
MIGUEL PETERSEN

INTRODUCING GPU
RESHAPE

API-AGNOSTIC INSTRUMENTATION &
INSTRUCTION LEVEL VALIDATION

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 2

THE PROBLEM

• Modern APIs are powerful, but highly complex

• Something inevitably goes wrong

• What went wrong?

• Where did it go wrong?

• How do we know?

• DXGI_ERROR_DEVICE_REMOVED / VK_DEVICE_LOST

• Sometimes not so obvious

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 3

• Excellent validation tooling on the CPU timeline

• Standard validation layers

• Limited by available data

• What if the issue occurs on the GPU timeline?

• May result in undefined behaviour, crashes, or worse

• Caused by dynamic data not visible on the CPU timeline

• This is what GPU Reshape is all about!

THE PROBLEM

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 4

THE IDEA

• Conceptually, GPU Reshape is simple

• Before something bad can happen, validate it

• If something bad did happen, inform the user

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 5

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 6

• So, what can go wrong? A lot!

THE IDEA

Element / Texel

Out Of Bounds

Exporting

Inf / NaN

Invalid Descriptor

Indexing

Uninitialized Data
Mismatched

Descriptors
Race Conditions

Infinite Loops

(TDR)

Hardware

Slow Paths
And a lot more!

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 7

• Validation takes many forms

• Static analysis

• Symbolic analysis

• Source instrumentation

• Binary instrumentation

• GPU Reshape is an integration-free framework

• Leaves only binary instrumentation

• Smarter people have already proved the point

THE IDEA

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 8

• Binary instrumentation transforms code

• Inject user programs with validation code

• No modifications needed from the user

THE IDEA

%image = OpLoad %imagePtr

%oob = OpUGreaterThanEqual %b %index %size

OpSelectionMerge %resume None

OpBranchConditional %oob %fail %resume

%fail = OpLabel

… failure code …

OpBranch %resume

%resume = OpLabel

%texel = OpImageRead %f4 %image %index None

%image = OpLoad %imagePtr

%texel = OpImageRead %f4 %image %index None

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 9

• Easier to think about with source code

• Injected validation of image load coordinates

• Numerous projects employ hand-written validation

• Fully automated through GPU Reshape

• Not all faults are immediately visible in source code

THE IDEA

if (any(coordinates >= imageSize)) {

 ReportFault();

}

float4 texel = image[coordinates];

float4 texel = image[coordinates];

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 10

• Certain features may safe-guard operations

• Faulting operations can cause general instability

• Limits our ability to stream validation data back

• Guard faulting instructions in a separate branch

THE IDEA

float4 texel;

if (any(coordinates >= imageSize)) {

ReportFault();

texel = 0.0f.xxxx;

} else {

texel = image[coordinates];

}

if (any(coordinates >= imageSize)) {

ReportFault();

}

float4 texel = image[coordinates];

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 11

• Multiple backends, multiple intermediate languages

• Permutation problem

THE IDEA

Resource Bounds

DX12

Vulkan

Future API

DXBC

DXIL

SPIRV

Future IL

Resource Bounds DXBC

Resource Bounds DXIL

Resource Bounds SPIRV

Resource Bounds Future IL

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 12

INTERMEDIATE LANGUAGES / GRIL

• Implementation per backend/intermediate-language infeasible

• Representations may be different between the ILs

• Concepts are mostly the same

• We need a common form

Write once instrument everywhere

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 13

• Shared abstraction

• Intermediate Languages

• APIs

INTERMEDIATE LANGUAGES

Resource Bounds

DX12

Vulkan

Future API

SPIRV

Future IL

GRIL

DXBC

DXIL

Reshape

API

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 14

• GRIL is heavily LLVM inspired

• Single-static assignment

• Strong typing system

• Basic blocks (stream of instructions)

• Similar programming model

• All instrumentation happens on GRIL

• Bi-directionally translated to and from backend languages

• Native parsing and recompilation

• Single layer translation

• No intermediate representations from binary to GRIL

• Highly performant

INTERMEDIATE LANGUAGES

GRILBackend IL DriverBackend IL

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 15

• Feature parity with backend languages is not the goal

• Too much work

• GRIL only exposes a sub-set of each language

• Behaviour of unexposed constructs maintained

• Instructions

• Constants

• Etc.

• Trivial differences in instructions abstracted away

• Difference in address spaces

• Specialized instruction operands

• Etc.

