no hangs, by construction

1 2 3

✓ with expansion/reduction

✓ with recursion

Available now!
https://gpuopen.com/microsoft-work-graphs-1-0-now-available/ 

https://gpuopen.com/microsoft-work-graphs-1-0-now-available/


THANKS! NOW, GO TRY IT OUT!
Head over to https://gpuopen.com/microsoft-work-graphs-1-0-now-available/ 

Big thanks also go out to:

• Amar Patel & Shawn from Microsoft

• the fine folks at the university of Coburg (Bastian Kuth, Quirin Meyer, 

Carsten Faber), 

• the whole team at AMD, specifically Rob Martin, Max Oberberger, 

Niels Fröhling, Pirmin Pfeiffer, Dominik Baumeister, Timothy McQuaig, 

Jason Stewart, and many more

and everyone else who made this a reality!

https://gpuopen.com/microsoft-work-graphs-1-0-now-available/
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DISCLAIMER
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and 

typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not 

limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences 

between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security 

vulnerabilities that cannot be completely prevented or mitigated.  AMD assumes no obligation to update or otherwise correct or revise this 

information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without 

obligation of AMD to notify any person of such revisions or changes.

“Mesh nodes: Performance” - Testing by AMD as of March 15, 2024, on the AMD Radeon RX 7900 XTX using AMD Software: Adrenalin Edition 

31.0.24014.1002 pre-release driver, using the ExecuteIndirect command and Work Graphs with the mesh nodes extension to dispatch scene 

information to Microsoft® DirectX® 12, on a test system configured with an AMD Ryzen  7 5800X CPU, 32GB DDR4 RAM, Gigabyte X570 

AORUS ELITE WIFI motherboard, and Windows 11 Pro 2023 Update, using the AMD procedural content Work Graphs demo with the overview, 

meadow, bridge, wall, and market scene views. System manufacturers may vary configurations, yielding different results. RS-640.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS 

HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS 

INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS 

FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, 

SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD 

IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, RDNA, Ryzen, and combinations thereof are 

trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be 

trademarks of their respective owners. DirectX is either a registered trademark or trademark of Microsoft Corporation in the US and/or other 

countries. Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc. Xbox is a registered trademark of Microsoft Corporation 

in the US and/or Other countries.
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