• Language paradigm differences need to be addressed

• Scalarization/vectorized representations

• Structured/unstructured control flow

• Infer when we can, expose when we cannot

INTERMEDIATE LANGUAGES

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 16

• SPIRV is a vectorized representation

• DXIL is a scalarized representation

• GRIL follows a vectorized form

• More work to scalarize SPIRV than to scalarize (instrumented) GRIL

• DXIL scalarization inferred in the backend

• Applies to any vectorized operation (binary, unary, etc.)

INTERMEDIATE LANGUAGES

float a[4] = ...;

float b[4] = ...;

a[0] += b[0];

a[1] += b[1];

a[2] += b[2];

a[3] += b[3];

float4 a = ...;

float4 b = ...;

a += b;

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 17

• Structured control flow puts a strict set of requirements on branching

• SPIRV is fully structured

• DXIL is unstructured (e.g., goto)

• Inferring structured control flow is difficult, and dangerous

• Inclusively exposed in the intermediate language

• Backends may rewrite shaders for relaxed control flow

• Features written with structured control-flow in mind

• Backends may discard information

INTERMEDIATE LANGUAGES

pre.BranchConditional(

pre.Equal(terminationID, pre.UInt32(1u)),

terminationBlock,

selectionMergeBlock,

 // SPIRV Selection Merge Construct

IL::ControlFlow::Selection(selectionMergeBlock)

);

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 18

• Features may rely on structured control flow constructs

• Such as Loop manipulation

• What is a loop really?

• It’s a for statement! A while statement! In source code

• What about in ILs? A set of blocks branching to each other

• Headers represent the entry point

• Back edges represent the cyclical branching

• Backend ILs may not preserve this information (DXIL)

• Metadata stripped out

• Requires reconstruction

• Reshape provides tooling to reconstruct such constructs

• Lots of literature on this!

INTERMEDIATE LANGUAGES

A

B

C

A -> B

B -> A
B -> C

Back Edge

Header

Exit

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 19

• Numerous additional differences

• Instruction sets

• Binding models

• Type representation

• Constant representation

• Addressing mechanisms

• Metadata representation

• And so forth!

• Not all that fun to talk about

• Given compliance, translation is seamless

INTERMEDIATE LANGUAGES

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 20

BUILDING BLOCKS

• Instrumentation is half the battle

• Features never interact with the APIs

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 21

• GPU Reshape is a collection of building blocks

• API abstractions

• Data streaming and synchronization

• Resource management

• Descriptor management

• Standardized functionality

• GRIL manipulation

• Instruction emitters

• Basic block splitting

• Analysis passes

• Dominator/loop trees

• Conditional constant propagation

• Some more interesting than others

BUILDING BLOCKS

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 22

• Validation data streaming

• Something bad happened, stream back the details

• Backends handle state management and synchronization

• Streaming data from GRIL is a one-liner

• Full interoperability with GPU, CPU, and networking friendly

• No post processing needed, send straight to the UI for presentation

• Binding code generated from schema files

• GRIL

• C++

• C#

BUILDING BLOCKS

// Export the message

ResourceRaceConditionMessage::ShaderExport msg;

msg.SGUID = oob.UInt32(sguid);

msg.LUID = eventDataID;

oob.Export(exportID, msg); // Send it!

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 23

• Descriptor management

• One of the biggest differences between APIs

• Features mostly want to discern handles with ids and metadata

• Abstracted as Resource Tokens

• Physical Unique ID

• Resource Type (Texture, Buffer, CBuffer, Sampler)

• Sub-resource Base (Slices, Mips, Etc.)

• Exposed in GRIL as a one-liner

• Single (register) vectorized instruction with a couple scalarized

BUILDING BLOCKS

IL::ResourceTokenEmitter token(pre, resourceHandle);

// Get token details

IL::ID PUID = token.GetPUID();

IL::ID SRB = token.GetSRB();

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 24

• Feature programs

• Shaders written entirely in GRIL

• Translated to backend language

• Features can manipulate state independent of shader operations

• Same programming model as instrumentation

• Minimal work to support it

void SRBMaskingShaderProgram::Inject(IL::Program &program) {

... omitted few setup lines

IL::Emitter<> emitter(program, *basicBlock, basicBlock->GetTerminator());

// Get current mask

IL::ID srbMask = emitter.Extract(emitter.LoadBuffer(bufferID, puidEventDataID), 0u);

// Bit-Or with desired mask

IL::ID bufferID = emitter.Load(initializationMaskBufferDataID);

emitter.StoreBuffer(bufferID, puidEventDataID, emitter.BitOr(srbMask, maskEventDataID));

}

BUILDING BLOCKS

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 25

• Command abstraction

• Inject arbitrary commands prior to user operations

• Supply instrumentation data to pending dispatch/draw

• “User called you with 13 vertices!”

• Push/root constants, descriptor data, etc.

• Execute feature programs

• Anything the feature needs

• Submit commands independent of user operations

BUILDING BLOCKS

CommandBuilder builder(context->buffer);

builder.SetShaderProgram(srbMaskingShaderProgramID);

builder.SetEventData(srbMaskingShaderProgram->GetPUIDEventID(), static_cast<uint32_t>(puid));

builder.SetEventData(srbMaskingShaderProgram->GetMaskEventID(), ~0u);

builder.Dispatch(1, 1, 1);

scheduler->Schedule(Queue::Compute, buffer);

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 26

FEATURES

• So now that we have everything

• How are we using it?

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 27

• Most features follow the same doctrine

• Find all potentially faulting instructions

• Validate operands prior to instruction

• Split the basic block according to needs

• Simple splitting allocates an ERROR block

• Conditionally branched to if a fault was detected

• ERROR exports validation data

• POST acts as structured merge block

FEATURES

PRE

PRE POSTERROR

INSTR

INSTR

POST

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 28

• Safe-Guarding splitting requires an additional block

• Migrate dangerous instruction to guarded block

• Allocate dummy values in case of an error

• POST block merges instruction result 𝜑(𝐸𝑅𝑅𝑂𝑅, 𝐺𝑈𝐴𝑅𝐷)

• 𝜑 selects a value based on the control flow predecessor

• 𝑣𝑎𝑙𝑢𝑒 = 𝑤𝑎𝑠𝐸𝑟𝑟𝑜𝑟 ? 𝑑𝑢𝑚𝑚𝑦𝑉𝑎𝑙𝑢𝑒 ∶ 𝑖𝑛𝑠𝑡𝑟𝑉𝑎𝑙𝑢𝑒

FEATURES

PRE POST

ERROR

INSTR GUARD

φ

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 29

• Validation of texel/element addressing in bounded resources

• [RW]Buffer / [RW]StructuredBuffer / [RW]Texture[…]

• Most functionality supplied by hardware/ILs

• SPIRV OpImageQuerySize

• DXIL @dx.op.getDimensions

• Let GRIL handle the heavyweight work

• Just assume vectorization

• Export data on errors

RESOURCE BOUNDS

IL::ID cond = pre.Any(pre.GreaterThanEqual(index, pre.ResourceSize(instr->buffer)));

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 30

• Validation of floating-point stability on export operations

• Writes to unordered access views

• Writes to render targets

• Writes to inter-stage structures (e.g., vertex exports)

• Very simple test

EXPORT STABILITY

IL::ID isInf = pre.Any(pre.IsInf(value));

IL::ID isNaN = pre.Any(pre.IsNaN(value));

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 31

• Validation of descriptor validity

• Undefined

• Out of bounds indexing

• Compile-time to runtime mismatch

• Missing table bindings

• Resource Token abstraction provides all the data needed

• Fully guarded

• Reports exact descriptor present

• Feature validates the runtime descriptor type against instruction

• Guarding of instruction using descriptor data

DESCRIPTORS

IL::ID runtimeType = IL::ResourceTokenEmitter(pre, resourceHandle).GetType();

IL::ID mismatch = pre.NotEqual(compileType, runtimeType);

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 32

• Validation of resource writes prior to reads

• Myriad of ways resources can be initialized

• Command buffers: Clears/Render Pass flags/Copies/…

• Shaders: UAV writes

• Tracked initialization masks in a persistent buffer

• Indexed by resource token physical UID

• Granularity on a per-resource level

• Sub-resource tracking coming later

INITIALIZATION

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 33

• Mask initialization must occur in shader

• Reads validate mask against expected state

• Writes atomically assign mask bits

• Command buffer writes (e.g., copies) launch a separate kernel for initialization logic

• Transfer/copy queues are emulated

• Cannot execute compute kernels on native queues

• Transparent to the application

Command

INITIALIZATION

Initialization Masks buffersource

KernelvkCmdCopyBuffer

Shader OpImageRead OpImageWrite

…

…

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 34

• Validation of single-producer/multiple-consumer relations

• Granularity between events (draw, dispatch, etc.) and queues

• Atomic guards on resource operations (writes, loads, samples, etc.)

• Single atomic CAS operation

• If lock failed, and not the current event lock id, potential race condition

• Persistent resource lock states across the device

• Events (e.g., draws) allocate a 32-bit identifier representing a lock (push/root constant)

• Same mechanism as initialization validation

• Command buffer induced race conditions not implemented yet

• Not a hazard check

CONCURRENCY

INSTRLOCK UNLOCK

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 35

• Validation of waterfalling conditions

• Serialization of dynamic register indexing (S/VGPR)

• Architecturally specific (AMD)

• Performance implications

• Local addressing is serialized if both

• The data accessed cannot be deduced at compile time

• The indexing requested cannot be deduced at compile time

• Constant data can be moved to memory (global_load_dword)

• Constant indexing can (try to) inline the element

WATERFALLING

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 36

• Serialization commonly takes two forms

• Set of conditional masking instructions for small data types, not free

• “Waterfall” loop for large data types and descriptors, expensive

• Actual loop, reduces execution mask by unique value grouping until done

WATERFALLING

 v_cndmask_b32 v2, v3, v2, vcc_lo

 v_cmp_eq_i32 vcc_lo, 0, v4

 v_cndmask_b32 v1, v2, v1, s0

 v_cndmask_b32 v0, v1, v0, vcc_lo

 s_mov_b32 exec_lo, s1

label_00B4:

 s_mov_b32 vcc_lo, exec_lo

 v_readfirstlane_b32 s2, v12

 s_mov_b32 m0, s2

 v_cmpx_eq_i32 exec_lo, s2, v12

 v_movrels_b32 v0, v0

 s_andn2_b32 exec_lo, vcc_lo, exec_lo

 s_cbranch_execnz label_00B4

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 37

• Validation is non-trivial

• Determine if either can be constant-folded

• Compilers resolve this through a chain of optimization passes

• SSA-Rewrite > Loop-Unrolling > CCP > …

• Conditional Constant Propagation (CCP) with Constant Folding
• D. Novillo, "A propagation engine for GCC", GCC Developers Summit, pages 175–185, 2005

• Mark N. Wegman and F. Kenneth Zadeck, "Constant propagation with conditional branches", ACM Trans. Program. Lang. Syst. 13, 2
(April 1991), 181–210. 10.1145/103135.103136

• Conservative Load/Store Propagation

• Simulated Loop Propagation

• Validation checks if either the data or indexing may be constant folded

• Exceptions apply, but good estimate!

WATERFALLING

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 38

• Guarding of potentially infinite/TDR loops

• Escape loops before potential driver timeouts

• CPU heartbeat thread

• Monitors all active submissions

• Signals termination if elapsed time exceeds threshold

LOOPS (EXPERIMENTAL)

Queue Submission Submission Submission

Completed

𝑡 = 20𝑚𝑠
Executing

𝑡 = 750𝑚𝑠
Pending

𝑡 = 0𝑚𝑠

Heartbeat Thread

Signal termination

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 39

• Loop headers atomically read signal each iteration

• If signaled for termination, escape the loop

• Unstructured programs reconstruct loop tree

• Branching to loop exits requires resolving 𝜑 merges

• 𝜑 𝐵0 … , 𝐵𝑛 → 𝜑 𝐵0 … , 𝐵𝑛, 𝐵𝑆𝐼𝐺𝑁𝐴𝐿

• Unsolved problem is getting data to a running shader

• Makes architectural assumptions as of today

LOOPS (EXPERIMENTAL)

IL::ID signal = pre.AtomicAnd(pre.AddressOf(buffer, submissionID), pre.UInt32(1u));

SIGNALB CHEADER EXIT

Terminated

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 40

• Features are not infallible

• Validation must never produce issues

• Resource Bounds validation expects valid descriptors

• Size queried on buffer/texture descriptors

• Invalid descriptors will fault the GPU

• Add feature dependencies

• Hierarchical instrumentation

• Resource Bounds / Initialization / Etc. → Descriptors (Safe Guarded)

FEATURES

PRE DESCRIPTOR POST

ERROR DESCRIPTOR

INSTR GUARD

φ

PRE BOUNDS ERROR BOUNDS

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 41

• Not a monolithic framework

• All features exposed as plugins

• Backends are entirely decoupled from features

• Backends are kept as minimal as possible

• Heavy lifting in the abstracted layer

• Keeps things clean

• Current feature scope constrained to validation

• Let’s get one thing right before the next

• Exciting things in the works!

FEATURES

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 42

WHAT ABOUT TOMORROW?

• Instrumentation is here to stay

• Road map for future features

• Debugging

• Profiling

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 43

• Full fledged in-shader debugging

• See exactly what shaders see with “live” instruction breakpoints

• Realtime, as it is happening

• Visualize values however you please (e.g., 2D texture for post processing debugging)

• Make shader assertions common place

• Staple of the CPU world

• Requires source integration/annotation

WHAT ABOUT TOMORROW?

assert(roughness > kGGXMinRoughness, "Invalid roughness encoded");

(Not a real screenshot)

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 44

• In-shader profiling

• Inspect branch coherence and coverage in real-time

• Turn the camera, another branch lit up!

• Diagnose highly divergent paths

• Inspect branch timings in real-time, where is the shader spending its time?

• Some challenges with (driver) pipeline reordering

WHAT ABOUT TOMORROW?

(Not a real screenshot)

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 45

• I don’t see instrumentation as something niche

• Has serious potential to become part of everyday development

• Offers a unique way to unbox the GPU

• A long road ahead

• Numerous features planned

• Ongoing stabilization efforts

• A fully open-source collaboration

• For issues, proposals, and general discussion, please reach out!

• https://github.com/GPUOpen-Tools/GPU-Reshape

• Genuine thanks

• Avalanche Studios Group

• Advanced Micro Devices

• Striking Distance Studios

WHAT ABOUT TOMORROW?

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 46

ANY QUESTIONS?

https://gpuopen.com/tools/ https://gpuopen.com/gpu-reshape/

AMD PUBLIC | GDC 2024 | AMD GPU DEVELOPER TOOLS | March 2024 47

DISCLAIMER

GENERAL DISCLAIMER

The information contained herein is for informational purposes only and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro
Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of
this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability
or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products
described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed
agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon and combinations thereof
are trademarks of Advanced Micro Devices, Inc. DirectX is a registered trademark of Microsoft Corporation in the US and
other jurisdictions. Linux is a registered trademark of Linus Torvalds. OpenCL is a trademark of Apple, Inc. used by
permission from The Khronos Group. LLVM is a trademark of LLVM Foundation. SPIR, SPIR-V and the SPIR logo are
trademarks of the Khronos Group Inc. Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc.
Windows is a registered trademark of Microsoft Corporation in the US and other jurisdictions. Other product names used
in this publication are for identification purposes only and may be trademarks of their respective companies.

	Slide 1: introducing GPU Reshape
	Slide 2: THE PROBLEM
	Slide 3: The problem
	Slide 4: THE IDEA
	Slide 5
	Slide 6: THE IDEA
	Slide 7: THE IDEA
	Slide 8: THE IDEA
	Slide 9: THE IDEA
	Slide 10: THE IDEA
	Slide 11: THE IDEA
	Slide 12: INTERMEDIATE LANGUAGES / GRIL
	Slide 13: INTERMEDIATE LANGUAGES
	Slide 14: INTERMEDIATE LANGUAGES
	Slide 15: INTERMEDIATE LANGUAGES
	Slide 16: INTERMEDIATE LANGUAGES
	Slide 17: INTERMEDIATE LANGUAGES
	Slide 18: INTERMEDIATE LANGUAGES
	Slide 19: INTERMEDIATE LANGUAGES
	Slide 20: BUILDING BLOCKS
	Slide 21: BUILDING BLOCKS
	Slide 22: BUILDING BLOCKS
	Slide 23: BUILDING BLOCKS
	Slide 24: BUILDING BLOCKS
	Slide 25: BUILDING BLOCKS
	Slide 26: FEATURES
	Slide 27: FEATURES
	Slide 28: FEATURES
	Slide 29: RESOURCE BOUNDS
	Slide 30: EXPORT STABILITY
	Slide 31: DESCRIPTORS
	Slide 32: INITIALIZATION
	Slide 33: INITIALIZATION
	Slide 34: CONCURRENCY
	Slide 35: WATERFALLING
	Slide 36: WATERFALLING
	Slide 37: WATERFALLING
	Slide 38: LOOPS (EXPERIMENTAL)
	Slide 39: LOOPS (EXPERIMENTAL)
	Slide 40: FEATURES
	Slide 41: FEATURES
	Slide 42: WHAT ABOUT TOMORROW?
	Slide 43: WHAT ABOUT TOMORROW?
	Slide 44: WHAT ABOUT TOMORROW?
	Slide 45: WHAT ABOUT TOMORROW?
	Slide 46: Any questions?
	Slide 47: Disclaimer
	Slide 48

